Actividad “Bienestar de los Colaboradores”: Parte 1, Parte 2, Parte 3 (30 puntos, 10 c/u)

Contexto:

Uno de los retos más importantes de las organizaciones es entender el estado y bienestar de los colaboradores, ya que puede impactar directamente en el desempeño y el logro de los objetivos.

Parte 1: Análisis factorial confirmatorio (segundo orden) sobre el constructo de experiencias de recuperación.

Cargar librerías y base de datos

#install.packages('lavaan')
#install.packages('lavaanPlot')
#install.packages('readxl')
library(lavaan)
## This is lavaan 0.6-17
## lavaan is FREE software! Please report any bugs.
library(lavaanPlot)
library(readxl)
setwd("D:/8vo semestre")
ER <- read_xlsx("Datos_SEM_Eng.xlsx")
str(ER)
## tibble [223 x 51] (S3: tbl_df/tbl/data.frame)
##  $ ID   : num [1:223] 1 2 3 4 5 6 7 8 9 10 ...
##  $ GEN  : num [1:223] 1 1 1 1 1 0 0 1 1 1 ...
##  $ EXPER: num [1:223] 22 22 30 17 23 31 26 30 15 15 ...
##  $ EDAD : num [1:223] 45 44 52 41 51 52 53 48 40 38 ...
##  $ RPD01: num [1:223] 5 4 7 5 7 3 5 6 4 2 ...
##  $ RPD02: num [1:223] 1 4 7 5 6 4 5 7 4 3 ...
##  $ RPD03: num [1:223] 3 6 7 1 7 5 4 6 4 2 ...
##  $ RPD05: num [1:223] 2 5 7 1 6 4 4 7 4 3 ...
##  $ RPD06: num [1:223] 3 3 7 3 7 3 5 2 6 7 ...
##  $ RPD07: num [1:223] 1 2 6 5 6 5 6 5 4 1 ...
##  $ RPD08: num [1:223] 3 3 7 3 7 4 6 2 5 3 ...
##  $ RPD09: num [1:223] 2 4 7 2 6 4 7 4 4 2 ...
##  $ RPD10: num [1:223] 4 4 7 2 6 4 7 1 6 2 ...
##  $ RRE02: num [1:223] 6 6 7 6 7 5 7 5 6 7 ...
##  $ RRE03: num [1:223] 6 6 7 6 7 4 7 4 4 7 ...
##  $ RRE04: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE05: num [1:223] 6 6 7 6 7 5 7 4 6 7 ...
##  $ RRE06: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE07: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE10: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RMA02: num [1:223] 4 6 4 3 4 7 5 2 6 7 ...
##  $ RMA03: num [1:223] 5 6 5 4 4 7 5 1 2 7 ...
##  $ RMA04: num [1:223] 5 5 6 4 4 5 5 1 4 7 ...
##  $ RMA05: num [1:223] 5 5 6 4 4 6 5 3 4 7 ...
##  $ RMA06: num [1:223] 6 6 7 6 5 4 5 7 6 7 ...
##  $ RMA07: num [1:223] 4 6 6 5 4 5 7 4 6 7 ...
##  $ RMA08: num [1:223] 5 6 4 4 4 6 6 4 2 7 ...
##  $ RMA09: num [1:223] 3 5 4 3 5 4 5 2 4 7 ...
##  $ RMA10: num [1:223] 7 5 5 4 5 5 6 4 3 7 ...
##  $ RCO02: num [1:223] 7 7 7 5 7 6 7 7 3 7 ...
##  $ RCO03: num [1:223] 7 7 7 5 7 5 7 7 3 7 ...
##  $ RCO04: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
##  $ RCO05: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
##  $ RCO06: num [1:223] 7 7 7 6 7 4 7 7 4 7 ...
##  $ RCO07: num [1:223] 5 7 7 6 7 4 7 7 7 7 ...
##  $ EN01 : num [1:223] 6 6 7 4 6 4 7 7 4 7 ...
##  $ EN02 : num [1:223] 7 6 7 4 6 4 7 7 4 7 ...
##  $ EN04 : num [1:223] 6 6 7 4 6 4 7 6 4 7 ...
##  $ EN05 : num [1:223] 5 5 7 5 6 5 7 6 4 7 ...
##  $ EN06 : num [1:223] 5 5 7 5 6 3 7 5 5 7 ...
##  $ EN07 : num [1:223] 5 5 7 2 6 4 7 4 4 7 ...
##  $ EN08 : num [1:223] 6 5 7 5 6 4 7 4 4 7 ...
##  $ EVI01: num [1:223] 6 5 7 5 6 4 7 6 6 0 ...
##  $ EVI02: num [1:223] 6 5 7 6 6 4 6 5 5 1 ...
##  $ EVI03: num [1:223] 6 6 6 7 6 4 6 6 7 0 ...
##  $ EDE01: num [1:223] 6 6 6 5 7 6 7 7 7 1 ...
##  $ EDE02: num [1:223] 7 6 7 6 7 5 7 7 7 5 ...
##  $ EDE03: num [1:223] 7 7 7 7 7 5 7 7 7 6 ...
##  $ EAB01: num [1:223] 7 7 7 6 7 5 7 7 7 0 ...
##  $ EAB02: num [1:223] 7 7 7 6 7 5 7 2 5 1 ...
##  $ EAB03: num [1:223] 6 5 6 5 6 5 7 3 5 0 ...
colSums(is.na(ER))
##    ID   GEN EXPER  EDAD RPD01 RPD02 RPD03 RPD05 RPD06 RPD07 RPD08 RPD09 RPD10 
##     0     0     0     0     0     0     0     0     0     0     0     0     0 
## RRE02 RRE03 RRE04 RRE05 RRE06 RRE07 RRE10 RMA02 RMA03 RMA04 RMA05 RMA06 RMA07 
##     0     0     0     0     0     0     0     0     0     0     0     0     0 
## RMA08 RMA09 RMA10 RCO02 RCO03 RCO04 RCO05 RCO06 RCO07  EN01  EN02  EN04  EN05 
##     0     0     0     0     0     0     0     0     0     0     0     0     0 
##  EN06  EN07  EN08 EVI01 EVI02 EVI03 EDE01 EDE02 EDE03 EAB01 EAB02 EAB03 
##     0     0     0     0     0     0     0     0     0     0     0     0
sum(is.na(ER))
## [1] 0

