Uno de los retos más importantes de las organizaciones es entender el estado y bienestar de los colaboradores, ya que puede impactar directamente en el desempeño y el logro de los objetivos.
#install.packages('lavaan')
#install.packages('lavaanPlot')
#install.packages('readxl')
library(lavaan)
## This is lavaan 0.6-17
## lavaan is FREE software! Please report any bugs.
library(lavaanPlot)
library(readxl)
setwd("D:/8vo semestre")
ER <- read_xlsx("Datos_SEM_Eng.xlsx")
str(ER)
## tibble [223 x 51] (S3: tbl_df/tbl/data.frame)
## $ ID : num [1:223] 1 2 3 4 5 6 7 8 9 10 ...
## $ GEN : num [1:223] 1 1 1 1 1 0 0 1 1 1 ...
## $ EXPER: num [1:223] 22 22 30 17 23 31 26 30 15 15 ...
## $ EDAD : num [1:223] 45 44 52 41 51 52 53 48 40 38 ...
## $ RPD01: num [1:223] 5 4 7 5 7 3 5 6 4 2 ...
## $ RPD02: num [1:223] 1 4 7 5 6 4 5 7 4 3 ...
## $ RPD03: num [1:223] 3 6 7 1 7 5 4 6 4 2 ...
## $ RPD05: num [1:223] 2 5 7 1 6 4 4 7 4 3 ...
## $ RPD06: num [1:223] 3 3 7 3 7 3 5 2 6 7 ...
## $ RPD07: num [1:223] 1 2 6 5 6 5 6 5 4 1 ...
## $ RPD08: num [1:223] 3 3 7 3 7 4 6 2 5 3 ...
## $ RPD09: num [1:223] 2 4 7 2 6 4 7 4 4 2 ...
## $ RPD10: num [1:223] 4 4 7 2 6 4 7 1 6 2 ...
## $ RRE02: num [1:223] 6 6 7 6 7 5 7 5 6 7 ...
## $ RRE03: num [1:223] 6 6 7 6 7 4 7 4 4 7 ...
## $ RRE04: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
## $ RRE05: num [1:223] 6 6 7 6 7 5 7 4 6 7 ...
## $ RRE06: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
## $ RRE07: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
## $ RRE10: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
## $ RMA02: num [1:223] 4 6 4 3 4 7 5 2 6 7 ...
## $ RMA03: num [1:223] 5 6 5 4 4 7 5 1 2 7 ...
## $ RMA04: num [1:223] 5 5 6 4 4 5 5 1 4 7 ...
## $ RMA05: num [1:223] 5 5 6 4 4 6 5 3 4 7 ...
## $ RMA06: num [1:223] 6 6 7 6 5 4 5 7 6 7 ...
## $ RMA07: num [1:223] 4 6 6 5 4 5 7 4 6 7 ...
## $ RMA08: num [1:223] 5 6 4 4 4 6 6 4 2 7 ...
## $ RMA09: num [1:223] 3 5 4 3 5 4 5 2 4 7 ...
## $ RMA10: num [1:223] 7 5 5 4 5 5 6 4 3 7 ...
## $ RCO02: num [1:223] 7 7 7 5 7 6 7 7 3 7 ...
## $ RCO03: num [1:223] 7 7 7 5 7 5 7 7 3 7 ...
## $ RCO04: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
## $ RCO05: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
## $ RCO06: num [1:223] 7 7 7 6 7 4 7 7 4 7 ...
## $ RCO07: num [1:223] 5 7 7 6 7 4 7 7 7 7 ...
## $ EN01 : num [1:223] 6 6 7 4 6 4 7 7 4 7 ...
## $ EN02 : num [1:223] 7 6 7 4 6 4 7 7 4 7 ...
## $ EN04 : num [1:223] 6 6 7 4 6 4 7 6 4 7 ...
## $ EN05 : num [1:223] 5 5 7 5 6 5 7 6 4 7 ...
## $ EN06 : num [1:223] 5 5 7 5 6 3 7 5 5 7 ...
## $ EN07 : num [1:223] 5 5 7 2 6 4 7 4 4 7 ...
## $ EN08 : num [1:223] 6 5 7 5 6 4 7 4 4 7 ...
## $ EVI01: num [1:223] 6 5 7 5 6 4 7 6 6 0 ...
## $ EVI02: num [1:223] 6 5 7 6 6 4 6 5 5 1 ...
## $ EVI03: num [1:223] 6 6 6 7 6 4 6 6 7 0 ...
## $ EDE01: num [1:223] 6 6 6 5 7 6 7 7 7 1 ...
## $ EDE02: num [1:223] 7 6 7 6 7 5 7 7 7 5 ...
## $ EDE03: num [1:223] 7 7 7 7 7 5 7 7 7 6 ...
## $ EAB01: num [1:223] 7 7 7 6 7 5 7 7 7 0 ...
## $ EAB02: num [1:223] 7 7 7 6 7 5 7 2 5 1 ...
## $ EAB03: num [1:223] 6 5 6 5 6 5 7 3 5 0 ...
colSums(is.na(ER))
