#No me cargan los gifs, soy la alumna que ya le habia comentado del
problema #
#install.packages("WDI")
library(WDI)
#install.packages("wbstats")
library(wbstats)
#install.packages("tidyverse")
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
gdp_data <- wb_data(country=c("MX", "EC", "CA"), indicator= "NY.GDP.PCAP.CD", start_date=2013, end_date=2023)
gdp_data
## # A tibble: 30 × 9
## iso2c iso3c country date NY.GDP.PCAP.CD unit obs_status footnote
## <chr> <chr> <chr> <dbl> <dbl> <chr> <chr> <chr>
## 1 CA CAN Canada 2013 52635. <NA> <NA> <NA>
## 2 CA CAN Canada 2014 50956. <NA> <NA> <NA>
## 3 CA CAN Canada 2015 43596. <NA> <NA> <NA>
## 4 CA CAN Canada 2016 42316. <NA> <NA> <NA>
## 5 CA CAN Canada 2017 45129. <NA> <NA> <NA>
## 6 CA CAN Canada 2018 46549. <NA> <NA> <NA>
## 7 CA CAN Canada 2019 46374. <NA> <NA> <NA>
## 8 CA CAN Canada 2020 43562. <NA> <NA> <NA>
## 9 CA CAN Canada 2021 52515. <NA> <NA> <NA>
## 10 CA CAN Canada 2022 55522. <NA> <NA> <NA>
## # ℹ 20 more rows
## # ℹ 1 more variable: last_updated <date>
panel <- select(gdp_data,country,date,NY.GDP.PCAP.CD)
gdp_data
## # A tibble: 30 × 9
## iso2c iso3c country date NY.GDP.PCAP.CD unit obs_status footnote
## <chr> <chr> <chr> <dbl> <dbl> <chr> <chr> <chr>
## 1 CA CAN Canada 2013 52635. <NA> <NA> <NA>
## 2 CA CAN Canada 2014 50956. <NA> <NA> <NA>
## 3 CA CAN Canada 2015 43596. <NA> <NA> <NA>
## 4 CA CAN Canada 2016 42316. <NA> <NA> <NA>
## 5 CA CAN Canada 2017 45129. <NA> <NA> <NA>
## 6 CA CAN Canada 2018 46549. <NA> <NA> <NA>
## 7 CA CAN Canada 2019 46374. <NA> <NA> <NA>
## 8 CA CAN Canada 2020 43562. <NA> <NA> <NA>
## 9 CA CAN Canada 2021 52515. <NA> <NA> <NA>
## 10 CA CAN Canada 2022 55522. <NA> <NA> <NA>
## # ℹ 20 more rows
## # ℹ 1 more variable: last_updated <date>
#install.packages("gplots")
library(gplots)
##
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
##
## lowess
prueba <- wb_data(country=c("FR", "MX", "JP", "US"), indicator =c("EG.ELC.HYRO.ZS", "EG.FEC.RNEW.ZS", "EG.ELC.RNEW.ZS", "GB.XPD.RSDV.GD.ZS"), start_date = 2000, end_date = 2015)
prueba
## # A tibble: 64 × 8
## iso2c iso3c country date EG.ELC.HYRO.ZS EG.ELC.RNEW.ZS EG.FEC.RNEW.ZS
## <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 FR FRA France 2000 12.4 13.0 9.32
## 2 FR FRA France 2001 13.6 14.3 9.46
## 3 FR FRA France 2002 10.9 11.6 8.73
## 4 FR FRA France 2003 10.5 11.2 8.91
## 5 FR FRA France 2004 10.5 11.2 8.95
## 6 FR FRA France 2005 9.01 9.86 8.66
## 7 FR FRA France 2006 9.89 10.9 8.52
## 8 FR FRA France 2007 10.2 11.7 9.46
## 9 FR FRA France 2008 11.2 13.0 10.6
## 10 FR FRA France 2009 10.7 13.1 11.3
## # ℹ 54 more rows
## # ℹ 1 more variable: GB.XPD.RSDV.GD.ZS <dbl>
####EG.ELC.HYRO.ZS es Producción de electricidad a partir de fuentes hidroeléctricas (% del total)
####EG.ELC.RNEW.ZS es Producción de electricidad renovable (% de la producción eléctrica total)
####EG.FEC.RNEW.ZS es Consumo de energía renovable (% del consumo total de energía final)
####GB.XPD.RSDV.GD.ZS es Gasto en investigación y desarrollo (% del PIB)
panel <- select(prueba, country, date ,EG.ELC.HYRO.ZS, EG.FEC.RNEW.ZS, EG.ELC.RNEW.ZS,GB.XPD.RSDV.GD.ZS)
panel <- subset(panel, date == 2000 | date == 2005 | date == 2010 | date == 2015)
plotmeans(EG.ELC.HYRO.ZS ~ country, main= "Heterogenidad entre países", data= panel)
## Warning in arrows(x, li, x, pmax(y - gap, li), col = barcol, lwd = lwd, :
## zero-length arrow is of indeterminate angle and so skipped
## Warning in arrows(x, ui, x, pmin(y + gap, ui), col = barcol, lwd = lwd, :
## zero-length arrow is of indeterminate angle and so skipped
plotmeans(EG.ELC.HYRO.ZS ~ date, main= "Heterogenidad entre años", data=panel)
#La heterogeneidad en los datos significa que existe variabilidad en los datos, es decir, existe diferencia entre ellos. Las gráfica mostradas anteriormente muestran heterogeinedad en ambas. Existe un diferente nivel de producción de electricidad a partir de fuentes hidroeléctricas entre los cuatro países presentados, también la grafica de la heterogeneidad entre años no es línea ya que también hay diferencias entre los años.
