Actividad 3. Aplicación de modelos de ecuaciones estructurales

Los ejercicios de esta actividad realizados en equipo fueron elaborados por Astrid Paola González Diaz, José Santiago González Padilla, y Ana Estefanía López Alanís.

Ejemplo “Estudio de Holzinger y Swineford (1939)”

Contexto

Los Modelos de Ecuaciones Estructurales (SEM) son una técnica de análisis de estadística multivariante que permite analizar patrones complejos de relaciones entre variables, realizar comparaciones entre intragrupos, y validar modelos teóricos y empíricos.

Holzinger y Swineford realizaron exámenes de habilidad mental a adolescentes de 7mo y 8vo grado de dos escuelas (Pasteur y Grand-White).

La base de datos está incluida como paquete en R, e incluye las siguientes columnas:

  • id: Identificador
  • sex: Género (1 = male, 2 = female)
  • ageyr: Edad (11 a 16)
  • x1: Percepción visual
  • x2: Juego con cubos
  • x3: Juego con pastillas
  • x4: Comprensión de párrafos
  • x5: Completar oraciones
  • x6: Significados de palabras
  • x7: Sumas aceleradas
  • x8: Conteo acelerado de puntos
  • x9: Discriminación acelerada de mayúsculas rectas y curvas

Se busca identificar las relaciones entre habilidades visuales (x1, x2, x3), textuales (x4, x5, x6) y velocidad de razonamiento (x7, x8, x9).

Tipos de fórmulas

  1. Regresión (~) Variable que depende de otras.
  2. Variables latentes (=~) No se observan, se infieren.
  3. Análisis de varianzas y covarianzas (~~) Relaciones entre variables latentes y observadas. (Varianza es entre si misma, covarianza entre otras)
  4. Intercepto (~1) Valor esperado cuando las demás variables son cero.

Importar y entender la base de datos

df1 <- HolzingerSwineford1939
#summary(df1)
#str(df1)

Estructura del modelo

modelo1 <- ' # Regresiones
            # Variables Latentes
            visual =~ x1 + x2 + x3
            textual =~ x4 + x5 + x6
            velocidad =~ x7 + x8 + x9
            # Varianzas y Covarianzas
            # Intercepto
            '

Análisis Factorial Confirmatorio (CFA)

fit1 <- cfa(modelo1, df1)
summary(fit1)
## lavaan 0.6.17 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                85.306
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.554    0.100    5.554    0.000
##     x3                0.729    0.109    6.685    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.113    0.065   17.014    0.000
##     x6                0.926    0.055   16.703    0.000
##   velocidad =~                                        
##     x7                1.000                           
##     x8                1.180    0.165    7.152    0.000
##     x9                1.082    0.151    7.155    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.408    0.074    5.552    0.000
##     velocidad         0.262    0.056    4.660    0.000
##   textual ~~                                          
##     velocidad         0.173    0.049    3.518    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .x1                0.549    0.114    4.833    0.000
##    .x2                1.134    0.102   11.146    0.000
##    .x3                0.844    0.091    9.317    0.000
##    .x4                0.371    0.048    7.779    0.000
##    .x5                0.446    0.058    7.642    0.000
##    .x6                0.356    0.043    8.277    0.000
##    .x7                0.799    0.081    9.823    0.000
##    .x8                0.488    0.074    6.573    0.000
##    .x9                0.566    0.071    8.003    0.000
##     visual            0.809    0.145    5.564    0.000
##     textual           0.979    0.112    8.737    0.000
##     velocidad         0.384    0.086    4.451    0.000
lavaanPlot(fit1, coef=TRUE, cov=TRUE)

Ejercicio “Democracia Política e Industrialización”

Contexto

La base de datos contiene distintas mediciones sobre la democracia política e industrialización en países en desarrollo durante 1960 y 1965.