Estructura modelo

  1. Regresión (~) Variable que depende de otras

  2. Variables latentes (=~) No se observa, se infiere

  3. Varianzas y covarianzas (~~) Relaciones entre variables latnetes y observadas (Varianza entre si misma, covarianza entre otras)

  4. Intercepto (~1) Valor esperado cuando las demas variables son cero

modelo_ER <- ' # Regresiones
             # Variables latentes
             Desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
             Relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
             Maestria =~ RMA02 + RMA03  + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
             Control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
             recuperacion =~ Desapego + Relajacion + Maestria + Control
             # Varianzas y covarianzas 
             # Intercepto
'

Generar el Análisis Factorial Confirmatorio de segundo orden (CFA)

fit <- cfa(modelo_ER, ER)
summary(fit)
## lavaan 0.6.17 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        66
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1221.031
##   Degrees of freedom                               430
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.206    0.082   14.780    0.000
##     RPD03             1.143    0.085   13.374    0.000
##     RPD05             1.312    0.086   15.244    0.000
##     RPD06             1.088    0.089   12.266    0.000
##     RPD07             1.229    0.085   14.440    0.000
##     RPD08             1.164    0.087   13.447    0.000
##     RPD09             1.317    0.087   15.153    0.000
##     RPD10             1.346    0.088   15.258    0.000
##   Relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.227    0.000
##     RRE04             1.025    0.058   17.713    0.000
##     RRE05             1.055    0.056   18.758    0.000
##     RRE06             1.245    0.074   16.869    0.000
##     RRE07             1.117    0.071   15.689    0.000
##     RRE10             0.815    0.067   12.120    0.000
##   Maestria =~                                         
##     RMA02             1.000                           
##     RMA03             1.155    0.096   12.079    0.000
##     RMA04             1.178    0.089   13.274    0.000
##     RMA05             1.141    0.087   13.072    0.000
##     RMA06             0.645    0.075    8.597    0.000
##     RMA07             1.103    0.084   13.061    0.000
##     RMA08             1.109    0.085   12.994    0.000
##     RMA09             1.028    0.084   12.246    0.000
##     RMA10             1.055    0.088   12.044    0.000
##   Control =~                                          
##     RCO02             1.000                           
##     RCO03             0.948    0.049   19.182    0.000
##     RCO04             0.796    0.044   18.110    0.000
##     RCO05             0.818    0.043   18.990    0.000
##     RCO06             0.834    0.046   18.216    0.000
##     RCO07             0.835    0.046   18.057    0.000
##   recuperacion =~                                     
##     Desapego          1.000                           
##     Relajacion        1.149    0.131    8.787    0.000
##     Maestria          0.858    0.129    6.666    0.000
##     Control           1.341    0.156    8.605    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.172    0.120    9.782    0.000
##    .RPD02             0.999    0.108    9.228    0.000
##    .RPD03             1.441    0.148    9.733    0.000
##    .RPD05             0.987    0.110    8.964    0.000
##    .RPD06             1.817    0.182    9.967    0.000
##    .RPD07             1.173    0.125    9.383    0.000
##    .RPD08             1.460    0.150    9.714    0.000
##    .RPD09             1.032    0.114    9.021    0.000
##    .RPD10             1.034    0.115    8.955    0.000
##    .RRE02             0.626    0.068    9.274    0.000
##    .RRE03             0.653    0.073    9.011    0.000
##    .RRE04             0.481    0.055    8.794    0.000
##    .RRE05             0.374    0.046    8.153    0.000
##    .RRE06             0.886    0.097    9.149    0.000
##    .RRE07             0.950    0.100    9.505    0.000
##    .RRE10             1.137    0.113   10.093    0.000
##    .RMA02             1.740    0.175    9.931    0.000
##    .RMA03             1.485    0.155    9.575    0.000
##    .RMA04             0.855    0.097    8.772    0.000
##    .RMA05             0.899    0.100    8.967    0.000
##    .RMA06             1.631    0.159   10.281    0.000
##    .RMA07             0.845    0.094    8.977    0.000
##    .RMA08             0.886    0.098    9.034    0.000
##    .RMA09             1.094    0.115    9.500    0.000
##    .RMA10             1.259    0.131    9.590    0.000
##    .RCO02             0.983    0.105    9.379    0.000
##    .RCO03             0.484    0.058    8.391    0.000
##    .RCO04             0.462    0.052    8.963    0.000
##    .RCO05             0.382    0.045    8.513    0.000
##    .RCO06             0.494    0.055    8.917    0.000
##    .RCO07             0.515    0.057    8.985    0.000
##    .Desapego          0.943    0.152    6.207    0.000
##    .Relajacion        0.333    0.089    3.757    0.000
##    .Maestria          1.260    0.212    5.942    0.000
##    .Control           0.900    0.159    5.666    0.000
##     recuperacion      0.978    0.202    4.833    0.000
lavaanPlot(fit, coef=TRUE, cov=TRUE)

Revisar los índices de ajuste del modelo.

Revisar estimates en variances (eliminar las más bajas), eliminar los P(>|z|) mayor a 0.05, otro criterio es eliminar a los que tengan un Std.Err más grandes que los demás. Analizar en latentes.

Se decidió eliminar una de cada grupo, ninguno tiene un P(>|z|) mayor a 0.05, por lo que nos fijamos en las que tuvieran el menor estimate.

