Data
data1=read.csv("D:\\Armazenamento\\DATA R\\Ensaio 3\\assay3.1.csv")
data1$Ciclo=as.factor(data1$Ciclo)
data1$tratamentos=as.factor(data1$tratamentos)
data1$entrada=as.Date(data1$entrada, format="%d/%m/%Y")
print(data1)
str(data1)
'data.frame': 96 obs. of 80 variables:
$ Ciclo : Factor w/ 6 levels "Cycle 1","Cycle 2",..: 1 1 1 1 1 1 1 1 1 1 ...
$ Piquete : chr "8B" "7B" "8A" "7A" ...
$ tratamentos : Factor w/ 2 levels "consorcio","exclusivo": 2 1 2 1 2 1 2 1 2 1 ...
$ rep : int 1 1 2 2 3 3 4 4 5 5 ...
$ entrada : Date, format: "2022-01-21" "2022-01-21" "2022-01-24" "2022-01-24" ...
$ saida : chr "23/01/2022" "23/01/2022" "26/01/2022" "26/01/2022" ...
$ ocupacao : int 3 3 3 3 3 3 2 3 3 3 ...
$ descanso : int 24 24 24 24 24 24 24 24 24 24 ...
$ pregrazing.height : num 30.6 30.9 33.5 32.2 31.8 ...
$ postgrazing.height : num 16.9 17.2 16.1 15.4 17.6 ...
$ pregrazing.height.thi: num NA NA NA NA NA NA NA NA NA NA ...
$ area.thi.paddock : num 0 8.02 0 6.58 0 7.74 0 7.45 0 3.84 ...
$ area.thi.ha : num 0 1114 0 914 0 ...
$ n.plantas : num 0 29 0 25 0 23 0 26 0 15 ...
$ diametro.copa : num 0 0.55 0 0.53 0 0.67 0 0.57 0 0.51 ...
$ densidade.planta : num 0 4028 0 3472 0 ...
$ biomass.bra.paddock : num 6.24 6.38 10.04 5.73 9.76 ...
$ biomass.bra.ha : num 866 886 1395 795 1356 ...
$ biomass.thi.paddock : num 0 1.68 0 0.43 0 2.87 0 3.35 0 2.86 ...
$ biomass.thi.ha : num 0 233.5 0 59.6 0 ...
$ biomass.total.paddock: num 6.24 8.06 10.04 6.16 9.76 ...
$ biomass.total.ha : num 866 1120 1395 855 1356 ...
$ resi.bra.paddock : num 2.94 2.88 1.09 0 1.67 1.56 0 0 2.14 3.93 ...
$ resi.bra.ha : num 409 399 151 0 232 ...
$ resi.thi.paddock : num 0 0.34 0 0 0 1.93 0 0 0 0 ...
$ resi.thi.ha : num 0 47.9 0 0 0 ...
$ acumulado.bra : num 866 886 1395 795 1356 ...
$ acumulado.thi : num 0 233.5 0 59.6 0 ...
$ acumulado.total : num 866 1120 1395 855 1356 ...
$ resi.total.paddock : num 2.94 3.22 1.09 0 1.67 3.49 0 0 2.14 3.93 ...
$ resi.total.ha : num 409 447 151 0 232 ...
$ bra.accumulation.rate: num 36.1 36.9 58.1 33.1 56.5 ...
$ thi.accumulation.rate: num NA 9.73 NA 2.48 NA ...
$ bra.folhas : num 641 571 661 600 584 ...
$ bra.hastes : num 148 237 165 185 233 ...
$ bra.morto : num 210 192 174 215 184 ...
$ thi.folhas : num 0 468 0 520 0 ...
$ thi.hastes : num 0 425 0 319 0 ...
$ thi.morto : num 0 107 0 162 0 ...
$ bra.leaf.acu : num 555 506 922 477 791 ...
$ bra.stem.acu : num 129 210 230 147 315 ...
$ bra.dead.acu : num 182 170 242 171 249 ...
$ thi.leaf.acu : num 0 109 0 31 0 ...
$ thi.stem.acu : num 0 99.3 0 19 0 ...
$ thi.dead.acu : num 0 24.95 0 9.64 0 ...
$ total.leaf.acu : num 555 615 922 508 791 ...
$ total.stem.acu : num 129 310 230 166 315 ...
$ total.dead.acu : num 182 195 242 180 249 ...
$ n.animais : num 5 5.33 5 5 4.67 5 2.33 5 3.67 4.33 ...
$ pv.piquete : num 143 149 143 140 135 ...
$ pv.ha : num 825 860 825 809 783 ...
$ ua.ha : num 1.83 1.91 1.83 1.8 1.74 1.8 0.91 1.8 1.4 1.61 ...
$ DM.bra : num 905 903 898 900 896 ...
$ MM.bra : num 127 124 128 129 123 ...
$ MO.bra : num 873 876 872 871 877 ...
$ PB.bra : num 118 107 169 137 105 ...
$ aFDNom.bra : num 547 608 546 562 582 ...
$ aFDA.bra : num 292 314 290 288 308 ...
$ HEMC.bra : num 254 294 255 274 275 273 272 270 278 277 ...
$ DM.thi : num 0 881 0 881 0 ...
$ MM.thi : num 0 164 0 176 0 ...
$ MO.thi : num 0 836 0 824 0 ...
$ PB.thi : num 0 124 0 144 0 ...
$ aFDNom.thi : num 0 356 0 352 0 ...
$ aFDA.thi : num 0 245 0 251 0 ...
$ HEMC.thi : num 0 110 0 101 0 89 0 108 0 94 ...
$ total.DM.ac : num 784 1005 1253 768 1214 ...
$ total.MM.ac : num 110 148 178 113 166 ...
$ total.MO.ac : num 756 972 1216 742 1189 ...
$ total.PB.ac : num 102 124 236 117 143 ...
$ total.FDN.ac : num 474 622 761 468 789 ...
$ total.FDA.ac : num 253 336 405 244 417 ...
$ total.HEMC.ac : num 220 286 356 224 373 ...
$ d15N : num NA NA NA NA NA NA NA NA NA NA ...
$ X.N : num NA NA NA NA NA NA NA NA NA NA ...
$ d13C : num NA NA NA NA NA NA NA NA NA NA ...
$ X.C : num NA NA NA NA NA NA NA NA NA NA ...
$ C.N : num NA NA NA NA NA NA NA NA NA NA ...
$ C3. : num NA NA NA NA NA NA NA NA NA NA ...
$ C4. : num NA NA NA NA NA NA NA NA NA NA ...
Rest time
psych::describeBy(data1$descanso)
Warning: no grouping variable requested
1- Pre-grazing canopy height (cm)
mod1 = lmer(pregrazing.height~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod1))

shapiro.test(resid(mod1))
Shapiro-Wilk normality test
data: resid(mod1)
W = 0.97071, p-value = 0.03009
mod1.1 = lmer(pregrazing.height^1.3~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod1.1))

shapiro.test(resid(mod1.1))
Shapiro-Wilk normality test
data: resid(mod1.1)
W = 0.97413, p-value = 0.05431
bartlett.test(resid(mod1.1)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod1.1) by tratamentos
Bartlett's K-squared = 0.0033781, df = 1, p-value = 0.9537
anova(mod1.1)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 32.729 32.729 1 89 0.3517 0.5546
medias1=emmeans(mod1,~tratamentos)
summary(medias1)
tratamentos emmean SE df lower.CL upper.CL
consorcio 28.4 1.48 5.38 24.7 32.1
exclusivo 28.1 1.48 5.38 24.3 31.8
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
2- Post-grazing canopy height (cm)
mod2 = lmer(postgrazing.height~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod2))

shapiro.test(resid(mod2))
Shapiro-Wilk normality test
data: resid(mod2)
W = 0.93578, p-value = 0.000149
bartlett.test(resid(mod2)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod2) by tratamentos
Bartlett's K-squared = 6.7228, df = 1, p-value = 0.009519
mod2.1 = lmer(postgrazing.height^0.05~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod2.1))

shapiro.test(resid(mod2.1))
Shapiro-Wilk normality test
data: resid(mod2.1)
W = 0.97381, p-value = 0.05141
bartlett.test(resid(mod2.1)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod2.1) by tratamentos
Bartlett's K-squared = 3.4331, df = 1, p-value = 0.0639
anova(mod2.1)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 7.8291e-05 7.8291e-05 1 89 3.1252 0.08052 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias2=emmeans(mod2,~tratamentos)
summary(medias2)
tratamentos emmean SE df lower.CL upper.CL
consorcio 13.9 1.24 5.12 10.7 17.1
exclusivo 14.4 1.24 5.12 11.2 17.6
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
3- Herbage biomass (kg ha-1)
mod3 = lmer(biomass.bra.ha~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod3))