## ID GEN EXPER EDAD RPD01 RPD02 RPD03 RPD05 RPD06 RPD07 RPD08 RPD09 RPD10
## 0 0 0 0 0 0 0 0 0 0 0 0 0
## RRE02 RRE03 RRE04 RRE05 RRE06 RRE07 RRE10 RMA02 RMA03 RMA04 RMA05 RMA06 RMA07
## 0 0 0 0 0 0 0 0 0 0 0 0 0
## RMA08 RMA09 RMA10 RCO02 RCO03 RCO04 RCO05 RCO06 RCO07 EN01 EN02 EN04 EN05
## 0 0 0 0 0 0 0 0 0 0 0 0 0
## EN06 EN07 EN08 EVI01 EVI02 EVI03 EDE01 EDE02 EDE03 EAB01 EAB02 EAB03
## 0 0 0 0 0 0 0 0 0 0 0 0
sum(is.na(ER))
## [1] 0
Regresión (~) Variable que depende de otras
Variables latentes (=~) No se observa, se infiere
Varianzas y covarianzas (~~) Relaciones entre variables latnetes y observadas (Varianza entre si misma, covarianza entre otras)
Intercepto (~1) Valor esperado cuando las demas variables son cero
modelo_ER <- ' # Regresiones
# Variables latentes
Desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
Relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
Maestria =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
Control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
recuperacion =~ Desapego + Relajacion + Maestria + Control
# Varianzas y covarianzas
# Intercepto
'
fit <- cfa(modelo_ER, ER)
summary(fit)
## lavaan 0.6.17 ended normally after 47 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 66
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 1221.031
## Degrees of freedom 430
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## Desapego =~
## RPD01 1.000
## RPD02 1.206 0.082 14.780 0.000
## RPD03 1.143 0.085 13.374 0.000
## RPD05 1.312 0.086 15.244 0.000
## RPD06 1.088 0.089 12.266 0.000
## RPD07 1.229 0.085 14.440 0.000
## RPD08 1.164 0.087 13.447 0.000
## RPD09 1.317 0.087 15.153 0.000
## RPD10 1.346 0.088 15.258 0.000
## Relajacion =~
## RRE02 1.000
## RRE03 1.120 0.065 17.227 0.000
## RRE04 1.025 0.058 17.713 0.000
## RRE05 1.055 0.056 18.758 0.000
## RRE06 1.245 0.074 16.869 0.000
## RRE07 1.117 0.071 15.689 0.000
## RRE10 0.815 0.067 12.120 0.000
## Maestria =~
## RMA02 1.000
## RMA03 1.155 0.096 12.079 0.000
## RMA04 1.178 0.089 13.274 0.000
## RMA05 1.141 0.087 13.072 0.000
## RMA06 0.645 0.075 8.597 0.000
## RMA07 1.103 0.084 13.061 0.000
## RMA08 1.109 0.085 12.994 0.000
## RMA09 1.028 0.084 12.246 0.000
## RMA10 1.055 0.088 12.044 0.000
## Control =~
## RCO02 1.000
## RCO03 0.948 0.049 19.182 0.000
## RCO04 0.796 0.044 18.110 0.000
## RCO05 0.818 0.043 18.990 0.000
## RCO06 0.834 0.046 18.216 0.000
## RCO07 0.835 0.046 18.057 0.000
## recuperacion =~
## Desapego 1.000
## Relajacion 1.149 0.131 8.787 0.000
## Maestria 0.858 0.129 6.666 0.000
## Control 1.341 0.156 8.605 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .RPD01 1.172 0.120 9.782 0.000
## .RPD02 0.999 0.108 9.228 0.000
## .RPD03 1.441 0.148 9.733 0.000
## .RPD05 0.987 0.110 8.964 0.000
## .RPD06 1.817 0.182 9.967 0.000
## .RPD07 1.173 0.125 9.383 0.000
## .RPD08 1.460 0.150 9.714 0.000
## .RPD09 1.032 0.114 9.021 0.000
## .RPD10 1.034 0.115 8.955 0.000
## .RRE02 0.626 0.068 9.274 0.000
## .RRE03 0.653 0.073 9.011 0.000
## .RRE04 0.481 0.055 8.794 0.000
## .RRE05 0.374 0.046 