Desapego: -6, Relajación: -10, Maestria: -6, Control: -4

Depurado

modelo_ER_depurado <- ' # Regresiones
             # Variables latentes
             Desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD07 + RPD08 + RPD09 + RPD10
             Relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 
             Maestria =~ RMA02 + RMA03  + RMA04 + RMA05 + RMA07 + RMA08 + RMA09 + RMA10
             Control =~ RCO02 + RCO03 + RCO05 + RCO06 + RCO07
             recuperacion =~ Desapego + Relajacion + Maestria + Control
             # Varianzas y covarianzas 
             # Intercepto
'
fit_2 <- cfa(modelo_ER_depurado, ER)
summary(fit_2)
## lavaan 0.6.17 ended normally after 48 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        58
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                               886.791
##   Degrees of freedom                               320
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.204    0.079   15.158    0.000
##     RPD03             1.146    0.083   13.750    0.000
##     RPD05             1.310    0.084   15.663    0.000
##     RPD07             1.219    0.083   14.675    0.000
##     RPD08             1.114    0.086   13.004    0.000
##     RPD09             1.301    0.085   15.315    0.000
##     RPD10             1.328    0.086   15.404    0.000
##   Relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.111    0.064   17.245    0.000
##     RRE04             1.025    0.057   17.974    0.000
##     RRE05             1.054    0.055   19.046    0.000
##     RRE06             1.237    0.073   16.904    0.000
##     RRE07             1.105    0.071   15.618    0.000
##   Maestria =~                                         
##     RMA02             1.000                           
##     RMA03             1.155    0.095   12.223    0.000
##     RMA04             1.176    0.088   13.412    0.000
##     RMA05             1.140    0.086   13.220    0.000
##     RMA07             1.091    0.083   13.067    0.000
##     RMA08             1.103    0.084   13.087    0.000
##     RMA09             1.020    0.083   12.287    0.000
##     RMA10             1.049    0.087   12.097    0.000
##   Control =~                                          
##     RCO02             1.000                           
##     RCO03             0.944    0.051   18.648    0.000
##     RCO05             0.820    0.044   18.683    0.000
##     RCO06             0.840    0.046   18.083    0.000
##     RCO07             0.842    0.047   18.010    0.000
##   recuperacion =~                                     
##     Desapego          1.000                           
##     Relajacion        1.145    0.132    8.696    0.000
##     Maestria          0.843    0.129    6.525    0.000
##     Control           1.356    0.159    8.549    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.134    0.117    9.697    0.000
##    .RPD02             0.956    0.105    9.070    0.000
##    .RPD03             1.381    0.143    9.629    0.000
##    .RPD05             0.932    0.107    8.749    0.000
##    .RPD07             1.162    0.125    9.304    0.000
##    .RPD08             1.629    0.166    9.815    0.000
##    .RPD09             1.053    0.117    8.980    0.000
##    .RPD10             1.061    0.119    8.926    0.000
##    .RRE02             0.612    0.067    9.179    0.000
##    .RRE03             0.666    0.074    8.988    0.000
##    .RRE04             0.467    0.054    8.651    0.000
##    .RRE05             0.361    0.045    7.940    0.000
##    .RRE06             0.898    0.098    9.119    0.000
##    .RRE07             0.974    0.102    9.502    0.000
##    .RMA02             1.720    0.174    9.901    0.000
##    .RMA03             1.456    0.153    9.519    0.000
##    .RMA04             0.839    0.097    8.681    0.000
##    .RMA05             0.879    0.099    8.876    0.000
##    .RMA07             0.874    0.097    9.009    0.000
##    .RMA08             0.884    0.098    8.993    0.000
##    .RMA09             1.105    0.116    9.490    0.000
##    .RMA10             1.265    0.132    9.573    0.000
##    .RCO02             0.999    0.109    9.187    0.000
##    .RCO03             0.517    0.063    8.171    0.000
##    .RCO05             0.385    0.047    8.145    0.000
##    .RCO06             0.482    0.056    8.540    0.000
##    .RCO07             0.495    0.058    8.582    0.000
##    .Desapego          0.985    0.157    6.286    0.000
##    .Relajacion        0.360    0.092    3.917    0.000
##    .Maestria          1.309    0.218    5.994    0.000
##    .Control           0.850    0.159    5.341    0.000
##     recuperacion      0.974    0.203    4.795    0.000
lavaanPlot(fit_2, coef=TRUE, cov=TRUE)

Los dos modelos son bastante similares, y no se vio un incremento significativo en la calidad de los indices de ajuste de modelo. Por lo tanto, se puede decir con completa certeza que el modelo depurado es objetivamente mejor.

Parte 2: Análisis factorial confirmatorio del constructo de energía recuperada.

colSums(is.na(ER))
##    ID   GEN EXPER  EDAD RPD01 RPD02 RPD03 RPD05 RPD06 RPD07 RPD08 RPD09 RPD10 
##     0     0     0     0     0     0     0     0     0     0     0     0     0 
## RRE02 RRE03 RRE04 RRE05 RRE06 RRE07 RRE10 RMA02 RMA03 RMA04 RMA05 RMA06 RMA07 
##     0     0     0     0     0     0     0     0     0     0     0     0     0 
## RMA08 RMA09 RMA10 RCO02 RCO03 RCO04 RCO05 RCO06 RCO07  EN01  EN02  EN04  EN05 
##     0     0     0     0     0     0     0     0     0     0     0     0     0 
##  EN06  EN07  EN08 EVI01 EVI02 EVI03 EDE01 EDE02 EDE03 EAB01 EAB02 EAB03 
##     0     0     0     0     0     0     0     0     0     0     0     0
sum(is.na(ER))
## [1] 0

Estructura Modelo

modelo_Energia <- ' # Regresiones
             # Variables latentes
             Energia =~ EN01 +  EN02 +  EN04 +  EN05 +  EN06 +  EN07 +  EN08
             # Varianzas y covarianzas 
             # Intercepto
'

Generar el Análisis Factorial Confirmatorio (CFA)

fit_3 <- cfa(modelo_Energia, ER)
summary(fit_3)
## lavaan 0.6.17 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.222
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Energia =~                                          
##     EN01              1.000                           
##     EN02              1.029    0.044   23.192    0.000
##     EN04              0.999    0.044   22.583    0.000
##     EN05              0.999    0.042   23.649    0.000
##     EN06              0.986    0.042   23.722    0.000
##     EN07              1.049    0.046   22.856    0.000
##     EN08              1.036    0.043   24.173    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .EN01              0.711    0.074    9.651    0.000
##    .EN02              0.444    0.049    9.012    0.000
##    .EN04              0.481    0.052    9.214    0.000
##    .EN05              0.375    0.042    8.830    0.000
##    .EN06              0.359    0.041    8.798    0.000
##    .EN07              0.499    0.055    9.129    0.000
##    .EN08              0.353    0.041    8.580    0.000
##     Energia           2.801    0.327    8.565    0.000
lavaanPlot(fit_3, coef=TRUE, cov=TRUE)

Revisar los índices de ajuste del modelo.