La tabla incluye los siguientes datos:

  • y1: Calificaciones sobre la libertad de prensa.
  • y2: Libertad de la oposición política en 1960.
  • y3: Imparcialidad de elecciones en 1960.
  • y4: Eficacia de la legislatura electa en 1960.
  • y5: Calificaciones sobre la libertad de prensa en 1965.
  • y6: Libertad de la oposición política en 1965.
  • y7: Imparcialidad de elecciones en 1965.
  • y8: Eficacia de la legislatura electa en 1965.
  • x1: PIB per Capita 1960.
  • x2: Consumo de energía inanimada.
  • x3: Porcentaje de la fuerza laboral en la industria en 1960.

Se busca identificar las relaciones entre la democracia en 1960 (y1, y2, y3, y4), democracia en 1965 (y5, y6, y7, y8) y la industrialización (x1, x2, x3).

Importar y entender la base de datos

df2 <- PoliticalDemocracy

Estructura del modelo

modelo2 <- ' # Regresiones
            y8 ~ y1 + y2
            # Variables Latentes
            democracia60 =~ y1 + y2 + y3 + y4
            democracia65 =~ y5 + y6 + y7 + y8
            industrializacion60 =~ x1 + x2 + x3
            # Varianzas y Covarianzas
            # Intercepto
            '

Análisis Factorial Confirmatorio (CFA)

fit2 <- cfa(modelo2, df2)
summary(fit2)
## lavaan 0.6.17 ended normally after 51 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        27
## 
##   Number of observations                            75
## 
## Model Test User Model:
##                                                       
##   Test statistic                                70.505
##   Degrees of freedom                                39
##   P-value (Chi-square)                           0.001
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                          Estimate  Std.Err  z-value  P(>|z|)
##   democracia60 =~                                           
##     y1                      1.000                           
##     y2                      1.346    0.172    7.813    0.000
##     y3                      1.023    0.148    6.920    0.000
##     y4                      1.280    0.136    9.436    0.000
##   democracia65 =~                                           
##     y5                      1.000                           
##     y6                      1.289    0.167    7.735    0.000
##     y7                      1.289    0.161    8.010    0.000
##     y8                      1.717    0.343    5.012    0.000
##   industrializacion60 =~                                    
##     x1                      1.000                           
##     x2                      2.182    0.139   15.701    0.000
##     x3                      1.819    0.152   11.949    0.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   y8 ~                                                
##     y1               -0.247    0.192   -1.288    0.198
##     y2               -0.074    0.094   -0.779    0.436
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   democracia60 ~~                                     
##     democracia65      4.513    0.915    4.931    0.000
##     industrilzcn60    0.663    0.208    3.193    0.001
##   democracia65 ~~                                     
##     industrilzcn60    0.735    0.203    3.614    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .y1                1.856    0.390    4.755    0.000
##    .y2                6.445    1.189    5.419    0.000
##    .y3                5.458    0.953    5.728    0.000
##    .y4                2.989    0.618    4.837    0.000
##    .y5                2.483    0.452    5.495    0.000
##    .y6                4.161    0.756    5.501    0.000
##    .y7                3.593    0.666    5.393    0.000
##    .y8                2.477    0.633    3.916    0.000
##    .x1                0.082    0.020    4.174    0.000
##    .x2                0.118    0.070    1.673    0.094
##    .x3                0.468    0.090    5.173    0.000
##     democracia60      4.931    1.094    4.507    0.000
##     democracia65      4.251    1.042    4.082    0.000
##     industrilzcn60    0.448    0.087    5.168    0.000
lavaanPlot(fit2, coef=TRUE, cov=TRUE)

Actividad “Bienestar de los Colaboradores”

Contexto

Uno de los retos más importantes de las organizaciones es entender el estado y bienestar de los colaboradores, ya que puede impactar directamente en el desempeño y el logro de los objetivos.