8.153 0.000
## .RRE06 0.886 0.097 9.149 0.000
## .RRE07 0.950 0.100 9.505 0.000
## .RRE10 1.137 0.113 10.093 0.000
## .RMA02 1.740 0.175 9.931 0.000
## .RMA03 1.485 0.155 9.575 0.000
## .RMA04 0.855 0.097 8.772 0.000
## .RMA05 0.899 0.100 8.967 0.000
## .RMA06 1.631 0.159 10.281 0.000
## .RMA07 0.845 0.094 8.977 0.000
## .RMA08 0.886 0.098 9.034 0.000
## .RMA09 1.094 0.115 9.500 0.000
## .RMA10 1.259 0.131 9.590 0.000
## .RCO02 0.983 0.105 9.379 0.000
## .RCO03 0.484 0.058 8.391 0.000
## .RCO04 0.462 0.052 8.963 0.000
## .RCO05 0.382 0.045 8.513 0.000
## .RCO06 0.494 0.055 8.917 0.000
## .RCO07 0.515 0.057 8.985 0.000
## .Desapego 0.943 0.152 6.207 0.000
## .Relajacion 0.333 0.089 3.757 0.000
## .Maestria 1.260 0.212 5.942 0.000
## .Control 0.900 0.159 5.666 0.000
## recuperacion 0.978 0.202 4.833 0.000
lavaanPlot(fit, coef=TRUE, cov=TRUE)
Revisar estimates en variances (eliminar las más bajas), eliminar los P(>|z|) mayor a 0.05, otro criterio es eliminar a los que tengan un Std.Err más grandes que los demás. Analizar en latentes.
Se decidió eliminar una de cada grupo, ninguno tiene un P(>|z|) mayor a 0.05, por lo que nos fijamos en las que tuvieran el menor estimate.
Desapego: -6, Relajación: -10, Maestria: -6, Control: -4
modelo_ER_depurado <- ' # Regresiones
# Variables latentes
Desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD07 + RPD08 + RPD09 + RPD10
Relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07
Maestria =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA07 + RMA08 + RMA09 + RMA10
Control =~ RCO02 + RCO03 + RCO05 + RCO06 + RCO07
recuperacion =~ Desapego + Relajacion + Maestria + Control
# Varianzas y covarianzas
# Intercepto
'
fit_2 <- cfa(modelo_ER_depurado, ER)
summary(fit_2)
## lavaan 0.6.17 ended normally after 48 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 58
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 886.791
## Degrees of freedom 320
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## Desapego =~
## RPD01 1.000
## RPD02 1.204 0.079 15.158 0.000
## RPD03 1.146 0.083 13.750 0.000
## RPD05 1.310 0.084 15.663 0.000
## RPD07 1.219 0.083 14.675 0.000
## RPD08 1.114 0.086 13.004 0.000
## RPD09 1.301 0.085 15.315 0.000
## RPD10 1.328 0.086 15.404 0.000
## Relajacion =~
## RRE02 1.000
## RRE03 1.111 0.064 17.245 0.000
## RRE04 1.025 0.057 17.974 0.000
## RRE05 1.054 0.055 19.046 0.000
## RRE06 1.237 0.073 16.904 0.000
## RRE07 1.105 0.071 15.618 0.000
## Maestria =~
## RMA02 1.000
## RMA03 1.155 0.095 12.223 0.000
## RMA04 1.176 0.088 13.412 0.000
## RMA05 1.140 0.086 13.220 0.000
## RMA07 1.091 0.083 13.067 0.000
## RMA08 1.103 0.084 13.087 0.000
## RMA09 1.020 0.083 12.287 0.000
## RMA10 1.049 0.087 12.097 0.000
## Control =~
## RCO02 1.000
## RCO03 0.944 0.051 18.648 0.000
## RCO05 0.820 0.044 18.683 0.000
## RCO06 0.840 0.046 18.083 0.000
## RCO07 0.842 0.047 18.010 0.000
## recuperacion =~
## Desapego 1.000
## Relajacion 1.145 0.132 8.696 0.000
## Maestria 0.843 0.129 6.525 0.000
## Control 1.356 0.159 8.549 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .RPD01 1.134 0.117 