shapiro.test(resid(mod3))
Shapiro-Wilk normality test
data: resid(mod3)
W = 0.97777, p-value = 0.1023
bartlett.test(resid(mod3)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod3) by tratamentos
Bartlett's K-squared = 1.0228, df = 1, p-value = 0.3119
anova(mod3)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 616.66 616.66 1 89 0.0036 0.9522
medias3=emmeans(mod3,~tratamentos)
summary(medias3)
tratamentos emmean SE df lower.CL upper.CL
consorcio 1251 81.1 9.32 1069 1434
exclusivo 1246 81.1 9.32 1064 1429
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
4- Residual biomass (kg ha-1)
mod4 = lmer(resi.bra.ha~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod4))

shapiro.test(resid(mod4))
Shapiro-Wilk normality test
data: resid(mod4)
W = 0.85143, p-value = 2.208e-08
bartlett.test(resid(mod4)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod4) by tratamentos
Bartlett's K-squared = 0.10694, df = 1, p-value = 0.7437
mod4.1 = lmer(resi.bra.ha^0.3~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod4.1))

shapiro.test(resid(mod4.1))
Shapiro-Wilk normality test
data: resid(mod4.1)
W = 0.97707, p-value = 0.09052
bartlett.test(resid(mod4.1)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod4.1) by tratamentos
Bartlett's K-squared = 0.090194, df = 1, p-value = 0.7639
anova(mod4.1)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 6.9044 6.9044 1 89 1.3308 0.2518
medias4=emmeans(mod4,~tratamentos)
summary(medias4)
tratamentos emmean SE df lower.CL upper.CL
consorcio 152 48.7 6.86 36.0 267
exclusivo 183 48.7 6.86 67.1 298
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
5- Herbage accumulation rate (kg ha-1
day-1)
mod5 = lmer(bra.accumulation.rate~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod5))

shapiro.test(resid(mod5))
Shapiro-Wilk normality test
data: resid(mod5)
W = 0.95934, p-value = 0.004587
bartlett.test(resid(mod5)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod5) by tratamentos
Bartlett's K-squared = 0.23164, df = 1, p-value = 0.6303
mod5.1 = lmer(bra.accumulation.rate^0.8~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod5.1))

shapiro.test(resid(mod5.1))
Shapiro-Wilk normality test
data: resid(mod5.1)
W = 0.98086, p-value = 0.1743
bartlett.test(resid(mod5.1)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod5.1) by tratamentos
Bartlett's K-squared = 2.4364e-07, df = 1, p-value = 0.9996
anova(mod5.1)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 1.7106 1.7106 1 89 0.1152 0.7351
medias5=emmeans(mod5,~tratamentos)
summary(medias5)
tratamentos emmean SE df lower.CL upper.CL
consorcio 31.1 6.65 5.24 14.3 48.0
exclusivo 30.4 6.65 5.24 13.5 47.2
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
6- Tithonia - Herbage biomass (kg
ha-1)
mod6 = lmer(biomass.thi.ha~tratamentos+(1|Ciclo), data = data1)
medias6=emmeans(mod6,~tratamentos)
summary(medias6)
tratamentos emmean SE df lower.CL upper.CL
consorcio 933 157 6.59 558 1308
exclusivo 0 157 6.59 -375 375
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
7- Tithonia - Residual biomass (kg
ha-1)
mod7 = lmer(resi.thi.ha~tratamentos+(1|Ciclo), data = data1)
medias7=emmeans(mod7,~tratamentos)
summary(medias7)
tratamentos emmean SE df lower.CL upper.CL
consorcio 361 99.1 7.01 127 595
exclusivo 0 99.1 7.01 -234 234
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
8- Tithonia - Plant density (N ha-1)
mod8 = lmer(densidade.planta~tratamentos+(1|Ciclo), data = data1)
medias8=emmeans(mod8,~tratamentos)
summary(medias8)
tratamentos emmean SE df lower.CL upper.CL
consorcio 2821 71 13 2668 2975
exclusivo 0 71 13 -153 153
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
9 - Tithonia - Pre-grazing canopy height
(cm)
mod9 = lmer(pregrazing.height.thi~tratamentos+(1|Ciclo), data = data1)
medias9=emmeans(mod9,~tratamentos)
summary(medias9)
tratamentos emmean SE df lower.CL upper.CL
consorcio 118 6.94 1.55 77.9 158.1
exclusivo 0 6.94 1.55 -40.1 40.1
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
10- Total - Herbage biomass (kg ha-1)
mod10 = lmer(biomass.total.ha~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod10))

shapiro.test(resid(mod10))
Shapiro-Wilk normality test
data: resid(mod10)
W = 0.87096, p-value = 1.225e-07
bartlett.test(resid(mod10)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod10) by tratamentos
Bartlett's K-squared = 16.657, df = 1, p-value = 4.478e-05
mod10.1 = lmer(biomass.total.ha^0.3~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod10.1))

shapiro.test(resid(mod10.1))
Shapiro-Wilk normality test
data: resid(mod10.1)
W = 0.97673, p-value = 0.0854
bartlett.test(resid(mod10.1)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod10.1) by tratamentos
Bartlett's K-squared = 0.82181, df = 1, p-value = 0.3647
anova(mod10.1)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 50.947 50.947 1 89 45.957 1.274e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias10=emmeans(mod10,~tratamentos)
summary(medias10)
tratamentos emmean SE df lower.CL upper.CL
consorcio 2185 198 6.87 1714 2655
exclusivo 1246 198 6.87 776 1717
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
11- Total - Residual biomass (kg
ha-1)
mod11 = lmer(resi.total.ha~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod11))

shapiro.test(resid(mod11))
Shapiro-Wilk normality test
data: resid(mod11)
W = 0.73359, p-value = 6.617e-12
bartlett.test(resid(mod11)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod11) by tratamentos
Bartlett's K-squared = 28.357, df = 1, p-value = 1.009e-07
mod11.1 = lmer(resi.total.ha^0.4~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod11.1))

shapiro.test(resid(mod11.1))
Shapiro-Wilk normality test
data: resid(mod11.1)
W = 0.98258, p-value = 0.2329
bartlett.test(resid(mod11.1)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod11.1) by tratamentos
Bartlett's K-squared = 0.019999, df = 1, p-value = 0.8875
anova(mod11.1)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 434.28 434.28 1 89 21.475 1.22e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias11=emmeans(mod11,~tratamentos)
summary(medias11)
tratamentos emmean SE df lower.CL upper.CL
consorcio 512 106 6.92 261.3 763
exclusivo 183 106 6.92 -68.3 434
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
Biomass plant-part composition
12- Leaf (g kg-1)
mod12 = lmer(bra.folhas~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod12))

shapiro.test(resid(mod12))
Shapiro-Wilk normality test
data: resid(mod12)
W = 0.98543, p-value = 0.3693
bartlett.test(resid(mod12)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod12) by tratamentos
Bartlett's K-squared = 0.49557, df = 1, p-value = 0.4815
anova(mod12)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 78769 78769 1 89 7.8581 0.00621 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias12=emmeans(mod12,~tratamentos)
summary(medias12)
tratamentos emmean SE df lower.CL upper.CL
consorcio 657 70.2 5.22 479 836
exclusivo 715 70.2 5.22 536 893
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
13- Stem (g kg-1)
mod13 = lmer(bra.hastes~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod13))

shapiro.test(resid(mod13))
Shapiro-Wilk normality test
data: resid(mod13)
W = 0.91838, p-value = 1.679e-05
bartlett.test(resid(mod13)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod13) by tratamentos
Bartlett's K-squared = 4.7876, df = 1, p-value = 0.02867
mod13.1 = lmer(bra.hastes^0.3~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod13.1))

shapiro.test(resid(mod13.1))
Shapiro-Wilk normality test
data: resid(mod13.1)
W = 0.97675, p-value = 0.08566
bartlett.test(resid(mod13.1)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod13.1) by tratamentos
Bartlett's K-squared = 0.24263, df = 1, p-value = 0.6223
anova(mod13.1)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 3.2695 3.2695 1 89 9.1341 0.003276 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias13=emmeans(mod13,~tratamentos)
summary(medias13)
tratamentos emmean SE df lower.CL upper.CL
consorcio 160 26 5.63 95.0 224
exclusivo 123 26 5.63 58.1 187
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
14- Leaf:stem ratio
data1$leaf.stem.ratio=data1$bra.folhas/data1$bra.hastes
mod14 = lmer(leaf.stem.ratio~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod14))

shapiro.test(resid(mod14))
Shapiro-Wilk normality test
data: resid(mod14)
W = 0.90952, p-value = 6.048e-06
bartlett.test(resid(mod14)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod14) by tratamentos
Bartlett's K-squared = 14.138, df = 1, p-value = 0.0001699
mod14.1 = lmer(leaf.stem.ratio^0.3~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod14.1))