Importar y entender la base de datos

df3 <- readxl::read_xlsx("Datos_SEM_Eng.xlsx")
#summary(df3)
#str(df3)

Parte 1. Experiencias de Recuperación

Estructura del modelo y análisis factorial confirmatorio

modelo3 <- ' # Regresiones
            # Variables Latentes
            desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
            relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
            dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10 
            control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
            recuperacion =~ desapego + relajacion + dominio + control
            # Varianzas y Covarianzas
            # Intercepto
            '

fit3 <- cfa(modelo3, df3)
summary(fit3)
## lavaan 0.6.17 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        66
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1221.031
##   Degrees of freedom                               430
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.206    0.082   14.780    0.000
##     RPD03             1.143    0.085   13.374    0.000
##     RPD05             1.312    0.086   15.244    0.000
##     RPD06             1.088    0.089   12.266    0.000
##     RPD07             1.229    0.085   14.440    0.000
##     RPD08             1.164    0.087   13.447    0.000
##     RPD09             1.317    0.087   15.153    0.000
##     RPD10             1.346    0.088   15.258    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.227    0.000
##     RRE04             1.025    0.058   17.713    0.000
##     RRE05             1.055    0.056   18.758    0.000
##     RRE06             1.245    0.074   16.869    0.000
##     RRE07             1.117    0.071   15.689    0.000
##     RRE10             0.815    0.067   12.120    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.155    0.096   12.079    0.000
##     RMA04             1.178    0.089   13.274    0.000
##     RMA05             1.141    0.087   13.072    0.000
##     RMA06             0.645    0.075    8.597    0.000
##     RMA07             1.103    0.084   13.061    0.000
##     RMA08             1.109    0.085   12.994    0.000
##     RMA09             1.028    0.084   12.246    0.000
##     RMA10             1.055    0.088   12.044    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.948    0.049   19.182    0.000
##     RCO04             0.796    0.044   18.110    0.000
##     RCO05             0.818    0.043   18.990    0.000
##     RCO06             0.834    0.046   18.216    0.000
##     RCO07             0.835    0.046   18.057    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.149    0.131    8.787    0.000
##     dominio           0.858    0.129    6.666    0.000
##     control           1.341    0.156    8.605    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.172    0.120    9.782    0.000
##    .RPD02             0.999    0.108    9.228    0.000
##    .RPD03             1.441    0.148    9.733    0.000
##    .RPD05             0.987    0.110    8.964    0.000
##    .RPD06             1.817    0.182    9.967    0.000
##    .RPD07             1.173    0.125    9.383    0.000
##    .RPD08             1.460    0.150    9.714    0.000
##    .RPD09             1.032    0.114    9.021    0.000
##    .RPD10             1.034    0.115    8.955    0.000
##    .RRE02             0.626    0.068    9.274    0.000
##    .RRE03             0.653    0.073    9.011    0.000
##    .RRE04             0.481    0.055    8.794    0.000
##    .RRE05             0.374    0.046    8.153    0.000
##    .RRE06             0.886    0.097    9.149    0.000
##    .RRE07             0.950    0.100    9.505    0.000
##    .RRE10             1.137    0.113   10.093    0.000
##    .RMA02             1.740    0.175    9.931    0.000
##    .RMA03             1.485    0.155    9.575    0.000
##    .RMA04             0.855    0.097    8.772    0.000
##    .RMA05             0.899    0.100    8.967    0.000
##    .RMA06             1.631    0.159   10.281    0.000
##    .RMA07             0.845    0.094    8.977    0.000
##    .RMA08             0.886    0.098    9.034    0.000
##    .RMA09             1.094    0.115    9.500    0.000
##    .RMA10             1.259    0.131    9.590    0.000
##    .RCO02             0.983    0.105    9.379    0.000
##    .RCO03             0.484    0.058    8.391    0.000
##    .RCO04             0.462    0.052    8.963    0.000
##    .RCO05             0.382    0.045    8.513    0.000
##    .RCO06             0.494    0.055    8.917    0.000
##    .RCO07             0.515    0.057    8.985    0.000
##    .desapego          0.943    0.152    6.207    0.000
##    .relajacion        0.333    0.089    3.757    0.000
##    .dominio           1.260    0.212    5.942    0.000
##    .control           0.900    0.159    5.666    0.000
##     recuperacion      0.978    0.202    4.833    0.000
lavaanPlot(fit3, coef=TRUE, cov=TRUE)