9.697 0.000
## .RPD02 0.956 0.105 9.070 0.000
## .RPD03 1.381 0.143 9.629 0.000
## .RPD05 0.932 0.107 8.749 0.000
## .RPD07 1.162 0.125 9.304 0.000
## .RPD08 1.629 0.166 9.815 0.000
## .RPD09 1.053 0.117 8.980 0.000
## .RPD10 1.061 0.119 8.926 0.000
## .RRE02 0.612 0.067 9.179 0.000
## .RRE03 0.666 0.074 8.988 0.000
## .RRE04 0.467 0.054 8.651 0.000
## .RRE05 0.361 0.045 7.940 0.000
## .RRE06 0.898 0.098 9.119 0.000
## .RRE07 0.974 0.102 9.502 0.000
## .RMA02 1.720 0.174 9.901 0.000
## .RMA03 1.456 0.153 9.519 0.000
## .RMA04 0.839 0.097 8.681 0.000
## .RMA05 0.879 0.099 8.876 0.000
## .RMA07 0.874 0.097 9.009 0.000
## .RMA08 0.884 0.098 8.993 0.000
## .RMA09 1.105 0.116 9.490 0.000
## .RMA10 1.265 0.132 9.573 0.000
## .RCO02 0.999 0.109 9.187 0.000
## .RCO03 0.517 0.063 8.171 0.000
## .RCO05 0.385 0.047 8.145 0.000
## .RCO06 0.482 0.056 8.540 0.000
## .RCO07 0.495 0.058 8.582 0.000
## .Desapego 0.985 0.157 6.286 0.000
## .Relajacion 0.360 0.092 3.917 0.000
## .Maestria 1.309 0.218 5.994 0.000
## .Control 0.850 0.159 5.341 0.000
## recuperacion 0.974 0.203 4.795 0.000
lavaanPlot(fit_2, coef=TRUE, cov=TRUE)
Los dos modelos son bastante similares, y no se vio un incremento significativo en la calidad de los indices de ajuste de modelo. Por lo tanto, se puede decir con completa certeza que el modelo depurado es objetivamente mejor.
colSums(is.na(ER))
## ID GEN EXPER EDAD RPD01 RPD02 RPD03 RPD05 RPD06 RPD07 RPD08 RPD09 RPD10
## 0 0 0 0 0 0 0 0 0 0 0 0 0
## RRE02 RRE03 RRE04 RRE05 RRE06 RRE07 RRE10 RMA02 RMA03 RMA04 RMA05 RMA06 RMA07
## 0 0 0 0 0 0 0 0 0 0 0 0 0
## RMA08 RMA09 RMA10 RCO02 RCO03 RCO04 RCO05 RCO06 RCO07 EN01 EN02 EN04 EN05
## 0 0 0 0 0 0 0 0 0 0 0 0 0
## EN06 EN07 EN08 EVI01 EVI02 EVI03 EDE01 EDE02 EDE03 EAB01 EAB02 EAB03
## 0 0 0 0 0 0 0 0 0 0 0 0
sum(is.na(ER))
## [1] 0
modelo_Energia <- ' # Regresiones
# Variables latentes
Energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
# Varianzas y covarianzas
# Intercepto
'
fit_3 <- cfa(modelo_Energia, ER)
summary(fit_3)
## lavaan 0.6.17 ended normally after 32 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 14
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 47.222
## Degrees of freedom 14
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## Energia =~
## EN01 1.000
## EN02 1.029 0.044 23.192 0.000
## EN04 0.999 0.044 22.583 0.000
## EN05 0.999 0.042 23.649 0.000
## EN06 0.986 0.042 23.722 0.000
## EN07 1.049 0.046 22.856 0.000
## EN08 1.036 0.043 24.173 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .EN01 0.711 0.074 9.651 0.000
## .EN02 0.444 0.049 9.012 0.000
## .EN04 0.481 0.052 9.214 0.000
## .EN05 0.375 0.042 8.830 0.000
## .EN06 0.359 0.041 8.798 0.000
## .EN07 0.499 0.055 9.129 0.000
## .EN08 0.353 0.041 8.580 0.000
## Energia 2.801 0.327 8.565 0.000
lavaanPlot(fit_3, coef=TRUE, cov=TRUE)
Todas las variables tienen un P(>|z|) menor a 0.05, al igual que Std.Err y Estimate muy similares entre si, por lo que los indices muestran buenas señales
No se ocupa debido a lo anteriormente mencionado, no hay algún eslabón más debil que deba ser retirado.