#install.packages("plm")
library(plm)
##
## Attaching package: 'plm'
## The following objects are masked from 'package:dplyr':
##
## between, lag, lead
pooled <- plm(EG.ELC.HYRO.ZS ~ EG.FEC.RNEW.ZS + EG.ELC.RNEW.ZS + GB.XPD.RSDV.GD.ZS, data = panel, model = "pooling")
summary(pooled)
## Pooling Model
##
## Call:
## plm(formula = EG.ELC.HYRO.ZS ~ EG.FEC.RNEW.ZS + EG.ELC.RNEW.ZS +
## GB.XPD.RSDV.GD.ZS, data = panel, model = "pooling")
##
## Balanced Panel: n = 4, T = 4, N = 16
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -2.699061 -0.962000 -0.019214 0.904829 3.054436
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## (Intercept) 6.655884 3.202225 2.0785 0.05978 .
## EG.FEC.RNEW.ZS 0.071014 0.234900 0.3023 0.76759
## EG.ELC.RNEW.ZS 0.360835 0.209888 1.7192 0.11125
## GB.XPD.RSDV.GD.ZS -1.266517 0.590894 -2.1434 0.05327 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 134.54
## Residual Sum of Squares: 36.314
## R-Squared: 0.73008
## Adj. R-Squared: 0.66261
## F-statistic: 10.8194 on 3 and 12 DF, p-value: 0.00099401
#r cuadrada más cercano al 1
within <- plm(EG.ELC.HYRO.ZS ~ EG.FEC.RNEW.ZS + EG.ELC.RNEW.ZS + GB.XPD.RSDV.GD.ZS, data = panel, model = "within")
summary(within)
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = EG.ELC.HYRO.ZS ~ EG.FEC.RNEW.ZS + EG.ELC.RNEW.ZS +
## GB.XPD.RSDV.GD.ZS, data = panel, model = "within")
##
## Balanced Panel: n = 4, T = 4, N = 16
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -2.05541 -0.65881 -0.12288 0.91259 1.32117
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## EG.FEC.RNEW.ZS -0.42970 0.45156 -0.9516 0.36616
## EG.ELC.RNEW.ZS 0.70179 0.28605 2.4534 0.03655 *
## GB.XPD.RSDV.GD.ZS -8.22797 3.86536 -2.1286 0.06216 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 31.086
## Residual Sum of Squares: 14.961
## R-Squared: 0.5187
## Adj. R-Squared: 0.19784
## F-statistic: 3.23315 on 3 and 9 DF, p-value: 0.074853
pFtest(within,pooled)
##
## F test for individual effects
##
## data: EG.ELC.HYRO.ZS ~ EG.FEC.RNEW.ZS + EG.ELC.RNEW.ZS + GB.XPD.RSDV.GD.ZS
## F = 4.2815, df1 = 3, df2 = 9, p-value = 0.03891
## alternative hypothesis: significant effects
walhus <- plm(EG.ELC.HYRO.ZS ~ EG.FEC.RNEW.ZS + EG.ELC.RNEW.ZS + GB.XPD.RSDV.GD.ZS, data = panel, model = "random", random.method = "walhus")
summary(walhus)
## Oneway (individual) effect Random Effect Model
## (Wallace-Hussain's transformation)
##
## Call:
## plm(formula = EG.ELC.HYRO.ZS ~ EG.FEC.RNEW.ZS + EG.ELC.RNEW.ZS +
## GB.XPD.RSDV.GD.ZS, data = panel, model = "random", random.method = "walhus")
##
## Balanced Panel: n = 4, T = 4, N = 16
##
## Effects:
## var std.dev share
## idiosyncratic 1.9959 1.4128 0.879
## individual 0.2737 0.5232 0.121
## theta: 0.1964
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -2.495559 -0.855550 -0.011516 0.809331 2.875031
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 7.472145 3.103934 2.4073 0.01607 *