Estructura del modelo y análisis factorial confirmatorio depurado

modelo4 <- ' # Regresiones
            # Variables Latentes
            desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD07 + RPD08 + RPD09 + RPD10
            relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07
            dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA07 + RMA08 + RMA09 + RMA10 
            control =~ RCO02 + RCO03 + RCO05 + RCO06 + RCO07
            recuperacion =~ desapego + relajacion + dominio + control
            # Varianzas y Covarianzas
            # Intercepto
            '

fit4 <- cfa(modelo4, df3)
summary(fit4)
## lavaan 0.6.17 ended normally after 48 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        58
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                               886.791
##   Degrees of freedom                               320
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.204    0.079   15.158    0.000
##     RPD03             1.146    0.083   13.750    0.000
##     RPD05             1.310    0.084   15.663    0.000
##     RPD07             1.219    0.083   14.675    0.000
##     RPD08             1.114    0.086   13.004    0.000
##     RPD09             1.301    0.085   15.315    0.000
##     RPD10             1.328    0.086   15.404    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.111    0.064   17.245    0.000
##     RRE04             1.025    0.057   17.974    0.000
##     RRE05             1.054    0.055   19.046    0.000
##     RRE06             1.237    0.073   16.904    0.000
##     RRE07             1.105    0.071   15.618    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.155    0.095   12.223    0.000
##     RMA04             1.176    0.088   13.412    0.000
##     RMA05             1.140    0.086   13.220    0.000
##     RMA07             1.091    0.083   13.067    0.000
##     RMA08             1.103    0.084   13.087    0.000
##     RMA09             1.020    0.083   12.287    0.000
##     RMA10             1.049    0.087   12.097    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.944    0.051   18.648    0.000
##     RCO05             0.820    0.044   18.683    0.000
##     RCO06             0.840    0.046   18.083    0.000
##     RCO07             0.842    0.047   18.010    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.145    0.132    8.696    0.000
##     dominio           0.843    0.129    6.525    0.000
##     control           1.356    0.159    8.549    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.134    0.117    9.697    0.000
##    .RPD02             0.956    0.105    9.070    0.000
##    .RPD03             1.381    0.143    9.629    0.000
##    .RPD05             0.932    0.107    8.749    0.000
##    .RPD07             1.162    0.125    9.304    0.000
##    .RPD08             1.629    0.166    9.815    0.000
##    .RPD09             1.053    0.117    8.980    0.000
##    .RPD10             1.061    0.119    8.926    0.000
##    .RRE02             0.612    0.067    9.179    0.000
##    .RRE03             0.666    0.074    8.988    0.000
##    .RRE04             0.467    0.054    8.651    0.000
##    .RRE05             0.361    0.045    7.940    0.000
##    .RRE06             0.898    0.098    9.119    0.000
##    .RRE07             0.974    0.102    9.502    0.000
##    .RMA02             1.720    0.174    9.901    0.000
##    .RMA03             1.456    0.153    9.519    0.000
##    .RMA04             0.839    0.097    8.681    0.000
##    .RMA05             0.879    0.099    8.876    0.000
##    .RMA07             0.874    0.097    9.009    0.000
##    .RMA08             0.884    0.098    8.993    0.000
##    .RMA09             1.105    0.116    9.490    0.000
##    .RMA10             1.265    0.132    9.573    0.000
##    .RCO02             0.999    0.109    9.187    0.000
##    .RCO03             0.517    0.063    8.171    0.000
##    .RCO05             0.385    0.047    8.145    0.000
##    .RCO06             0.482    0.056    8.540    0.000
##    .RCO07             0.495    0.058    8.582    0.000
##    .desapego          0.985    0.157    6.286    0.000
##    .relajacion        0.360    0.092    3.917    0.000
##    .dominio           1.309    0.218    5.994    0.000
##    .control           0.850    0.159    5.341    0.000
##     recuperacion      0.974    0.203    4.795    0.000
lavaanPlot(fit4, coef=TRUE, cov=TRUE)