shapiro.test(resid(mod14.1))
Shapiro-Wilk normality test
data: resid(mod14.1)
W = 0.98914, p-value = 0.6241
bartlett.test(resid(mod14.1)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod14.1) by tratamentos
Bartlett's K-squared = 2.095, df = 1, p-value = 0.1478
anova(mod14.1)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 1.1427 1.1427 1 89 11.244 0.001175 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias14=emmeans(mod14,~tratamentos)
summary(medias14)
tratamentos emmean SE df lower.CL upper.CL
consorcio 6.45 1.99 6.01 1.57 11.3
exclusivo 10.08 1.99 6.01 5.20 14.9
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
15- Dead material (g kg-1)
mod15 = lmer(bra.morto~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod15))

shapiro.test(resid(mod15))
Shapiro-Wilk normality test
data: resid(mod15)
W = 0.92972, p-value = 6.769e-05
bartlett.test(resid(mod15)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod15) by tratamentos
Bartlett's K-squared = 3.6241, df = 1, p-value = 0.05695
mod15.1 = lmer(bra.morto^0.6~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod15.1))

shapiro.test(resid(mod15.1))
Shapiro-Wilk normality test
data: resid(mod15.1)
W = 0.97777, p-value = 0.1023
bartlett.test(resid(mod15.1)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod15.1) by tratamentos
Bartlett's K-squared = 1.7354, df = 1, p-value = 0.1877
anova(mod15.1)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 45.609 45.609 1 89 1.2948 0.2582
medias15=emmeans(mod15,~tratamentos)
summary(medias15)
tratamentos emmean SE df lower.CL upper.CL
consorcio 183 50.1 5.35 56.6 309
exclusivo 163 50.1 5.35 36.3 289
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
16- Tithonia - Leaf (g kg-1)
mod16 = lmer(thi.folhas~tratamentos+(1|Ciclo), data = data1)
medias16=emmeans(mod16,~tratamentos)
summary(medias16)
tratamentos emmean SE df lower.CL upper.CL
consorcio 489 21.8 6.58 437.1 541.8
exclusivo 0 21.8 6.58 -52.3 52.3
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
17- Tithonia - Stem (g kg-1)
mod17 = lmer(thi.hastes~tratamentos+(1|Ciclo), data = data1)
medias17=emmeans(mod17,~tratamentos)
summary(medias17)
tratamentos emmean SE df lower.CL upper.CL
consorcio 454 21.8 6.86 402.4 505.9
exclusivo 0 21.8 6.86 -51.8 51.8
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
18- Tithonia - Leaf:stem ratio
data1$LSratio.thi=data1$thi.folhas/data1$thi.hastes
data1$LSratio.thi = replace(data1$LSratio.thi, is.na(data1$LSratio.thi), 0)
mod18 = lmer(LSratio.thi~tratamentos+(1|Ciclo), data = data1)
medias18=emmeans(mod18,~tratamentos)
summary(medias18)
tratamentos emmean SE df lower.CL upper.CL
consorcio 1.26 0.116 7.02 0.990 1.539
exclusivo 0.00 0.116 7.02 -0.275 0.275
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
19- Tithonia - Dead material (g kg-1)
mod19 = lmer(thi.morto~tratamentos+(1|Ciclo), data = data1)
medias19=emmeans(mod19,~tratamentos)
summary(medias19)
tratamentos emmean SE df lower.CL upper.CL
consorcio 56.4 4.2 13.6 47.39 65.46
exclusivo 0.0 4.2 13.6 -9.04 9.04
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
20- Total - Leaf accumulation (kg
ha-1)
mod20 = lmer(total.leaf.acu~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod20))

shapiro.test(resid(mod20))
Shapiro-Wilk normality test
data: resid(mod20)
W = 0.96454, p-value = 0.01065
bartlett.test(resid(mod20)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod20) by tratamentos
Bartlett's K-squared = 0.58922, df = 1, p-value = 0.4427
mod20.1 = lmer(total.leaf.acu^0.8~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod20.1))

shapiro.test(resid(mod20.1))
Shapiro-Wilk normality test
data: resid(mod20.1)
W = 0.97559, p-value = 0.06998
bartlett.test(resid(mod20.1)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod20.1) by tratamentos
Bartlett's K-squared = 0.13441, df = 1, p-value = 0.7139
anova(mod20.1)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 92407 92407 1 89 19.817 2.462e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias20=emmeans(mod20,~tratamentos)
summary(medias20)
tratamentos emmean SE df lower.CL upper.CL
consorcio 1207 157 5.56 816 1598
exclusivo 889 157 5.56 498 1280
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
21- total - Stem accumulation (kg
ha-1)
mod21 = lmer(total.stem.acu~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod21))

shapiro.test(resid(mod21))
Shapiro-Wilk normality test
data: resid(mod21)
W = 0.75476, p-value = 2.309e-11
bartlett.test(resid(mod21)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod21) by tratamentos
Bartlett's K-squared = 47.572, df = 1, p-value = 5.301e-12
mod21.1 = lmer(total.stem.acu^0.3~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod21.1))

shapiro.test(resid(mod21.1))
Shapiro-Wilk normality test
data: resid(mod21.1)
W = 0.97661, p-value = 0.08353
bartlett.test(resid(mod21.1)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod21.1) by tratamentos
Bartlett's K-squared = 3.3034, df = 1, p-value = 0.06914
anova(mod21.1)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 142.71 142.71 1 89 81.843 3.006e-14 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias21=emmeans(mod21,~tratamentos)
summary(medias21)
tratamentos emmean SE df lower.CL upper.CL
consorcio 716 99.5 7.91 486.5 946
exclusivo 162 99.5 7.91 -68.1 392
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
22- total - Dead material accumulation (kg
ha-1)
mod22 = lmer(total.dead.acu~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod22))

shapiro.test(resid(mod22))
Shapiro-Wilk normality test
data: resid(mod22)
W = 0.8398, p-value = 8.489e-09
bartlett.test(resid(mod22)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod22) by tratamentos
Bartlett's K-squared = 2.7119, df = 1, p-value = 0.0996
mod22.1 = lmer(total.dead.acu^0.3~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod22.1))

shapiro.test(resid(mod22.1))
Shapiro-Wilk normality test
data: resid(mod22.1)
W = 0.97945, p-value = 0.1368
bartlett.test(resid(mod22.1)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod22.1) by tratamentos
Bartlett's K-squared = 1.9703, df = 1, p-value = 0.1604
anova(mod22.1)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 7.7089 7.7089 1 89 12.672 0.0005981 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias22=emmeans(mod22,~tratamentos)
summary(medias22)
tratamentos emmean SE df lower.CL upper.CL
consorcio 261 57.5 5.7 118.7 404
exclusivo 195 57.5 5.7 52.9 338
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
Nutrive value
23- DM (g kg-1)
mod23 = lmer(DM.bra~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod23))

shapiro.test(resid(mod23))
Shapiro-Wilk normality test
data: resid(mod23)
W = 0.99278, p-value = 0.889
bartlett.test(resid(mod23)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod23) by tratamentos
Bartlett's K-squared = 0.19701, df = 1, p-value = 0.6571
anova(mod23)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 1.4925 1.4925 1 89 0.1023 0.7498
medias23=emmeans(mod23,~tratamentos)
summary(medias23)
tratamentos emmean SE df lower.CL upper.CL
consorcio 923 8.17 5.02 902 944
exclusivo 923 8.17 5.02 902 944
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
24- Ash (g kg-1)
mod24 = lmer(MM.bra~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod24))

shapiro.test(resid(mod24))
Shapiro-Wilk normality test
data: resid(mod24)
W = 0.9799, p-value = 0.1478
bartlett.test(resid(mod24)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod24) by tratamentos
Bartlett's K-squared = 0.17572, df = 1, p-value = 0.6751
anova(mod24)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 320.36 320.36 1 89 3.2179 0.07623 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias24=emmeans(mod24,~tratamentos)
summary(medias24)
tratamentos emmean SE df lower.CL upper.CL
consorcio 108 2.88 6.52 101 114
exclusivo 111 2.88 6.52 104 118
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
25- CP (g kg-1)
mod25 = lmer(PB.bra~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod25))

shapiro.test(resid(mod25))
Shapiro-Wilk normality test
data: resid(mod25)
W = 0.96829, p-value = 0.01994
bartlett.test(resid(mod25)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod25) by tratamentos
Bartlett's K-squared = 4.871, df = 1, p-value = 0.02731
#Transformation
mod25.1 = lmer(PB.bra^0.7~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod25.1))