Todas las variables tienen un P(>|z|) menor a 0.05, al igual que Std.Err y Estimate muy similares entre si, por lo que los indices muestran buenas señales

Depurar el modelo para mejorar el ajuste.

No se ocupa debido a lo anteriormente mencionado, no hay algún eslabón más debil que deba ser retirado.

Parte 3: Análisis de senderos para determinar el efecto mediador de la energía recuperada en el engagement laboral (ya está depurada la escala, ver descripción de los instrumentos).

colnames(ER)
##  [1] "ID"    "GEN"   "EXPER" "EDAD"  "RPD01" "RPD02" "RPD03" "RPD05" "RPD06"
## [10] "RPD07" "RPD08" "RPD09" "RPD10" "RRE02" "RRE03" "RRE04" "RRE05" "RRE06"
## [19] "RRE07" "RRE10" "RMA02" "RMA03" "RMA04" "RMA05" "RMA06" "RMA07" "RMA08"
## [28] "RMA09" "RMA10" "RCO02" "RCO03" "RCO04" "RCO05" "RCO06" "RCO07" "EN01" 
## [37] "EN02"  "EN04"  "EN05"  "EN06"  "EN07"  "EN08"  "EVI01" "EVI02" "EVI03"
## [46] "EDE01" "EDE02" "EDE03" "EAB01" "EAB02" "EAB03"

Estructura Modelo

modelo_Engagement <- ' # Regresiones
             # Variables latentes 1
             Desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
             Relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
             Maestria =~ RMA02 + RMA03  + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
             Control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
             recuperacion =~ Desapego + Relajacion + Maestria + Control
             
             # Variables latentes 2
             Energia =~ EN01 +  EN02 +  EN04 +  EN05 +  EN06 +  EN07 +  EN08
             
             # Variables latentes 3
             Vigor =~ EVI01 + EVI02 + EVI03
             Dedicacion =~ EDE01 + EDE02 + EDE03
             Absorcion =~ EAB01 + EAB02
             engagement =~ Vigor + Dedicacion + Absorcion
             
             # Varianzas y covarianzas 
             engagement ~~ Energia + recuperacion
             # Intercepto
'

Generar el Análisis Factorial Confirmatorio (CFA)

fit_4 <- sem(modelo_Engagement, ER)
summary(fit_4)
## lavaan 0.6.17 ended normally after 73 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       102
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              2395.225
##   Degrees of freedom                               979
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.209    0.081   14.866    0.000
##     RPD03             1.144    0.085   13.419    0.000
##     RPD05             1.313    0.086   15.317    0.000
##     RPD06             1.082    0.089   12.214    0.000
##     RPD07             1.229    0.085   14.487    0.000
##     RPD08             1.157    0.086   13.375    0.000
##     RPD09             1.315    0.087   15.163    0.000
##     RPD10             1.343    0.088   15.247    0.000
##   Relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.295    0.000
##     RRE04             1.021    0.058   17.626    0.000
##     RRE05             1.051    0.056   18.687    0.000
##     RRE06             1.246    0.074   16.924    0.000
##     RRE07             1.121    0.071   15.837    0.000
##     RRE10             0.814    0.067   12.134    0.000
##   Maestria =~                                         
##     RMA02             1.000                           
##     RMA03             1.152    0.096   12.041    0.000
##     RMA04             1.178    0.089   13.265    0.000
##     RMA05             1.141    0.087   13.057    0.000
##     RMA06             0.648    0.075    8.625    0.000
##     RMA07             1.104    0.085   13.062    0.000
##     RMA08             1.110    0.085   13.001    0.000
##     RMA09             1.030    0.084   12.257    0.000
##     RMA10             1.056    0.088   12.047    0.000
##   Control =~                                          
##     RCO02             1.000                           
##     RCO03             0.945    0.049   19.172    0.000
##     RCO04             0.794    0.044   18.100    0.000
##     RCO05             0.814    0.043   18.926    0.000
##     RCO06             0.837    0.045   18.409    0.000
##     RCO07             0.836    0.046   18.206    0.000
##   recuperacion =~                                     
##     Desapego          1.000                           
##     Relajacion        1.070    0.121    8.838    0.000
##     Maestria          0.900    0.129    6.959    0.000
##     Control           1.424    0.157    9.063    0.000
##   Energia =~                                          
##     EN01              1.000                           
##     EN02              1.027    0.044   23.416    0.000
##     EN04              0.998    0.044   22.870    0.000
##     EN05              0.996    0.042   23.836    0.000
##     EN06              0.983    0.041   23.857    0.000
##     EN07              1.045    0.045   22.964    0.000
##     EN08              1.033    0.042   24.399    0.000
##   Vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.985    0.028   35.255    0.000
##     EVI03             0.996    0.048   20.570    0.000
##   Dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.905    0.034   26.515    0.000
##     EDE03             0.567    0.037   15.447    0.000
##   Absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.656    0.053   12.368    0.000
##   engagement =~                                       
##     Vigor             1.000                           
##     Dedicacion        1.216    0.061   20.023    0.000
##     Absorcion         0.984    0.057   17.202    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Energia ~~                                          
##     engagement        1.616    0.222    7.269    0.000
##   recuperacion ~~                                     
##     engagement        0.893    0.152    5.888    0.000
##     Energia           1.365    0.197    6.933    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.168    0.119    9.781    0.000
##    .RPD02             0.982    0.107    9.202    0.000
##    .RPD03             1.434    0.147    9.729    0.000
##    .RPD05             0.972    0.109    8.938    0.000
##    .RPD06             1.837    0.184    9.980    0.000
##    .RPD07             1.165    0.124    9.377    0.000
##    .RPD08             1.486    0.153    9.740    0.000
##    .RPD09             1.037    0.115    9.036    0.000
##    .RPD10             1.046    0.116    8.984    0.000
##    .RRE02             0.623    0.067    9.252    0.000
##    .RRE03             0.647    0.072    8.976    0.000
##    .RRE04             0.492    0.056    8.829    0.000
##    .RRE05             0.384    0.047    8.202    0.000
##    .RRE06             0.880    0.097    9.122    0.000
##    .RRE07             0.930    0.098    9.460    0.000
##    .RRE10             1.136    0.113   10.087    0.000
##    .RMA02             1.741    0.175    9.935    0.000
##    .RMA03             1.499    0.156    9.594    0.000
##    .RMA04             0.857    0.098    8.785    0.000
##    .RMA05             0.903    0.101    8.983    0.000
##    .RMA06             1.626    0.158   10.280    0.000
##    .RMA07             0.844    0.094    8.979    0.000
##    .RMA08             0.882    0.098    9.031    0.000
##    .RMA09             1.090    0.115    9.498    0.000
##    .RMA10             1.257    0.131    9.592    0.000
##    .RCO02             0.977    0.104    9.391    0.000
##    .RCO03             0.493    0.058    8.475    0.000
##    .RCO04             0.468    0.052    9.017    0.000
##    .RCO05             0.393    0.046    8.621    0.000
##    .RCO06             0.479    0.054    8.883    0.000
##    .RCO07             0.505    0.056    8.972    0.000
##    .EN01              0.696    0.072    9.660    0.000
##    .EN02              0.443    0.049    9.063    0.000
##    .EN04              0.473    0.051    9.236    0.000
##    .EN05              0.378    0.042    8.907    0.000
##    .EN06              0.366    0.041    8.899    0.000
##    .EN07              0.507    0.055    9.209    0.000
##    .EN08              0.353    0.041    8.658    0.000
##    .EVI01             0.199    0.039    5.056    0.000
##    .EVI02             0.224    0.040    5.637    0.000
##    .EVI03             1.211    0.124    9.770    0.000
##    .EDE01             0.352    0.064    5.529    0.000
##    .EDE02             0.509    0.067    7.646    0.000
##    .EDE03             0.874    0.088    9.945    0.000
##    .EAB01             0.379    0.128    2.953    0.003
##    .EAB02             1.149    0.121    9.491    0.000
##    .Desapego          0.953    0.149    6.397    0.000
##    .Relajacion        0.514    0.085    6.027    0.000
##    .Maestria          1.191    0.200    5.956    0.000
##    .Control           0.693    0.125    5.534    0.000
##     recuperacion      0.972    0.199    4.892    0.000
##     Energia           2.816    0.327    8.605    0.000
##    .Vigor             0.536    0.084    6.413    0.000
##    .Dedicacion        0.099    0.087    1.131    0.258
##    .Absorcion         0.469    0.138    3.392    0.001
##     engagement        2.300    0.284    8.099    0.000
lavaanPlot(fit_4, coef=TRUE, cov=TRUE)