Parte 2. Energía Recuperada

Estructura del modelo

modelo5 <- ' # Regresiones
            # Variables Latentes
            energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
            # Varianzas y Covarianzas
            # Intercepto
            '

Análisis Factorial Confirmatorio

fit5 <- cfa(modelo5, df3)
summary(fit5)
## lavaan 0.6.17 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.222
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.029    0.044   23.192    0.000
##     EN04              0.999    0.044   22.583    0.000
##     EN05              0.999    0.042   23.649    0.000
##     EN06              0.986    0.042   23.722    0.000
##     EN07              1.049    0.046   22.856    0.000
##     EN08              1.036    0.043   24.173    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .EN01              0.711    0.074    9.651    0.000
##    .EN02              0.444    0.049    9.012    0.000
##    .EN04              0.481    0.052    9.214    0.000
##    .EN05              0.375    0.042    8.830    0.000
##    .EN06              0.359    0.041    8.798    0.000
##    .EN07              0.499    0.055    9.129    0.000
##    .EN08              0.353    0.041    8.580    0.000
##     energia           2.801    0.327    8.565    0.000
lavaanPlot(fit5, coef=TRUE, cov=TRUE)

Después de evaluar los valores estimativos, los errores estándar y el p-value, determinamos innecesario depurar el modelo.

Parte 3. Engagement Laboral

Estructura del modelo

modelo6 <- ' # Regresiones
            # Variables Latentes 1
            desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
            relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
            dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10 
            control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
            recuperacion =~ desapego + relajacion + dominio + control
            
            # Variables Latentes 2
            energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
            
            # Variables Latentes 3
            vigor =~ EVI01 + EVI02 + EVI03
            dedicacion =~ EDE01 + EDE02 + EDE03
            absorcion =~ EAB01 + EAB02
            engagement =~ vigor + dedicacion + absorcion
            