colnames(ER)
## [1] "ID" "GEN" "EXPER" "EDAD" "RPD01" "RPD02" "RPD03" "RPD05" "RPD06"
## [10] "RPD07" "RPD08" "RPD09" "RPD10" "RRE02" "RRE03" "RRE04" "RRE05" "RRE06"
## [19] "RRE07" "RRE10" "RMA02" "RMA03" "RMA04" "RMA05" "RMA06" "RMA07" "RMA08"
## [28] "RMA09" "RMA10" "RCO02" "RCO03" "RCO04" "RCO05" "RCO06" "RCO07" "EN01"
## [37] "EN02" "EN04" "EN05" "EN06" "EN07" "EN08" "EVI01" "EVI02" "EVI03"
## [46] "EDE01" "EDE02" "EDE03" "EAB01" "EAB02" "EAB03"
modelo_Engagement <- ' # Regresiones
# Variables latentes 1
Desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
Relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
Maestria =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
Control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
recuperacion =~ Desapego + Relajacion + Maestria + Control
# Variables latentes 2
Energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
# Variables latentes 3
Vigor =~ EVI01 + EVI02 + EVI03
Dedicacion =~ EDE01 + EDE02 + EDE03
Absorcion =~ EAB01 + EAB02
engagement =~ Vigor + Dedicacion + Absorcion
# Varianzas y covarianzas
engagement ~~ Energia + recuperacion
# Intercepto
'
fit_4 <- sem(modelo_Engagement, ER)
summary(fit_4)
## lavaan 0.6.17 ended normally after 73 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 102
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 2395.225
## Degrees of freedom 979
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## Desapego =~
## RPD01 1.000
## RPD02 1.209 0.081 14.866 0.000
## RPD03 1.144 0.085 13.419 0.000
## RPD05 1.313 0.086 15.317 0.000
## RPD06 1.082 0.089 12.214 0.000
## RPD07 1.229 0.085 14.487 0.000
## RPD08 1.157 0.086 13.375 0.000
## RPD09 1.315 0.087 15.163 0.000
## RPD10 1.343 0.088 15.247 0.000
## Relajacion =~
## RRE02 1.000
## RRE03 1.120 0.065 17.295 0.000
## RRE04 1.021 0.058 17.626 0.000
## RRE05 1.051 0.056 18.687 0.000
## RRE06 1.246 0.074 16.924 0.000
## RRE07 1.121 0.071 15.837 0.000
## RRE10 0.814 0.067 12.134 0.000
## Maestria =~
## RMA02 1.000
## RMA03 1.152 0.096 12.041 0.000
## RMA04 1.178 0.089 13.265 0.000
## RMA05 1.141 0.087 13.057 0.000
## RMA06 0.648 0.075 8.625 0.000
## RMA07 1.104 0.085 13.062 0.000
## RMA08 1.110 0.085 13.001 0.000
## RMA09 1.030 0.084 12.257 0.000
## RMA10 1.056 0.088 12.047 0.000
## Control =~
## RCO02 1.000
## RCO03 0.945 0.049 19.172 0.000
## RCO04 0.794 0.044 18.100 0.000
## RCO05 0.814 0.043 18.926 0.000
## RCO06 0.837 0.045 18.409 0.000
## RCO07 0.836 0.046 18.206 0.000
## recuperacion =~
## Desapego 1.000
## Relajacion 1.070 0.121 8.838 0.000
## Maestria 0.900 0.129 6.959 0.000
## Control 1.424 0.157 9.063 0.000
## Energia =~
## EN01 1.000
## EN02 1.027 0.044 23.416 0.000
## EN04 0.998 0.044 22.870 0.000
## EN05 0.996 0.042 23.836 0.000
## EN06 0.983 0.041 23.857 0.000
## EN07 1.045 0.045 22.964 0.000
## EN08 1.033 0.042 24.399 0.000
## Vigor =~
## EVI01 1.000
## EVI02 0.985 0.028 35.255 0.000
## EVI03 0.996 0.048 20.570 0.000
## Dedicacion =~
## EDE01 1.000
## EDE02 0.905 0.034 26.515 0.000