shapiro.test(resid(mod25.1))
Shapiro-Wilk normality test
data: resid(mod25.1)
W = 0.97815, p-value = 0.1092
bartlett.test(resid(mod25.1)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod25.1) by tratamentos
Bartlett's K-squared = 3.6096, df = 1, p-value = 0.05745
anova(mod25.1)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 0.23864 0.23864 1 89 0.0244 0.8762
medias25=emmeans(mod25,~tratamentos)
summary(medias25)
tratamentos emmean SE df lower.CL upper.CL
consorcio 112 8.33 5.54 90.9 133
exclusivo 113 8.33 5.54 91.8 133
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
26- aNDFom (g kg-1)
mod26 = lmer(aFDNom.bra~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod26))

shapiro.test(resid(mod26))
Shapiro-Wilk normality test
data: resid(mod26)
W = 0.97954, p-value = 0.1388
bartlett.test(resid(mod26)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod26) by tratamentos
Bartlett's K-squared = 3.1871, df = 1, p-value = 0.07422
anova(mod26)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 7866.3 7866.3 1 89 9.1269 0.003288 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias26=emmeans(mod26,~tratamentos)
summary(medias26)
tratamentos emmean SE df lower.CL upper.CL
consorcio 596 8.06 6.72 577 616
exclusivo 578 8.06 6.72 559 597
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
27- ADFom (g kg-1)
mod27 = lmer(aFDA.bra~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod27))

shapiro.test(resid(mod27))
Shapiro-Wilk normality test
data: resid(mod27)
W = 0.96655, p-value = 0.01488
bartlett.test(resid(mod27)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod27) by tratamentos
Bartlett's K-squared = 3.6496, df = 1, p-value = 0.05608
mod27.1 = lmer(aFDA.bra^0.5~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod27.1))

shapiro.test(resid(mod27.1))
Shapiro-Wilk normality test
data: resid(mod27.1)
W = 0.97569, p-value = 0.07116
bartlett.test(resid(mod27.1)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod27.1) by tratamentos
Bartlett's K-squared = 2.7552, df = 1, p-value = 0.09694
anova(mod27.1)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 2.4852 2.4852 1 89 6.4005 0.01317 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias27=emmeans(mod27,~tratamentos)
summary(medias27)
tratamentos emmean SE df lower.CL upper.CL
consorcio 302 8.38 5.8 282 323
exclusivo 291 8.38 5.8 270 311
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
28- Hemicelulose (g kg-1)
mod28 = lmer(HEMC.bra~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod28))

shapiro.test(resid(mod28))
Shapiro-Wilk normality test
data: resid(mod28)
W = 0.98437, p-value = 0.3126
bartlett.test(resid(mod28)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod28) by tratamentos
Bartlett's K-squared = 2.0862, df = 1, p-value = 0.1486
anova(mod28)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 1053.4 1053.4 1 89 4.3565 0.03973 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias28=emmeans(mod28,~tratamentos)
summary(medias28)
tratamentos emmean SE df lower.CL upper.CL
consorcio 294 6.37 5.68 278 310
exclusivo 288 6.37 5.68 272 303
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
29- Tithonia - DM (g kg-1)
mod29 = lmer(DM.thi~tratamentos+(1|Ciclo), data = data1)
medias29=emmeans(mod29,~tratamentos)
summary(medias29)
tratamentos emmean SE df lower.CL upper.CL
consorcio 912 5.77 6.11 898.1 926.3
exclusivo 0 5.77 6.11 -14.1 14.1
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
30- Tithonia - Ash (g kg-1)
mod30 = lmer(MM.thi~tratamentos+(1|Ciclo), data = data1)
medias30=emmeans(mod30,~tratamentos)
summary(medias30)
tratamentos emmean SE df lower.CL upper.CL
consorcio 136 5.68 6.71 122.4 149.5
exclusivo 0 5.68 6.71 -13.5 13.5
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
31- Tithonia - CP (g kg-1)
mod31 = lmer(PB.thi~tratamentos+(1|Ciclo), data = data1)
medias31=emmeans(mod31,~tratamentos)
summary(medias31)
tratamentos emmean SE df lower.CL upper.CL
consorcio 169 10.3 6.2 144 194
exclusivo 0 10.3 6.2 -25 25
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
32- Tithonia - aNDFom (g kg-1)
mod32 = lmer(aFDNom.thi~tratamentos+(1|Ciclo), data = data1)
medias32=emmeans(mod32,~tratamentos)
summary(medias32)
tratamentos emmean SE df lower.CL upper.CL
consorcio 379 7.68 7.87 361.2 396.7
exclusivo 0 7.68 7.87 -17.8 17.8
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
33- Tithonia - ADFom (g kg-1)
mod33 = lmer(aFDA.thi~tratamentos+(1|Ciclo), data = data1)
medias33=emmeans(mod33,~tratamentos)
summary(medias33)
tratamentos emmean SE df lower.CL upper.CL
consorcio 271 6.99 7.67 254.5 287.0
exclusivo 0 6.99 7.67 -16.2 16.2
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
34- Tithonia - Hemicellulose (g kg-1)
mod34 = lmer(HEMC.thi~tratamentos+(1|Ciclo), data = data1)
medias34=emmeans(mod34,~tratamentos)
summary(medias34)
tratamentos emmean SE df lower.CL upper.CL
consorcio 108 2.93 10.6 101.75 114.71
exclusivo 0 2.93 10.6 -6.48 6.48
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
35- total - DM (kg ha-1)
mod35 = lmer(total.DM.ac~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod35))

shapiro.test(resid(mod35))
Shapiro-Wilk normality test
data: resid(mod35)
W = 0.86943, p-value = 1.066e-07
bartlett.test(resid(mod35)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod35) by tratamentos
Bartlett's K-squared = 16.128, df = 1, p-value = 5.919e-05
mod35.1 = lmer(total.DM.ac^0.3~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod35.1))

shapiro.test(resid(mod35.1))
Shapiro-Wilk normality test
data: resid(mod35.1)
W = 0.97679, p-value = 0.08616
bartlett.test(resid(mod35.1)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod35.1) by tratamentos
Bartlett's K-squared = 0.73388, df = 1, p-value = 0.3916
anova(mod35.1)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 48.223 48.223 1 89 45.392 1.542e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias35=emmeans(mod35,~tratamentos)
summary(medias35)
tratamentos emmean SE df lower.CL upper.CL
consorcio 2020 193 6.67 1559 2482
exclusivo 1152 193 6.67 690 1614
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
36- total - Ash (kg ha-1)
mod36 = lmer(total.MM.ac~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod36))

shapiro.test(resid(mod36))
Shapiro-Wilk normality test
data: resid(mod36)
W = 0.85716, p-value = 3.594e-08
bartlett.test(resid(mod36)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod36) by tratamentos
Bartlett's K-squared = 17.279, df = 1, p-value = 3.228e-05
mod36.1 = lmer(total.MM.ac^0.3~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod36.1))

shapiro.test(resid(mod36.1))
Shapiro-Wilk normality test
data: resid(mod36.1)
W = 0.98393, p-value = 0.291
bartlett.test(resid(mod36.1)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod36.1) by tratamentos
Bartlett's K-squared = 0.46817, df = 1, p-value = 0.4938
anova(mod36.1)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 15.076 15.076 1 89 54.56 7.736e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias36=emmeans(mod36,~tratamentos)
summary(medias36)
tratamentos emmean SE df lower.CL upper.CL
consorcio 247 22.1 6.72 194.6 300
exclusivo 139 22.1 6.72 85.9 191
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
37- total - CP (kg ha-1)
mod37 = lmer(total.PB.ac~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod37))

shapiro.test(resid(mod37))
Shapiro-Wilk normality test
data: resid(mod37)
W = 0.89023, p-value = 7.795e-07
bartlett.test(resid(mod37)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod37) by tratamentos
Bartlett's K-squared = 12.533, df = 1, p-value = 0.0003998
mod37.1 = lmer(total.PB.ac^0.3~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod37.1))

shapiro.test(resid(mod37.1))
Shapiro-Wilk normality test
data: resid(mod37.1)
W = 0.98358, p-value = 0.2746
bartlett.test(resid(mod37.1)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod37.1) by tratamentos
Bartlett's K-squared = 0.30755, df = 1, p-value = 0.5792
anova(mod37.1)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 20.825 20.825 1 89 58.156 2.525e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias37=emmeans(mod37,~tratamentos)
summary(medias37)
tratamentos emmean SE df lower.CL upper.CL
consorcio 269 20.7 7.71 221.2 317
exclusivo 140 20.7 7.71 92.5 189
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
38- total - aNDFom (kg ha-1)
mod38 = lmer(total.FDN.ac~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod38))