            # Varianzas y Covarianzas
            engagement ~~ energia + recuperacion
            # Intercepto
            '

Análisis de Senderos

fit6 <- sem(modelo6, df3)
summary(fit6)
## lavaan 0.6.17 ended normally after 73 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       102
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              2395.225
##   Degrees of freedom                               979
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.209    0.081   14.866    0.000
##     RPD03             1.144    0.085   13.419    0.000
##     RPD05             1.313    0.086   15.317    0.000
##     RPD06             1.082    0.089   12.214    0.000
##     RPD07             1.229    0.085   14.487    0.000
##     RPD08             1.157    0.086   13.375    0.000
##     RPD09             1.315    0.087   15.163    0.000
##     RPD10             1.343    0.088   15.247    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.295    0.000
##     RRE04             1.021    0.058   17.626    0.000
##     RRE05             1.051    0.056   18.687    0.000
##     RRE06             1.246    0.074   16.924    0.000
##     RRE07             1.121    0.071   15.837    0.000
##     RRE10             0.814    0.067   12.134    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.152    0.096   12.041    0.000
##     RMA04             1.178    0.089   13.265    0.000
##     RMA05             1.141    0.087   13.057    0.000
##     RMA06             0.648    0.075    8.625    0.000
##     RMA07             1.104    0.085   13.062    0.000
##     RMA08             1.110    0.085   13.001    0.000
##     RMA09             1.030    0.084   12.257    0.000
##     RMA10             1.056    0.088   12.047    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.945    0.049   19.172    0.000
##     RCO04             0.794    0.044   18.100    0.000
##     RCO05             0.814    0.043   18.926    0.000
##     RCO06             0.837    0.045   18.409    0.000
##     RCO07             0.836    0.046   18.206    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.070    0.121    8.838    0.000
##     dominio           0.900    0.129    6.959    0.000
##     control           1.424    0.157    9.063    0.000
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.027    0.044   23.416    0.000
##     EN04              0.998    0.044   22.870    0.000
##     EN05              0.996    0.042   23.836    0.000
##     EN06              0.983    0.041   23.857    0.000
##     EN07              1.045    0.045   22.964    0.000
##     EN08              1.033    0.042   24.399    0.000
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.985    0.028   35.255    0.000
##     EVI03             0.996    0.048   20.570    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.905    0.034   26.515    0.000
##     EDE03             0.567    0.037   15.447    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.656    0.053   12.368    0.000
##   engagement =~                                       
##     vigor             1.000                           
##     dedicacion        1.216    0.061   20.023    0.000
##     absorcion         0.984    0.057   17.202    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia ~~                                          
##     engagement        1.616    0.222    7.269    0.000
##   recuperacion ~~                                     
##     engagement        0.893    0.152    5.888    0.000
##     energia           1.365    0.197    6.933    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.168    0.119    9.781    0.000
##    .RPD02             0.982    0.107    9.202    0.000
##    .RPD03             1.434    0.147    9.729    0.000
##    .RPD05             0.972    0.109    8.938    0.000
##    .RPD06             1.837    0.184    9.980    0.000
##    .RPD07             1.165    0.124    9.377    0.000
##    .RPD08             1.486    0.153    9.740    0.000
##    .RPD09             1.037    0.115    9.036    0.000
##    .RPD10             1.046    0.116    8.984    0.000
##    .RRE02             0.623    0.067    9.252    0.000
##    .RRE03             0.647    0.072    8.976    0.000
##    .RRE04             0.492    0.056    8.829    0.000
##    .RRE05             0.384    0.047    8.202    0.000
##    .RRE06             0.880    0.097    9.122    0.000
##    .RRE07             0.930    0.098    9.460    0.000
##    .RRE10             1.136    0.113   10.087    0.000
##    .RMA02             1.741    0.175    9.935    0.000
##    .RMA03             1.499    0.156    9.594    0.000
##    .RMA04             0.857    0.098    8.785    0.000
##    .RMA05             0.903    0.101    8.983    0.000
##    .RMA06             1.626    0.158   10.280    0.000
##    .RMA07             0.844    0.094    8.979    0.000
##    .RMA08             0.882    0.098    9.031    0.000
##    .RMA09             1.090    0.115    9.498    0.000
##    .RMA10             1.257    0.131    9.592    0.000
##    .RCO02             0.977    0.104    9.391    0.000
##    .RCO03             0.493    0.058    8.475    0.000
##    .RCO04             0.468    0.052    9.017    0.000
##    .RCO05             0.393    0.046    8.621    0.000
##    .RCO06             0.479    0.054    8.883    0.000
##    .RCO07             0.505    0.056    8.972    0.000
##    .EN01              0.696    0.072    9.660    0.000
##    .EN02              0.443    0.049    9.063    0.000
##    .EN04              0.473    0.051    9.236    0.000
##    .EN05              0.378    0.042    8.907    0.000
##    .EN06              0.366    0.041    8.899    0.000
##    .EN07              0.507    0.055    9.209    0.000
##    .EN08              0.353    0.041    8.658    0.000
##    .EVI01             0.199    0.039    5.056    0.000
##    .EVI02             0.224    0.040    5.637    0.000
##    .EVI03             1.211    0.124    9.770    0.000
##    .EDE01             0.352    0.064    5.529    0.000
##    .EDE02             0.509    0.067    7.646    0.000
##    .EDE03             0.874    0.088    9.945    0.000
##    .EAB01             0.379    0.128    2.953    0.003
##    .EAB02             1.149    0.121    9.491    0.000
##    .desapego          0.953    0.149    6.397    0.000
##    .relajacion        0.514    0.085    6.027    0.000
##    .dominio           1.191    0.200    5.956    0.000
##    .control           0.693    0.125    5.534    0.000
##     recuperacion      0.972    0.199    4.892    0.000
##     energia           2.816    0.327    8.605    0.000
##    .vigor             0.536    0.084    6.413    0.000
##    .dedicacion        0.099    0.087    1.131    0.258
##    .absorcion         0.469    0.138    3.392    0.001
##     engagement        2.300    0.284    8.099    0.000
lavaanPlot(fit6, coef=TRUE, cov=TRUE)