Test statistic(mayor es mejor), evaluar estimate (ver cuales están más separados), std.err (menor es mejor), p-value(menor a 0.05)

Evaluar los efectos directos e indirectos y describir los resultados.

Recuperación, Energía, y Engagement están relacionados de manera bidireccional, el par mayormente relacionado es Energía y Engagement (1.62), mientras que el par menormente relacionado es Recuperación y Engagement (0.89). Todos los grupos tienen relaciones fuerte con sus respectivas variables.

Revisar los índices de ajuste del modelo.

Ningún P(>|z|) es mayor a 0.05, Recuperación, Maestría y Desapego tienen los Std.Err más altos, Control tiene la mayor cantidad de variables con Estimates bajos.

LS0tDQp0aXRsZTogIkFjdGl2aWRhZCAzIEFwbGljYWNpb24gZGUgbW9kZWxvcyBkZSBlY3VhY2lvbmVzIGVzdHJ1Y3R1cmFsZXMiDQphdXRob3I6ICJHdWlsbGVybW8gQ8OhemFyZXMgQ3J1eiINCmRhdGU6ICIyMDI0LTAyLTIzIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQotLS0NCg0KIVtdKGh0dHBzOi8vbWVkaWEuZ2lwaHkuY29tL21lZGlhL3YxLlkybGtQVGM1TUdJM05qRXhPWFZvWXpSbU1XRnRjVGswWW1Sd2NtbDZZVEl4WVROeGVUTnBPVFZ2YjNWaWJ6VnljbXR4TVNabGNEMTJNVjluYVdaelgzTmxZWEpqYUNaamREMW4vOGxNUUtJWklYaU9uMFZWczNBL2dpcGh5LmdpZikNCg0KIyBBY3RpdmlkYWQgIkJpZW5lc3RhciBkZSBsb3MgQ29sYWJvcmFkb3JlcyI6IFBhcnRlIDEsIFBhcnRlIDIsIFBhcnRlIDMgKDMwIHB1bnRvcywgMTAgYy91KQ0KDQojIyBDb250ZXh0bzogDQoNClVubyBkZSBsb3MgcmV0b3MgbcOhcyBpbXBvcnRhbnRlcyBkZSBsYXMgb3JnYW5pemFjaW9uZXMgZXMgZW50ZW5kZXIgZWwgZXN0YWRvIHkgYmllbmVzdGFyIGRlIGxvcyBjb2xhYm9yYWRvcmVzLCB5YSBxdWUgcHVlZGUgaW1wYWN0YXIgZGlyZWN0YW1lbnRlIGVuIGVsIGRlc2VtcGXDsW8geSBlbCBsb2dybyBkZSBsb3Mgb2JqZXRpdm9zLiANCg0KIyMgUGFydGUgMTogQW7DoWxpc2lzIGZhY3RvcmlhbCBjb25maXJtYXRvcmlvIChzZWd1bmRvIG9yZGVuKSBzb2JyZSBlbCBjb25zdHJ1Y3RvIGRlIGV4cGVyaWVuY2lhcyBkZSByZWN1cGVyYWNpw7NuLg0KDQojIyMgQ2FyZ2FyIGxpYnJlcsOtYXMgeSBiYXNlIGRlIGRhdG9zDQoNCmBgYHtyfQ0KI2luc3RhbGwucGFja2FnZXMoJ2xhdmFhbicpDQojaW5zdGFsbC5wYWNrYWdlcygnbGF2YWFuUGxvdCcpDQojaW5zdGFsbC5wYWNrYWdlcygncmVhZHhsJykNCmxpYnJhcnkobGF2YWFuKQ0KbGlicmFyeShsYXZhYW5QbG90KQ0KbGlicmFyeShyZWFkeGwpDQpgYGANCmBgYHtyfQ0Kc2V0d2QoIkQ6Lzh2byBzZW1lc3RyZSIpDQpFUiA8LSByZWFkX3hsc3goIkRhdG9zX1NFTV9FbmcueGxzeCIpDQpgYGANCg0KYGBge3J9DQpzdHIoRVIpDQpgYGANCg0KYGBge3J9DQpjb2xTdW1zKGlzLm5hKEVSKSkNCnN1bShpcy5uYShFUikpDQpgYGANCg0KIyMjIEVzdHJ1Y3R1cmEgbW9kZWxvDQoNCjEuICBSZWdyZXNpw7NuICh+KSBWYXJpYWJsZSBxdWUgZGVwZW5kZSBkZSBvdHJhcw0KDQoyLiAgVmFyaWFibGVzIGxhdGVudGVzICg9fikgTm8gc2Ugb2JzZXJ2YSwgc2UgaW5maWVyZQ0KDQozLiAgVmFyaWFuemFzIHkgY292