## EDE03 0.567 0.037 15.447 0.000
## Absorcion =~
## EAB01 1.000
## EAB02 0.656 0.053 12.368 0.000
## engagement =~
## Vigor 1.000
## Dedicacion 1.216 0.061 20.023 0.000
## Absorcion 0.984 0.057 17.202 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## Energia ~~
## engagement 1.616 0.222 7.269 0.000
## recuperacion ~~
## engagement 0.893 0.152 5.888 0.000
## Energia 1.365 0.197 6.933 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .RPD01 1.168 0.119 9.781 0.000
## .RPD02 0.982 0.107 9.202 0.000
## .RPD03 1.434 0.147 9.729 0.000
## .RPD05 0.972 0.109 8.938 0.000
## .RPD06 1.837 0.184 9.980 0.000
## .RPD07 1.165 0.124 9.377 0.000
## .RPD08 1.486 0.153 9.740 0.000
## .RPD09 1.037 0.115 9.036 0.000
## .RPD10 1.046 0.116 8.984 0.000
## .RRE02 0.623 0.067 9.252 0.000
## .RRE03 0.647 0.072 8.976 0.000
## .RRE04 0.492 0.056 8.829 0.000
## .RRE05 0.384 0.047 8.202 0.000
## .RRE06 0.880 0.097 9.122 0.000
## .RRE07 0.930 0.098 9.460 0.000
## .RRE10 1.136 0.113 10.087 0.000
## .RMA02 1.741 0.175 9.935 0.000
## .RMA03 1.499 0.156 9.594 0.000
## .RMA04 0.857 0.098 8.785 0.000
## .RMA05 0.903 0.101 8.983 0.000
## .RMA06 1.626 0.158 10.280 0.000
## .RMA07 0.844 0.094 8.979 0.000
## .RMA08 0.882 0.098 9.031 0.000
## .RMA09 1.090 0.115 9.498 0.000
## .RMA10 1.257 0.131 9.592 0.000
## .RCO02 0.977 0.104 9.391 0.000
## .RCO03 0.493 0.058 8.475 0.000
## .RCO04 0.468 0.052 9.017 0.000
## .RCO05 0.393 0.046 8.621 0.000
## .RCO06 0.479 0.054 8.883 0.000
## .RCO07 0.505 0.056 8.972 0.000
## .EN01 0.696 0.072 9.660 0.000
## .EN02 0.443 0.049 9.063 0.000
## .EN04 0.473 0.051 9.236 0.000
## .EN05 0.378 0.042 8.907 0.000
## .EN06 0.366 0.041 8.899 0.000
## .EN07 0.507 0.055 9.209 0.000
## .EN08 0.353 0.041 8.658 0.000
## .EVI01 0.199 0.039 5.056 0.000
## .EVI02 0.224 0.040 5.637 0.000
## .EVI03 1.211 0.124 9.770 0.000
## .EDE01 0.352 0.064 5.529 0.000
## .EDE02 0.509 0.067 7.646 0.000
## .EDE03 0.874 0.088 9.945 0.000
## .EAB01 0.379 0.128 2.953 0.003
## .EAB02 1.149 0.121 9.491 0.000
## .Desapego 0.953 0.149 6.397 0.000
## .Relajacion 0.514 0.085 6.027 0.000
## .Maestria 1.191 0.200 5.956 0.000
## .Control 0.693 0.125 5.534 0.000
## recuperacion 0.972 0.199 4.892 0.000
## Energia 2.816 0.327 8.605 0.000
## .Vigor 0.536 0.084 6.413 0.000
## .Dedicacion 0.099 0.087 1.131 0.258
## .Absorcion 0.469 0.138 3.392 0.001
## engagement 2.300 0.284 8.099 0.000
lavaanPlot(fit_4, coef=TRUE, cov=TRUE)
Test statistic(mayor es mejor), evaluar estimate (ver cuales están más separados), std.err (menor es mejor), p-value(menor a 0.05)
Recuperación, Energía, y Engagement están relacionados de manera bidireccional, el par mayormente relacionado es Energía y Engagement (1.62), mientras que el par menormente relacionado es Recuperación y Engagement (0.89). Todos los grupos tienen relaciones fuerte con sus respectivas variables.
Ningún P(>|z|) es mayor a 0.05, Recuperación, Maestría y Desapego tienen los Std.Err más altos, Control tiene la mayor cantidad de variables con Estimates bajos.