## EG.FEC.RNEW.ZS 0.020781 0.262250 0.0792 0.93684
## EG.ELC.RNEW.ZS 0.351567 0.213732 1.6449 0.09999 .
## GB.XPD.RSDV.GD.ZS -1.405672 0.624771 -2.2499 0.02446 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 97.893
## Residual Sum of Squares: 31.697
## R-Squared: 0.6762
## Adj. R-Squared: 0.59525
## Chisq: 25.0602 on 3 DF, p-value: 1.4999e-05
amemiya <- plm(EG.ELC.HYRO.ZS ~ EG.FEC.RNEW.ZS + EG.ELC.RNEW.ZS + GB.XPD.RSDV.GD.ZS, data = panel, model = "random", random.method = "amemiya")
summary(amemiya)
## Oneway (individual) effect Random Effect Model
## (Amemiya's transformation)
##
## Call:
## plm(formula = EG.ELC.HYRO.ZS ~ EG.FEC.RNEW.ZS + EG.ELC.RNEW.ZS +
## GB.XPD.RSDV.GD.ZS, data = panel, model = "random", random.method = "amemiya")
##
## Balanced Panel: n = 4, T = 4, N = 16
##
## Effects:
## var std.dev share
## idiosyncratic 1.247 1.117 0.024
## individual 51.098 7.148 0.976
## theta: 0.9221
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -2.76016 -0.70267 0.26041 0.64529 1.43364
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 15.24244 6.26123 2.4344 0.01492 *
## EG.FEC.RNEW.ZS -0.47134 0.41329 -1.1404 0.25410
## EG.ELC.RNEW.ZS 0.63584 0.26142 2.4323 0.01500 *
## GB.XPD.RSDV.GD.ZS -4.96534 2.55346 -1.9446 0.05183 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 31.713
## Residual Sum of Squares: 17.527
## R-Squared: 0.44731
## Adj. R-Squared: 0.30913
## Chisq: 9.71184 on 3 DF, p-value: 0.021181
nerlove <- plm(EG.ELC.HYRO.ZS ~ EG.FEC.RNEW.ZS + EG.ELC.RNEW.ZS + GB.XPD.RSDV.GD.ZS, data= panel, model = "random", random.method="nerlove")
summary(nerlove)
## Oneway (individual) effect Random Effect Model
## (Nerlove's transformation)
##
## Call:
## plm(formula = EG.ELC.HYRO.ZS ~ EG.FEC.RNEW.ZS + EG.ELC.RNEW.ZS +
## GB.XPD.RSDV.GD.ZS, data = panel, model = "random", random.method = "nerlove")
##
## Balanced Panel: n = 4, T = 4, N = 16
##
## Effects:
## var std.dev share
## idiosyncratic 0.9351 0.9670 0.013
## individual 68.5463 8.2793 0.987
## theta: 0.9417
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -2.67273 -0.70790 0.19847 0.68447 1.29606
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 16.80312 7.34153 2.2888 0.02209 *
## EG.FEC.RNEW.ZS -0.46343 0.40811 -1.1355 0.25615
## EG.ELC.RNEW.ZS 0.65609 0.25811 2.5419 0.01102 *
## GB.XPD.RSDV.GD.ZS -5.87459 2.82837 -2.0770 0.03780 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 31.437
## Residual Sum of Squares: 16.778
## R-Squared: 0.46631
## Adj. R-Squared: 0.33289
## Chisq: 10.4851 on 3 DF, p-value: 0.014863
phtest(nerlove, within)
##
## Hausman Test
##
## data: EG.ELC.HYRO.ZS ~ EG.FEC.RNEW.ZS + EG.ELC.RNEW.ZS + GB.XPD.RSDV.GD.ZS
## chisq = 0.80073, df = 3, p-value = 0.8493
## alternative hypothesis: one model is inconsistent
###se elige el mejor de los 3 modelos de aleatorio y después el mejor de los dos primeros modelos
###en este caso es mejor amemiya, porque tiene más asterísticos