YXJpYW56YXMgKH5+KSBSZWxhY2lvbmVzIGVudHJlIHZhcmlhYmxlcyBsYXRuZXRlcyB5IG9ic2VydmFkYXMgKFZhcmlhbnphIGVudHJlIHNpIG1pc21hLCBjb3ZhcmlhbnphIGVudHJlIG90cmFzKQ0KDQo0LiAgSW50ZXJjZXB0byAofjEpIFZhbG9yIGVzcGVyYWRvIGN1YW5kbyBsYXMgZGVtYXMgdmFyaWFibGVzIHNvbiBjZXJvDQoNCmBgYHtyfQ0KbW9kZWxvX0VSIDwtICcgIyBSZWdyZXNpb25lcw0KICAgICAgICAgICAgICMgVmFyaWFibGVzIGxhdGVudGVzDQogICAgICAgICAgICAgRGVzYXBlZ28gPX4gUlBEMDEgKyBSUEQwMiArIFJQRDAzICsgUlBEMDUgKyBSUEQwNiArIFJQRDA3ICsgUlBEMDggKyBSUEQwOSArIFJQRDEwDQogICAgICAgICAgICAgUmVsYWphY2lvbiA9fiBSUkUwMiArIFJSRTAzICsgUlJFMDQgKyBSUkUwNSArIFJSRTA2ICsgUlJFMDcgKyBSUkUxMA0KICAgICAgICAgICAgIE1hZXN0cmlhID1+IFJNQTAyICsgUk1BMDMgICsgUk1BMDQgKyBSTUEwNSArIFJNQTA2ICsgUk1BMDcgKyBSTUEwOCArIFJNQTA5ICsgUk1BMTANCiAgICAgICAgICAgICBDb250cm9sID1+IFJDTzAyICsgUkNPMDMgKyBSQ08wNCArIFJDTzA1ICsgUkNPMDYgKyBSQ08wNw0KICAgICAgICAgICAgIHJlY3VwZXJhY2lvbiA9fiBEZXNhcGVnbyArIFJlbGFqYWNpb24gKyBNYWVzdHJpYSArIENvbnRyb2wNCiAgICAgICAgICAgICAjIFZhcmlhbnphcyB5IGNvdmFyaWFuemFzIA0KICAgICAgICAgICAgICMgSW50ZXJjZXB0bw0KJw0KYGBgDQoNCiMjIyBHZW5lcmFyIGVsIEFuw6FsaXNpcyBGYWN0b3JpYWwgQ29uZmlybWF0b3JpbyBkZSBzZWd1bmRvIG9yZGVuIChDRkEpDQoNCmBgYHtyfQ0KZml0IDwtIGNmYShtb2RlbG9fRVIsIEVSKQ0Kc3VtbWFyeShmaXQpDQpsYXZhYW5QbG90KGZpdCwgY29lZj1UUlVFLCBjb3Y9VFJVRSkNCmBgYA0KDQojIyMgUmV2aXNhciBsb3Mgw61uZGljZXMgZGUgYWp1c3RlIGRlbCBtb2RlbG8uDQoNClJldmlzYXIgKmVzdGltYXRlcyogZW4gKnZhcmlhbmNlcyogKGVsaW1pbmFyIGxhcyBtw6FzIGJhamFzKSwgZWxpbWluYXIgbG9zIFAoPnx6fCkgbWF5b3IgYSAwLjA1LCBvdHJvIGNyaXRlcmlvIGVzIGVsaW1pbmFyIGEgbG9zIHF1ZSB0ZW5nYW4gdW4gU3RkLkVyciBtw6FzIGdyYW5kZXMgcXVlIGxvcyBkZW3DoXMuIEFuYWxpemFyIGVuIGxhdGVudGVzLg0KDQpTZSBkZWNpZGnDsyBlbGltaW5hciB1bmEgZGUgY2FkYSBncnVwbywgbmluZ3VubyB0aWVuZSB1biBQKD58enwpIG1heW9yIGEgMC4wNSwgcG9yIGxvIHF1ZSBub3MgZmlqYW1vcyBlbiBsYXMgcXVlIHR1dmllcmFuIGVsIG1lbm9yICplc3RpbWF0ZSouDQoNCkRlc2FwZWdvOiAtNiwgUmVsYWphY2nDs246IC0xMCwgTWFlc3RyaWE6IC02LCBDb250cm9sOiAtNA0KDQojIyMgRGVwdXJhZG8NCg0KYGBge3J9DQptb2RlbG9fRVJfZGVwdXJhZG8gPC0gJyAjIFJlZ3Jlc2lvbmVzDQogICAgICAgICAgICAgIyBWYXJpYWJsZXMgbGF0ZW50ZXMNCiAgICAgICAgICAgICBEZXNhcGVnbyA9fiBSUEQwMSArIFJQRDAyICsgUlBEMDMgKyBSUEQwNSArIFJQRDA3ICsgUlBEMDggKyBSUEQwOSArIFJQRDEwDQogICAgICAgICAgICAgUmVsYWphY2lvbiA9fiBSUkUwMiArIFJSRTAzICsgUlJFMDQgKyBSUkUwNSArIFJSRTA2ICsgUlJFMDcgDQogICAgICAgICAgICAgTWFlc3RyaWEgPX4gUk1BMDIgKyBSTUEwMyAgKyBSTUEwNCArIFJNQTA1ICsgUk1BMDcgKyBSTUEwOCArIFJNQTA5ICsgUk1BMTANCiAgICAgICAgICAgICBDb250cm9sID1+IFJDTzAyICsgUkNPMDMgKyBSQ08wNSArIFJDTzA2ICsgUkNPMDcNCiAgICAgICAgICAgICByZWN1cGVyYWNpb24gPX4gRGVzYXBlZ28gKyBSZWxhamFjaW9uICsgTWFlc3RyaWEgKyBDb250cm9sDQogICAgICAgICAgICAgIyBWYXJpYW56YXMgeSBjb3ZhcmlhbnphcyANCiAgICAgICAgICAgICAjIEludGVyY2VwdG8NCicNCmBgYA0KDQpgYGB7cn0NCmZpdF8yIDwtIGNmYShtb2RlbG9fRVJfZGVwdXJhZG8sIEVSKQ0Kc3VtbWFyeShmaXRfMikNCmxhdmFhblBsb3QoZml0XzIsIGNvZWY9VFJVRSwgY292PVRSVUUpDQpgYGANCg0KTG9zIGRvcyBtb2RlbG9zIHNvbiBiYXN0YW50ZSBzaW1pbGFyZXMsIHkgbm8gc2UgdmlvIHVuIGluY3JlbWVudG8gc2lnbmlmaWNhdGl2byBlbiBsYSBjYWxpZGFkIGRlIGxvcyBpbmRpY2VzIGRlIGFqdXN0ZSBkZSBtb2RlbG8uIFBvciBsbyB0YW50bywgc2UgcHVlZGUgZGVjaXIgY29uIGNvbXBsZXRhIGNlcnRlemEgcXVlIGVsIG1vZGVsbyBkZXB1cmFkbyBlcyBvYmpldGl2YW1lbnRlIG1lam9yLg0KDQoNCg0KIyMgUGFydGUgMjogQW7DoWxpc2lzIGZhY3RvcmlhbCBjb25maXJtYXRvcmlvIGRlbCBjb25zdHJ1Y3RvIGRlIGVuZXJnw61hIHJlY3VwZXJhZGEuDQoNCmBgYHtyfQ0KY29sU3Vtcyhpcy5uYShFUikpDQpzdW0oaXMubmEoRVIpKQ0KYGBgDQoNCiMjIyBFc3RydWN0dXJhIE1vZGVsbw0KDQpgYGB7cn0NCm1vZGVsb19FbmVyZ2lhIDwtICcgIyBSZWdyZXNpb25lcw0KICAgICAgICAgICAgICMgVmFyaWFibGVzIGxhdGVudGVzDQogICAgICAgICAgICAgRW5lcmdpYSA9fiBFTjAxICsgIEVOMDIgKyAgRU4wNCArICBFTjA1ICsgIEVOMDYgKyAgRU4wNyArICBFTjA4DQogICAgICAgICAgICAgIyBWYXJpYW56YXMgeSBjb3ZhcmlhbnphcyANCiAgICAgICAgICAgICAjIEludGVyY2VwdG8NCicNCmBgYA0KDQojIyMgR2VuZXJhciBlbCBBbsOhbGlzaXMgRmFjdG9yaWFsIENvbmZpcm1hdG9yaW8gKENGQSkNCg0KYGBge3J9DQpmaXRfMyA8LSBjZmEobW9kZWxvX0VuZXJnaWEsIEVSKQ0Kc3VtbWFyeShmaXRfMykNCmxhdmFhblBsb3QoZml0XzMsIGNvZWY9VFJVRSwgY292PVRSVUUpDQpgYGANCg0KIyMjIFJldmlzYXIgbG9zIMOtbmRpY2VzIGRlIGFqdXN0ZSBkZWwgbW9kZWxvLg0KDQpUb2RhcyBsYXMgdmFyaWFibGVzIHRpZW5lbiB1biAqUCg+fHp8KSogbWVub3IgYSAwLjA1LCBhbCBpZ3VhbCBxdWUgKlN0ZC5FcnIqIHkgKkVzdGltYXRlKiBtdXkgc2ltaWxhcmVzIGVudHJlIHNpLCBwb3IgbG8gcXVlIGxvcyBpbmRpY2VzIG11ZXN0cmFuIGJ1ZW5hcyBzZcOxYWxlcw0KDQojIyMgRGVwdXJhciBlbCBtb2RlbG8gcGFyYSBtZWpvcmFyIGVsIGFqdXN0ZS4NCg0KTm8gc2Ugb2N1cGEgZGViaWRvIGEgbG8gYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRvLCBubyBoYXkgYWxnw7puIGVzbGFiw7NuIG3DoXMgZGViaWwgcXVlIGRlYmEgc2VyIHJldGlyYWRvLg0KDQoNCiMjIFBhcnRlIDM6IEFuw6FsaXNpcyBkZSBzZW5kZXJvcyBwYXJhIGRldGVybWluYXIgZWwgZWZlY3RvIG1lZGlhZG9yIGRlIGxhIGVuZXJnw61hIHJlY3VwZXJhZGEgZW4gZWwgZW5nYWdlbWVudCBsYWJvcmFsICh5YSBlc3TDoSBkZXB1cmFkYSBsYSBlc2NhbGEsIHZlciBkZXNjcmlwY2nDs24gZGUgbG9zIGluc3RydW1lbnRvcykuDQoNCmBgYHtyfQ0KY29sbmFtZXMoRVIpDQpgYGANCg0KIyMjIEVzdHJ1Y3R1cmEgTW9kZWxvDQoNCmBgYHtyfQ0KbW9kZWxvX0VuZ2FnZW1lbnQgPC0gJyAjIFJlZ3Jlc2lvbmVzDQogICAgICAgICAgICAgIyBWYXJpYWJsZXMgbGF0ZW50ZXMgMQ0KICAgICAgICAgICAgIERlc2FwZWdvID1+IFJQRDAxICsgUlBEMDIgKyBSUEQwMyArIFJQRDA1ICsgUlBEMDYgKyBSUEQwNyArIFJQRDA4ICsgUlBEMDkgKyBSUEQxMA0KICAgICAgICAgICAgIFJlbGFqYWNpb24gPX4gUlJFMDIgKyBSUkUwMyArIFJSRTA0ICsgUlJFMDUgKyBSUkUwNiArIFJSRTA3ICsgUlJFMTANCiAgICAgICAgICAgICBNYWVzdHJpYSA9fiBSTUEwMiArIFJNQTAzICArIFJNQTA0ICsgUk1BMDUgKyBSTUEwNiArIFJNQTA3ICsgUk1BMDggKyBSTUEwOSArIFJNQTEwDQogICAgICAgICAgICAgQ29udHJvbCA9fiBSQ08wMiArIFJDTzAzICsgUkNPMDQgKyBSQ08wNSArIFJDTzA2ICsgUkNPMDcNCiAgICAgICAgICAgICByZWN1cGVyYWNpb24gPX4gRGVzYXBlZ28gKyBSZWxhamFjaW9uICsgTWFlc3RyaWEgKyBDb250cm9sDQogICAgICAgICAgICAgDQogICAgICAgICAgICAgIyBWYXJpYWJsZXMgbGF0ZW50ZXMgMg0KICAgICAgICAgICAgIEVuZXJnaWEgPX4gRU4wMSArICBFTjAyICsgIEVOMDQgKyAgRU4wNSArICBFTjA2ICsgIEVOMDcgKyAgRU4wOA0KICAgICAgICAgICAgIA0KICAgICAgICAgICAgICMgVmFyaWFibGVzIGxhdGVudGVzIDMNCiAgICAgICAgICAgICBWaWdvciA9fiBFVkkwMSArIEVWSTAyICsgRVZJMDMNCiAgICAgICAgICAgICBEZWRpY2FjaW9uID1+IEVERTAxICsgRURFMDIgKyBFREUwMw0KICAgICAgICAgICAgIEFic29yY2lvbiA9fiBFQUIwMSArIEVBQjAyDQogICAgICAgICAgICAgZW5nYWdlbWVudCA9fiBWaWdvciArIERlZGljYWNpb24gKyBBYnNvcmNpb24NCiAgICAgICAgICAgICANCiAgICAgICAgICAgICAjIFZhcmlhbnphcyB5IGNvdmFyaWFuemFzIA0KICAgICAgICAgICAgIGVuZ2FnZW1lbnQgfn4gRW5lcmdpYSArIHJlY3VwZXJhY2lvbg0KICAgICAgICAgICAgICMgSW50ZXJjZXB0bw0KJw0KYGBgDQoNCiMjIyBHZW5lcmFyIGVsIEFuw6FsaXNpcyBGYWN0b3JpYWwgQ29uZmlybWF0b3JpbyAoQ0ZBKQ0KDQpgYGB7cn0NCmZpdF80IDwtIHNlbShtb2RlbG9fRW5nYWdlbWVudCwgRVIpDQpzdW1tYXJ5KGZpdF80KQ0KbGF2YWFuUGxvdChmaXRfNCwgY29lZj1UUlVFLCBjb3Y9VFJVRSkNCmBgYA0KDQpUZXN0IHN0YXRpc3RpYyhtYXlvciBlcyBtZWpvciksIGV2YWx1YXIgZXN0aW1hdGUgKHZlciBjdWFsZXMgZXN0w6FuIG3DoXMgc2VwYXJhZG9zKSwgc3RkLmVyciAobWVub3IgZXMgbWVqb3IpLCBwLXZhbHVlKG1lbm9yIGEgMC4wNSkNCg0KIyMjIEV2YWx1YXIgbG9zIGVmZWN0b3MgZGlyZWN0b3MgZSBpbmRpcmVjdG9zIHkgZGVzY3JpYmlyIGxvcyByZXN1bHRhZG9zLiANCg0KUmVjdXBlcmFjacOzbiwgRW5lcmfDrWEsIHkgKkVuZ2FnZW1lbnQqIGVzdMOhbiByZWxhY2lvbmFkb3MgZGUgbWFuZXJhIGJpZGlyZWNjaW9uYWwsIGVsIHBhciBtYXlvcm1lbnRlIHJlbGFjaW9uYWRvIGVzIEVuZXJnw61hIHkgKkVuZ2FnZW1lbnQqICgxLjYyKSwgbWllbnRyYXMgcXVlIGVsIHBhciBtZW5vcm1lbnRlIHJlbGFjaW9uYWRvIGVzIFJlY3VwZXJhY2nDs24geSBFbmdhZ2VtZW50ICgwLjg5KS4gVG9kb3MgbG9zIGdydXBvcyB0aWVuZW4gcmVsYWNpb25lcyBmdWVydGUgY29uIHN1cyByZXNwZWN0aXZhcyB2YXJpYWJsZXMuDQoNCiMjIyBSZXZpc2FyIGxvcyDDrW5kaWNlcyBkZSBhanVzdGUgZGVsIG1vZGVsby4NCg0KTmluZ8O6biAqKlAoPnx6fCkqKiBlcyBtYXlvciBhIDAuMDUsIFJlY3VwZXJhY2nDs24sIE1hZXN0csOtYSB5IERlc2FwZWdvIHRpZW5lbiBsb3MgKipTdGQuRXJyKiogbcOhcyBhbHRvcywgQ29udHJvbCB0aWVuZSBsYSBtYXlvciBjYW50aWRhZCBkZSB2YXJpYWJsZXMgY29uICoqRXN0aW1hdGVzKiogYmFqb3MuDQo=