shapiro.test(resid(mod38))
Shapiro-Wilk normality test
data: resid(mod38)
W = 0.91583, p-value = 1.245e-05
bartlett.test(resid(mod38)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod38) by tratamentos
Bartlett's K-squared = 9.9732, df = 1, p-value = 0.001588
mod38.1 = lmer(total.FDN.ac^0.3~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod38.1))

shapiro.test(resid(mod38.1))
Shapiro-Wilk normality test
data: resid(mod38.1)
W = 0.99205, p-value = 0.8428
bartlett.test(resid(mod38.1)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod38.1) by tratamentos
Bartlett's K-squared = 0.16163, df = 1, p-value = 0.6877
anova(mod38.1)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 22.581 22.581 1 89 30.65 3.087e-07 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias38=emmeans(mod38,~tratamentos)
summary(medias38)
tratamentos emmean SE df lower.CL upper.CL
consorcio 1121 93.7 7.14 900 1342
exclusivo 724 93.7 7.14 503 945
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
39- total - ADFom (kg ha-1)
mod39 = lmer(total.FDA.ac~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod39))

shapiro.test(resid(mod39))
Shapiro-Wilk normality test
data: resid(mod39)
W = 0.90909, p-value = 5.766e-06
bartlett.test(resid(mod39)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod39) by tratamentos
Bartlett's K-squared = 17.591, df = 1, p-value = 2.738e-05
mod39.1 = lmer(total.FDA.ac^0.3~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod39.1))

shapiro.test(resid(mod39.1))
Shapiro-Wilk normality test
data: resid(mod39.1)
W = 0.98804, p-value = 0.5414
bartlett.test(resid(mod39.1)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod39.1) by tratamentos
Bartlett's K-squared = 1.2356, df = 1, p-value = 0.2663
anova(mod39.1)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 26.376 26.376 1 89 43.463 2.974e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias39=emmeans(mod39,~tratamentos)
summary(medias39)
tratamentos emmean SE df lower.CL upper.CL
consorcio 650 55.9 7.29 519 782
exclusivo 365 55.9 7.29 233 496
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
40- total - Hemicellulose (kg ha-1)
mod40 = lmer(total.HEMC.ac~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod40))

shapiro.test(resid(mod40))
Shapiro-Wilk normality test
data: resid(mod40)
W = 0.91058, p-value = 6.816e-06
bartlett.test(resid(mod40)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod40) by tratamentos
Bartlett's K-squared = 2.8813, df = 1, p-value = 0.08961
mod40.1 = lmer(total.HEMC.ac^0.3~tratamentos+(1|Ciclo), data = data1)
hist(resid(mod40.1))

shapiro.test(resid(mod40.1))
Shapiro-Wilk normality test
data: resid(mod40.1)
W = 0.98857, p-value = 0.5804
bartlett.test(resid(mod40.1)~tratamentos, data=data1)
Bartlett test of homogeneity of variances
data: resid(mod40.1) by tratamentos
Bartlett's K-squared = 0.17538, df = 1, p-value = 0.6754
anova(mod40.1)
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
tratamentos 5.7717 5.7717 1 89 14.477 0.0002598 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias40=emmeans(mod40,~tratamentos)
summary(medias40)
tratamentos emmean SE df lower.CL upper.CL
consorcio 471 38.8 7.15 380 562
exclusivo 359 38.8 7.15 268 451
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
Animal parameters
41- Stocking rate (UA ha-1)
mod41 = aov(ua.ha~tratamentos*Ciclo, data = data1)
anova(mod41)
Analysis of Variance Table
Response: ua.ha
Df Sum Sq Mean Sq F value Pr(>F)
tratamentos 1 0.524 0.5236 3.4455 0.06693 .
Ciclo 5 57.582 11.5165 75.7800 < 2e-16 ***
tratamentos:Ciclo 5 0.383 0.0765 0.5037 0.77267
Residuals 84 12.766 0.1520
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
tukey = TukeyHSD(mod41)
print(tukey)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = ua.ha ~ tratamentos * Ciclo, data = data1)
$tratamentos
diff lwr upr p adj
exclusivo-consorcio -0.1477083 -0.305952 0.01053535 0.0669292
$Ciclo
diff lwr upr p adj
Cycle 2-Cycle 1 0.104375 -0.29760651 0.50635651 0.9737791
Cycle 3-Cycle 1 0.964375 0.56239349 1.36635651 0.0000000
Cycle 4-Cycle 1 0.487500 0.08551849 0.88948151 0.0084025
Cycle 5-Cycle 1 1.819375 1.41739349 2.22135651 0.0000000
Cycle 6-Cycle 1 1.966250 1.56426849 2.36823151 0.0000000
Cycle 3-Cycle 2 0.860000 0.45801849 1.26198151 0.0000003
Cycle 4-Cycle 2 0.383125 -0.01885651 0.78510651 0.0707726
Cycle 5-Cycle 2 1.715000 1.31301849 2.11698151 0.0000000
Cycle 6-Cycle 2 1.861875 1.45989349 2.26385651 0.0000000
Cycle 4-Cycle 3 -0.476875 -0.87885651 -0.07489349 0.0106668
Cycle 5-Cycle 3 0.855000 0.45301849 1.25698151 0.0000003
Cycle 6-Cycle 3 1.001875 0.59989349 1.40385651 0.0000000
Cycle 5-Cycle 4 1.331875 0.92989349 1.73385651 0.0000000
Cycle 6-Cycle 4 1.478750 1.07676849 1.88073151 0.0000000
Cycle 6-Cycle 5 0.146875 -0.25510651 0.54885651 0.8935307
$`tratamentos:Ciclo`
diff lwr upr p adj
exclusivo:Cycle 1-consorcio:Cycle 1 -0.22875 -0.88406024 0.42656024 0.9896282
consorcio:Cycle 2-consorcio:Cycle 1 -0.04875 -0.70406024 0.60656024 1.0000000
exclusivo:Cycle 2-consorcio:Cycle 1 0.02875 -0.62656024 0.68406024 1.0000000
consorcio:Cycle 3-consorcio:Cycle 1 0.89750 0.24218976 1.55281024 0.0008457
exclusivo:Cycle 3-consorcio:Cycle 1 0.80250 0.14718976 1.45781024 0.0047978
consorcio:Cycle 4-consorcio:Cycle 1 0.54125 -0.11406024 1.19656024 0.2091416
exclusivo:Cycle 4-consorcio:Cycle 1 0.20500 -0.45031024 0.86031024 0.9958452
consorcio:Cycle 5-consorcio:Cycle 1 1.77875 1.12343976 2.43406024 0.0000000
exclusivo:Cycle 5-consorcio:Cycle 1 1.63125 0.97593976 2.28656024 0.0000000
consorcio:Cycle 6-consorcio:Cycle 1 1.93000 1.27468976 2.58531024 0.0000000
exclusivo:Cycle 6-consorcio:Cycle 1 1.77375 1.11843976 2.42906024 0.0000000
consorcio:Cycle 2-exclusivo:Cycle 1 0.18000 -0.47531024 0.83531024 0.9986869
exclusivo:Cycle 2-exclusivo:Cycle 1 0.25750 -0.39781024 0.91281024 0.9740006
consorcio:Cycle 3-exclusivo:Cycle 1 1.12625 0.47093976 1.78156024 0.0000079
exclusivo:Cycle 3-exclusivo:Cycle 1 1.03125 0.37593976 1.68656024 0.0000590
consorcio:Cycle 4-exclusivo:Cycle 1 0.77000 0.11468976 1.42531024 0.0083773
exclusivo:Cycle 4-exclusivo:Cycle 1 0.43375 -0.22156024 1.08906024 0.5366498
consorcio:Cycle 5-exclusivo:Cycle 1 2.00750 1.35218976 2.66281024 0.0000000
exclusivo:Cycle 5-exclusivo:Cycle 1 1.86000 1.20468976 2.51531024 0.0000000
consorcio:Cycle 6-exclusivo:Cycle 1 2.15875 1.50343976 2.81406024 0.0000000
exclusivo:Cycle 6-exclusivo:Cycle 1 2.00250 1.34718976 2.65781024 0.0000000
exclusivo:Cycle 2-consorcio:Cycle 2 0.07750 -0.57781024 0.73281024 0.9999997
consorcio:Cycle 3-consorcio:Cycle 2 0.94625 0.29093976 1.60156024 0.0003289
exclusivo:Cycle 3-consorcio:Cycle 2 0.85125 0.19593976 1.50656024 0.0020057
consorcio:Cycle 4-consorcio:Cycle 2 0.59000 -0.06531024 1.24531024 0.1190902
exclusivo:Cycle 4-consorcio:Cycle 2 0.25375 -0.40156024 0.90906024 0.9766989
consorcio:Cycle 5-consorcio:Cycle 2 1.82750 1.17218976 2.48281024 0.0000000
exclusivo:Cycle 5-consorcio:Cycle 2 1.68000 1.02468976 2.33531024 0.0000000
consorcio:Cycle 6-consorcio:Cycle 2 1.97875 1.32343976 2.63406024 0.0000000
exclusivo:Cycle 6-consorcio:Cycle 2 1.82250 1.16718976 2.47781024 0.0000000
consorcio:Cycle 3-exclusivo:Cycle 2 0.86875 0.21343976 1.52406024 0.0014523
exclusivo:Cycle 3-exclusivo:Cycle 2 0.77375 0.11843976 1.42906024 0.0078637
consorcio:Cycle 4-exclusivo:Cycle 2 0.51250 -0.14281024 1.16781024 0.2807227
exclusivo:Cycle 4-exclusivo:Cycle 2 0.17625 -0.47906024 0.83156024 0.9989167
consorcio:Cycle 5-exclusivo:Cycle 2 1.75000 1.09468976 2.40531024 0.0000000
exclusivo:Cycle 5-exclusivo:Cycle 2 1.60250 0.94718976 2.25781024 0.0000000
consorcio:Cycle 6-exclusivo:Cycle 2 1.90125 1.24593976 2.55656024 0.0000000
exclusivo:Cycle 6-exclusivo:Cycle 2 1.74500 1.08968976 2.40031024 0.0000000
exclusivo:Cycle 3-consorcio:Cycle 3 -0.09500 -0.75031024 0.56031024 0.9999976
consorcio:Cycle 4-consorcio:Cycle 3 -0.35625 -1.01156024 0.29906024 0.7981386
exclusivo:Cycle 4-consorcio:Cycle 3 -0.69250 -1.34781024 -0.03718976 0.0289731
consorcio:Cycle 5-consorcio:Cycle 3 0.88125 0.22593976 1.53656024 0.0011498
exclusivo:Cycle 5-consorcio:Cycle 3 0.73375 0.07843976 1.38906024 0.0152150
consorcio:Cycle 6-consorcio:Cycle 3 1.03250 0.37718976 1.68781024 0.0000575
exclusivo:Cycle 6-consorcio:Cycle 3 0.87625 0.22093976 1.53156024 0.0012628
consorcio:Cycle 4-exclusivo:Cycle 3 -0.26125 -0.91656024 0.39406024 0.9710724
exclusivo:Cycle 4-exclusivo:Cycle 3 -0.59750 -1.25281024 0.05781024 0.1084764
consorcio:Cycle 5-exclusivo:Cycle 3 0.97625 0.32093976 1.63156024 0.0001811
exclusivo:Cycle 5-exclusivo:Cycle 3 0.82875 0.17343976 1.48406024 0.0030152
consorcio:Cycle 6-exclusivo:Cycle 3 1.12750 0.47218976 1.78281024 0.0000077
exclusivo:Cycle 6-exclusivo:Cycle 3 0.97125 0.31593976 1.62656024 0.0002002
exclusivo:Cycle 4-consorcio:Cycle 4 -0.33625 -0.99156024 0.31906024 0.8514723
consorcio:Cycle 5-consorcio:Cycle 4 1.23750 0.58218976 1.89281024 0.0000007
exclusivo:Cycle 5-consorcio:Cycle 4 1.09000 0.43468976 1.74531024 0.0000172
consorcio:Cycle 6-consorcio:Cycle 4 1.38875 0.73343976 2.04406024 0.0000000
exclusivo:Cycle 6-consorcio:Cycle 4 1.23250 0.57718976 1.88781024 0.0000008
consorcio:Cycle 5-exclusivo:Cycle 4 1.57375 0.91843976 2.22906024 0.0000000
exclusivo:Cycle 5-exclusivo:Cycle 4 1.42625 0.77093976 2.08156024 0.0000000
consorcio:Cycle 6-exclusivo:Cycle 4 1.72500 1.06968976 2.38031024 0.0000000
exclusivo:Cycle 6-exclusivo:Cycle 4 1.56875 0.91343976 2.22406024 0.0000000
exclusivo:Cycle 5-consorcio:Cycle 5 -0.14750 -0.80281024 0.50781024 0.9997985
consorcio:Cycle 6-consorcio:Cycle 5 0.15125 -0.50406024 0.80656024 0.9997432
exclusivo:Cycle 6-consorcio:Cycle 5 -0.00500 -0.66031024 0.65031024 1.0000000
consorcio:Cycle 6-exclusivo:Cycle 5 0.29875 -0.35656024 0.95406024 0.9269758
exclusivo:Cycle 6-exclusivo:Cycle 5 0.14250 -0.51281024 0.79781024 0.9998559
exclusivo:Cycle 6-consorcio:Cycle 6 -0.15625 -0.81156024 0.49906024 0.9996493
tukey.cld = multcompLetters4(mod41, tukey)
print(tukey.cld)
$tratamentos
$tratamentos$Letters
consorcio exclusivo
"a" "a"
$tratamentos$LetterMatrix
a
consorcio TRUE
exclusivo TRUE
$Ciclo
Cycle 6 Cycle 5 Cycle 3 Cycle 4 Cycle 2 Cycle 1
"a" "a" "b" "c" "cd" "d"
$`tratamentos:Ciclo`
consorcio:Cycle 6 consorcio:Cycle 5 exclusivo:Cycle 6 exclusivo:Cycle 5 consorcio:Cycle 3 exclusivo:Cycle 3
"a" "a" "a" "a" "b" "bc"
consorcio:Cycle 4 exclusivo:Cycle 4 exclusivo:Cycle 2 consorcio:Cycle 1 consorcio:Cycle 2 exclusivo:Cycle 1
"bcd" "cde" "de" "de" "de" "e"
data_summary = group_by(data1, tratamentos, Ciclo) %>%
summarise(data=mean(as.Date(entrada)),
mean=mean(ua.ha),
herbage=mean(biomass.bra.ha),
sd=sd(ua.ha)) %>%
arrange(desc(mean))
`summarise()` has grouped output by 'tratamentos'. You can override using the `.groups` argument.
print(data_summary)
scale = max(data_summary$herbage)/max(data_summary$mean)
scale
[1] 416.2487
plot1=ggplot(data_summary, aes(x =interaction(Ciclo, data), y=mean))+
scale_x_discrete(NULL,guide = "axis_nested")+
geom_bar(aes(y=mean, fill=tratamentos), stat = "identity", position = "dodge", alpha = 0.5)+
geom_errorbar(aes(ymin=mean-sd, ymax=mean+sd, group= tratamentos), size=0.3, position = position_dodge(0.9), width = 0.25)+
geom_line(aes(y=herbage/(scale-150),group= tratamentos), size=0.3, linetype =1)+
coord_cartesian(ylim = c(0,8))+
geom_point(aes(y=herbage/(scale-150), shape = tratamentos), size = 3)+
scale_y_continuous(name= "Stocking rate (UA/ha)",breaks = seq(0, 8, 1), sec.axis=sec_axis(~.*(scale-150), name="Grass HB (kg/ha)", breaks=seq(0,2200,150)))+
scale_shape_manual(values = c(1, 15), name= "Grass HB:",labels = c("SPS", "EP"))+
scale_fill_manual(name = "Stocking rate:",values=c("gray", "gray28"),labels=c("SPS","EP"))
plot1

plot2=plot1+
theme(
panel.background = element_rect(fill = "transparent",colour = "black",size = 0.3),
legend.key=element_blank(),
legend.background = element_rect(fill = "transparent", size=0.3, linetype="solid",colour ="black"),
legend.position = c(0.25, 0.85), legend.direction="horizontal",
legend.key.size = unit(0.5,"cm"),
legend.key.height = unit(0.5,"cm"),
legend.key.width = unit(0.5,"cm"),
legend.title = element_text(size=10),
legend.text = element_text(size=9),
axis.title.y = element_text(size = 12),
axis.title.x = element_text(size = 12),
axis.text.x = element_text(size = 10),
axis.text.y = element_text(size = 10),
axis.line = element_line(colour = "black", size = 0.3, linetype = "solid"))+
annotate("text", size=4, x=5.5, y=8,label="Stocking rate P values")+
annotate("text",size=3.5, x=5.5, y=7.5,label= " Treat = 0.066")+
annotate("text",size=3.5, x=5.5, y=7, label= " Cycles = <.001")+
annotate("text",size=3.5, x=5.5, y=6.5,label= " T*C = 0.773")+
annotate("text", size=5, x=1, y=2,label="d")+
annotate("text",size=5, x=2, y=2,label= "cd")+
annotate("text",size=5, x=3, y=2.9, label= "b")+
annotate("text",size=5, x=4, y=2.5,label= "c")+
annotate("text", size=5, x=5, y=3.8,label="a")+
annotate("text",size=5, x=6, y=3.8,label= "a")
plot2
save_plot("Stocking rate.pdf", plot2, ncol = 1, nrow = 1)

42 - Herbage biomass by cycles
mod42 = aov(biomass.bra.ha~tratamentos*Ciclo, data = data1)
anova(mod42)
Analysis of Variance Table
Response: biomass.bra.ha
Df Sum Sq Mean Sq F value Pr(>F)
tratamentos 1 617 617 0.0034 0.9534
Ciclo 5 2301019 460204 2.5661 0.0328 *
tratamentos:Ciclo 5 114143 22829 0.1273 0.9858
Residuals 84 15064509 179339
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
tukey1 = TukeyHSD(mod42)
print(tukey1)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = biomass.bra.ha ~ tratamentos * Ciclo, data = data1)
$tratamentos
diff lwr upr p adj
exclusivo-consorcio -5.068958 -176.9713 166.8334 0.9533789
$Ciclo
diff lwr upr p adj
Cycle 2-Cycle 1 -329.17250 -765.85065 107.5056 0.2494602
Cycle 3-Cycle 1 -169.46688 -606.14502 267.2113 0.8667283
Cycle 4-Cycle 1 -188.31125 -624.98940 248.3669 0.8067805
Cycle 5-Cycle 1 82.54812 -354.13002 519.2263 0.9937527
Cycle 6-Cycle 1 91.32312 -345.35502 528.0013 0.9900419
Cycle 3-Cycle 2 159.70562 -276.97252 596.3838 0.8931425
Cycle 4-Cycle 2 140.86125 -295.81690 577.5394 0.9346594
Cycle 5-Cycle 2 411.72062 -24.95752 848.3988 0.0761673
Cycle 6-Cycle 2 420.49562 -16.18252 857.1738 0.0658913
Cycle 4-Cycle 3 -18.84438 -455.52252 417.8338 0.9999954
Cycle 5-Cycle 3 252.01500 -184.66315 688.6931 0.5466169
Cycle 6-Cycle 3 260.79000 -175.88815 697.4681 0.5085891
Cycle 5-Cycle 4 270.85938 -165.81877 707.5375 0.4656232
Cycle 6-Cycle 4 279.63438 -157.04377 716.3125 0.4290969
Cycle 6-Cycle 5 8.77500 -427.90315 445.4531 0.9999999
$`tratamentos:Ciclo`
diff lwr upr p adj
exclusivo:Cycle 1-consorcio:Cycle 1 -97.56000 -809.4327 614.3127 0.9999987
consorcio:Cycle 2-consorcio:Cycle 1 -370.24750 -1082.1202 341.6252 0.8400204
exclusivo:Cycle 2-consorcio:Cycle 1 -385.65750 -1097.5302 326.2152 0.8016733
consorcio:Cycle 3-consorcio:Cycle 1 -201.48125 -913.3539 510.3914 0.9982783
exclusivo:Cycle 3-consorcio:Cycle 1 -235.01250 -946.8852 476.8602 0.9934425
consorcio:Cycle 4-consorcio:Cycle 1 -274.82000 -986.6927 437.0527 0.9772229
exclusivo:Cycle 4-consorcio:Cycle 1 -199.36250 -911.2352 512.5102 0.9984347
consorcio:Cycle 5-consorcio:Cycle 1 -13.95750 -725.8302 697.9152 1.0000000
exclusivo:Cycle 5-consorcio:Cycle 1 81.49375 -630.3789 793.3664 0.9999998
consorcio:Cycle 6-consorcio:Cycle 1 69.95375 -641.9189 781.8264 1.0000000
exclusivo:Cycle 6-consorcio:Cycle 1 15.13250 -696.7402 727.0052 1.0000000
consorcio:Cycle 2-exclusivo:Cycle 1 -272.68750 -984.5602 439.1852 0.9785243
exclusivo:Cycle 2-exclusivo:Cycle 1 -288.09750 -999.9702 423.7752 0.9677217
consorcio:Cycle 3-exclusivo:Cycle 1 -103.92125 -815.7939 607.9514 0.9999975
exclusivo:Cycle 3-exclusivo:Cycle 1 -137.45250 -849.3252 574.4202 0.9999556
consorcio:Cycle 4-exclusivo:Cycle 1 -177.26000 -889.1327 534.6127 0.9994709
exclusivo:Cycle 4-exclusivo:Cycle 1 -101.80250 -813.6752 610.0702 0.9999980
consorcio:Cycle 5-exclusivo:Cycle 1 83.60250 -628.2702 795.4752 0.9999997
exclusivo:Cycle 5-exclusivo:Cycle 1 179.05375 -532.8189 890.9264 0.9994184
consorcio:Cycle 6-exclusivo:Cycle 1 167.51375 -544.3589 879.3864 0.9996908
exclusivo:Cycle 6-exclusivo:Cycle 1 112.69250 -599.1802 824.5652 0.9999941
exclusivo:Cycle 2-consorcio:Cycle 2 -15.41000 -727.2827 696.4627 1.0000000
consorcio:Cycle 3-consorcio:Cycle 2 168.76625 -543.1064 880.6389 0.9996680
exclusivo:Cycle 3-consorcio:Cycle 2 135.23500 -576.6377 847.1077 0.9999623
consorcio:Cycle 4-consorcio:Cycle 2 95.42750 -616.4452 807.3002 0.9999990
exclusivo:Cycle 4-consorcio:Cycle 2 170.88500 -540.9877 882.7577 0.9996260
consorcio:Cycle 5-consorcio:Cycle 2 356.29000 -355.5827 1068.1627 0.8709482
exclusivo:Cycle 5-consorcio:Cycle 2 451.74125 -260.1314 1163.6139 0.6009067
consorcio:Cycle 6-consorcio:Cycle 2 440.20125 -271.6714 1152.0739 0.6386875
exclusivo:Cycle 6-consorcio:Cycle 2 385.38000 -326.4927 1097.2527 0.8024005
consorcio:Cycle 3-exclusivo:Cycle 2 184.17625 -527.6964 896.0489 0.9992430
exclusivo:Cycle 3-exclusivo:Cycle 2 150.64500 -561.2277 862.5177 0.9998897
consorcio:Cycle 4-exclusivo:Cycle 2 110.83750 -601.0352 822.7102 0.9999951
exclusivo:Cycle 4-exclusivo:Cycle 2 186.29500 -525.5777 898.1677 0.9991582
consorcio:Cycle 5-exclusivo:Cycle 2 371.70000 -340.1727 1083.5727 0.8365888
exclusivo:Cycle 5-exclusivo:Cycle 2 467.15125 -244.7214 1179.0239 0.5499850
consorcio:Cycle 6-exclusivo:Cycle 2 455.61125 -256.2614 1167.4839 0.5881418
exclusivo:Cycle 6-exclusivo:Cycle 2 400.79000 -311.0827 1112.6627 0.7601566
exclusivo:Cycle 3-consorcio:Cycle 3 -33.53125 -745.4039 678.3414 1.0000000
consorcio:Cycle 4-consorcio:Cycle 3 -73.33875 -785.2114 638.5339 0.9999999
exclusivo:Cycle 4-consorcio:Cycle 3 2.11875 -709.7539 713.9914 1.0000000
consorcio:Cycle 5-consorcio:Cycle 3 187.52375 -524.3489 899.3964 0.9991055
exclusivo:Cycle 5-consorcio:Cycle 3 282.97500 -428.8977 994.8477 0.9716842
consorcio:Cycle 6-consorcio:Cycle 3 271.43500 -440.4377 983.3077 0.9792617
exclusivo:Cycle 6-consorcio:Cycle 3 216.61375 -495.2589 928.4864 0.9967304
consorcio:Cycle 4-exclusivo:Cycle 3 -39.80750 -751.6802 672.0652 1.0000000
exclusivo:Cycle 4-exclusivo:Cycle 3 35.65000 -676.2227 747.5227 1.0000000
consorcio:Cycle 5-exclusivo:Cycle 3 221.05500 -490.8177 932.9277 0.9961013
exclusivo:Cycle 5-exclusivo:Cycle 3 316.50625 -395.3664 1028.3789 0.9380047
consorcio:Cycle 6-exclusivo:Cycle 3 304.96625 -406.9064 1016.8389 0.9517543
exclusivo:Cycle 6-exclusivo:Cycle 3 250.14500 -461.7277 962.0177 0.9890594
exclusivo:Cycle 4-consorcio:Cycle 4 75.45750 -636.4152 787.3302 0.9999999
consorcio:Cycle 5-consorcio:Cycle 4 260.86250 -451.0102 972.7352 0.9847363
exclusivo:Cycle 5-consorcio:Cycle 4 356.31375 -355.5589 1068.1864 0.8708988
consorcio:Cycle 6-consorcio:Cycle 4 344.77375 -367.0989 1056.6464 0.8935897
exclusivo:Cycle 6-consorcio:Cycle 4 289.95250 -421.9202 1001.8252 0.9661897
consorcio:Cycle 5-exclusivo:Cycle 4 185.40500 -526.4677 897.2777 0.9991948
exclusivo:Cycle 5-exclusivo:Cycle 4 280.85625 -431.0164 992.7289 0.9732116
consorcio:Cycle 6-exclusivo:Cycle 4 269.31625 -442.5564 981.1889 0.9804646
exclusivo:Cycle 6-exclusivo:Cycle 4 214.49500 -497.3777 926.3677 0.9969993
exclusivo:Cycle 5-consorcio:Cycle 5 95.45125 -616.4214 807.3239 0.9999990
consorcio:Cycle 6-consorcio:Cycle 5 83.91125 -627.9614 795.7839 0.9999997
exclusivo:Cycle 6-consorcio:Cycle 5 29.09000 -682.7827 740.9627 1.0000000
consorcio:Cycle 6-exclusivo:Cycle 5 -11.54000 -723.4127 700.3327 1.0000000
exclusivo:Cycle 6-exclusivo:Cycle 5 -66.36125 -778.2339 645.5114 1.0000000
exclusivo:Cycle 6-consorcio:Cycle 6 -54.82125 -766.6939 657.0514 1.0000000
tukey.cld1 = multcompLetters4(mod42, tukey1)
print(tukey.cld1)
$tratamentos
$tratamentos$Letters
consorcio exclusivo
"a" "a"
$tratamentos$LetterMatrix
a
consorcio TRUE
exclusivo TRUE
$Ciclo
$Ciclo$Letters
Cycle 6 Cycle 5 Cycle 1 Cycle 3 Cycle 4 Cycle 2
"a" "a" "a" "a" "a" "a"
$Ciclo$LetterMatrix
a
Cycle 6 TRUE
Cycle 5 TRUE
Cycle 1 TRUE
Cycle 3 TRUE
Cycle 4 TRUE
Cycle 2 TRUE
$`tratamentos:Ciclo`
$`tratamentos:Ciclo`$Letters
exclusivo:Cycle 5 consorcio:Cycle 6 exclusivo:Cycle 6 consorcio:Cycle 1 consorcio:Cycle 5 exclusivo:Cycle 1
"a" "a" "a" "a" "a" "a"
exclusivo:Cycle 4 consorcio:Cycle 3 exclusivo:Cycle 3 consorcio:Cycle 4 consorcio:Cycle 2 exclusivo:Cycle 2
"a" "a" "a" "a" "a" "a"
$`tratamentos:Ciclo`$LetterMatrix
a
exclusivo:Cycle 5 TRUE
consorcio:Cycle 6 TRUE
exclusivo:Cycle 6 TRUE
consorcio:Cycle 1 TRUE
consorcio:Cycle 5 TRUE
exclusivo:Cycle 1 TRUE
exclusivo:Cycle 4 TRUE
consorcio:Cycle 3 TRUE
exclusivo:Cycle 3 TRUE
consorcio:Cycle 4 TRUE
consorcio:Cycle 2 TRUE
exclusivo:Cycle 2 TRUE
data.season = data1 %>%
group_by(Ciclo, tratamentos) %>%
summarise(
data=mean(as.Date(entrada)),
bra = mean(biomass.bra.ha),
thi = mean(biomass.thi.ha),
sd=sd(biomass.bra.ha))
`summarise()` has grouped output by 'Ciclo'. You can override using the `.groups` argument.
print(data.season)
str(data.season)
gropd_df [12 × 6] (S3: grouped_df/tbl_df/tbl/data.frame)
$ Ciclo : Factor w/ 6 levels "Cycle 1","Cycle 2",..: 1 1 2 2 3 3 4 4 5 5 ...
$ tratamentos: Factor w/ 2 levels "consorcio","exclusivo": 1 2 1 2 1 2 1 2 1 2 ...
$ data : Date[1:12], format: "2022-01-31" "2022-01-31" "2022-02-28" "2022-02-28" ...
$ bra : num [1:12] 1383 1286 1013 998 1182 ...
$ thi : num [1:12] 455 0 149 0 580 ...
$ sd : num [1:12] 494 289 309 296 151 ...
- attr(*, "groups")= tibble [6 × 2] (S3: tbl_df/tbl/data.frame)
..$ Ciclo: Factor w/ 6 levels "Cycle 1","Cycle 2",..: 1 2 3 4 5 6
..$ .rows: list<int> [1:6]
.. ..$ : int [1:2] 1 2
.. ..$ : int [1:2] 3 4
.. ..$ : int [1:2] 5 6
.. ..$ : int [1:2] 7 8
.. ..$ : int [1:2] 9 10
.. ..$ : int [1:2] 11 12
.. ..@ ptype: int(0)
..- attr(*, ".drop")= logi TRUE
data.season = data.season %>% mutate_if(is.numeric, ~na_if(., 0))
`mutate_if()` ignored the following grouping variables:
plot1.1=ggplot(data.season, aes(x =interaction(Ciclo, data), y=bra))+
scale_x_discrete(NULL,guide = "axis_nested")+
geom_bar(aes(y=bra, fill=tratamentos), stat = "identity", position = "dodge", alpha = 0.5)+
# geom_errorbar(aes(ymin=bra-sd, ymax=bra+sd, group= tratamentos), size=0.3, position = position_dodge(0.9), width = 0.25)+
geom_line(aes(y=thi, group=tratamentos), size=0.3, linetype =1)+
geom_point(aes(y=thi, shape = tratamentos), size = 3)+
scale_y_continuous(name= "HB production (kg/ha)",breaks = seq(0, 2600, 200))+
scale_shape_manual(values = c(1,NA), name= "Tithonia HB:",labels = c("SPS",""))+
scale_fill_manual(name = "Grass HB:",values=c("gray", "gray28"),labels=c("SPS","EP"))+
coord_cartesian(ylim = c(0,2600))
plot1.1

plot2.1=plot1.1+
theme(
panel.background = element_rect(fill = "transparent",colour = "black",size = 0.3),
legend.key=element_blank(),
legend.background = element_rect(fill = "transparent", size=0.3, linetype="solid",colour ="black"),
legend.position = c(0.25, 0.85), legend.direction="horizontal",
legend.key.size = unit(0.5,"cm"),
legend.key.height = unit(0.5,"cm"),
legend.key.width = unit(0.5,"cm"),
legend.title = element_text(size=10),
legend.text = element_text(size=9),
axis.title.y = element_text(size = 12),
axis.title.x = element_text(size = 12),
axis.text.x = element_text(size = 10),
axis.text.y = element_text(size = 10),
axis.line = element_line(colour = "black", size = 0.3, linetype = "solid"))+
annotate("text", size=4, x=5.5, y=2500,label="Stocking rate P values")+
annotate("text",size=3.5, x=5.5, y=2400,label= " Treat = 0.953")+
annotate("text",size=3.5, x=5.5, y=2300, label= " Cycles = 0.033")+
annotate("text",size=3.5, x=5.5, y=2200,label= " T*C = 0.986")
plot2.1

43 - Plot isotopic
d13c=data1[c(36:48,81:96),]
print(d13c)
media = aggregate(C3. ~ tratamentos, data = d13c, mean)
plot3.1 = ggplot(data=d13c, aes(x=tratamentos, y=C3., fill=tratamentos))+
geom_boxplot(outlier.shape = NA,size=0.3)+
coord_flip()+
geom_text(data = media, aes(x = tratamentos, y = C3., label = sprintf("%.2f", C3.)),
vjust = -4, color = "black", size = 5, position = position_dodge(width = 0.75))+
scale_x_discrete(name= "Treatments",labels=c("consorcio" = "SPS","exclusivo" = "EP"))+
scale_y_continuous(name= expression(paste("",C[3]," in feces (%)")),breaks = seq(0, 20, 1))+
scale_fill_manual(name = "Treatments: ",values=c("gray", "gray40"),labels=c("SPS","EP"))
plot3.1

plot3.2=plot3.1+
theme(panel.background = element_rect(fill = "transparent",colour = "black",size = 0.3),
axis.title.y = element_text(size = 12),
axis.title.x = element_text(size = 12),
axis.text.x = element_text(size = 10),
axis.text.y = element_text(size = 10),
axis.line = element_line(colour = "black", size = 0.3, linetype = "solid"),
legend.key=element_blank(),
legend.background = element_rect(fill = "transparent", size=0.3, linetype="solid",colour ="black"),
legend.position = c(0.75, 0.9), legend.direction="horizontal",
legend.title = element_text(size=12),
legend.text = element_text(size=10))
plot3.2
save_plot("isotopic.pdf", plot3.2, ncol = 1, nrow = 1)