LS0tDQp0aXRsZTogIkFjdGl2aWRhZCAzLiBBcGxpY2FjacOzbiBkZSBtb2RlbG9zIGRlIGVjdWFjaW9uZXMgZXN0cnVjdHVyYWxlcyINCmF1dGhvcjogIkFuYSBFc3RlZmFuw61hIEzDs3BleiBBbGFuw61zIg0KZGF0ZTogIjIwMjQtMDItMTYiDQpvdXRwdXQ6IA0KICBybWRmb3JtYXRzOjpyZWFkdGhlZG93bjoNCiAgICB0b2NfZGVwdGg6IDMNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQotLS0NCg0KYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9DQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUsIHdhcm5pbmcgPSBGQUxTRSkNCmBgYA0KDQpgYGB7ciwgaW5jbHVkZT1GQUxTRX0NCmxpYnJhcnkobGF2YWFuKSAjYW7DoWxpc2lzIGRlIHZhcmlhYmxlcyBsYXRlbnRlcyAodmFyaWFibGVzIHF1ZSBubyBzZSBvYnNlcnZhbiwgc2UgaW5maWVyZW4pDQpsaWJyYXJ5KGxhdmFhblBsb3QpDQpgYGANCg0KKkxvcyBlamVyY2ljaW9zIGRlIGVzdGEgYWN0aXZpZGFkIHJlYWxpemFkb3MgZW4gZXF1aXBvIGZ1ZXJvbiBlbGFib3JhZG9zIHBvciBBc3RyaWQgUGFvbGEgR29uesOhbGV6IERpYXosIEpvc8OpIFNhbnRpYWdvIEdvbnrDoWxleiBQYWRpbGxhLCB5IEFuYSBFc3RlZmFuw61hIEzDs3BleiBBbGFuw61zLioNCg0KIyMgRWplbXBsbyAiRXN0dWRpbyBkZSBIb2x6aW5nZXIgeSBTd2luZWZvcmQgKDE5MzkpIg0KDQohW10oalZvLmdpZil7d2lkdGg9IjI2MyJ9ICANCg0KIyMjIENvbnRleHRvDQoNCkxvcyAqKk1vZGVsb3MgZGUgRWN1YWNpb25lcyBFc3RydWN0dXJhbGVzIChTRU0pKiogc29uIHVuYSB0w6ljbmljYSBkZSBhbsOhbGlzaXMgZGUgZXN0YWTDrXN0aWNhIG11bHRpdmFyaWFudGUgcXVlIHBlcm1pdGUgYW5hbGl6YXIgcGF0cm9uZXMgY29tcGxlam9zIGRlIHJlbGFjaW9uZXMgZW50cmUgdmFyaWFibGVzLCByZWFsaXphciBjb21wYXJhY2lvbmVzIGVudHJlIGludHJhZ3J1cG9zLCB5IHZhbGlkYXIgbW9kZWxvcyB0ZcOzcmljb3MgeSBlbXDDrXJpY29zLg0KDQpIb2x6aW5nZXIgeSBTd2luZWZvcmQgcmVhbGl6YXJvbiBleMOhbWVuZXMgZGUgaGFiaWxpZGFkIG1lbnRhbCBhIGFkb2xlc2NlbnRlcyBkZSA3bW8geSA4dm8gZ3JhZG8gZGUgZG9zIGVzY3VlbGFzIChQYXN0ZXVyIHkgR3JhbmQtV2hpdGUpLg0KDQpMYSBiYXNlIGRlIGRhdG9zIGVzdMOhIGluY2x1aWRhIGNvbW8gcGFxdWV0ZSBlbiBSLCBlIGluY2x1eWUgbGFzIHNpZ3VpZW50ZXMgY29sdW1uYXM6DQoNCi0gICBpZDogSWRlbnRpZmljYWRvcg0KLSAgIHNleDogR8OpbmVybyAoMSA9IG1hbGUsIDIgPSBmZW1hbGUpDQotICAgYWdleXI6IEVkYWQgKDExIGEgMTYpDQotICAgeDE6IFBlcmNlcGNpw7NuIHZpc3VhbA0KLSAgIHgyOiBKdWVnbyBjb24gY3Vib3MNCi0gICB4MzogSnVlZ28gY29uIHBhc3RpbGxhcw0KLSAgIHg0OiBDb21wcmVuc2nDs24gZGUgcMOhcnJhZm9zDQotICAgeDU6IENvbXBsZXRhciBvcmFjaW9uZXMNCi0gICB4NjogU2lnbmlmaWNhZG9zIGRlIHBhbGFicmFzDQotICAgeDc6IFN1bWFzIGFjZWxlcmFkYXMNCi0gICB4ODogQ29udGVvIGFjZWxlcmFkbyBkZSBwdW50b3MNCi0gICB4OTogRGlzY3JpbWluYWNpw7NuIGFjZWxlcmFkYSBkZSBtYXnDunNjdWxhcyByZWN0YXMgeSBjdXJ2YXMNCg0KU2UgYnVzY2EgaWRlbnRpZmljYXIgbGFzIHJlbGFjaW9uZXMgZW50cmUgaGFiaWxpZGFkZXMgdmlzdWFsZXMgKHgxLCB4MiwgeDMpLCB0ZXh0dWFsZXMgKHg0LCB4NSwgeDYpIHkgdmVsb2NpZGFkIGRlIHJhem9uYW1pZW50byAoeDcsIHg4LCB4OSkuDQoNCiMjIyBUaXBvcyBkZSBmw7NybXVsYXMNCg0KMS4gIFJlZ3Jlc2nDs24gKFx+KSBWYXJpYWJsZSBxdWUgZGVwZW5kZSBkZSBvdHJhcy4NCjIuICBWYXJpYWJsZXMgbGF0ZW50ZXMgKD1cfikgTm8gc2Ugb2JzZXJ2YW4sIHNlIGluZmllcmVuLg0KMy4gIEFuw6FsaXNpcyBkZSB2YXJpYW56YXMgeSBjb3ZhcmlhbnphcyAoXH5cfikgUmVsYWNpb25lcyBlbnRyZSB2YXJpYWJsZXMgbGF0ZW50ZXMgeSBvYnNlcnZhZGFzLiAoVmFyaWFuemEgZXMgZW50cmUgc2kgbWlzbWEsIGNvdmFyaWFuemEgZW50cmUgb3RyYXMpDQo0LiAgSW50ZXJjZXB0byAoXH4xKSBWYWxvciBlc3BlcmFkbyBjdWFuZG8gbGFzIGRlbcOhcyB2YXJpYWJsZXMgc29uIGNlcm8uICANCg0KDQojIyMgSW1wb3J0YXIgeSBlbnRlbmRlciBsYSBiYXNlIGRlIGRhdG9zDQoNCmBgYHtyfQ0KZGYxIDwtIEhvbHppbmdlclN3aW5lZm9yZDE5MzkNCiNzdW1tYXJ5KGRmMSkNCiNzdHIoZGYxKQ0KYGBgDQoNCiMjIyBFc3RydWN0dXJhIGRlbCBtb2RlbG8NCg0KYGBge3J9DQptb2RlbG8xIDwtICcgIyBSZWdyZXNpb25lcw0KICAgICAgICAgICAgIyBWYXJpYWJsZXMgTGF0ZW50ZXMNCiAgICAgICAgICAgIHZpc3VhbCA9fiB4MSArIHgyICsgeDMNCiAgICAgICAgICAgIHRleHR1YWwgPX4geDQgKyB4NSArIHg2DQogICAgICAgICAgICB2ZWxvY2lkYWQgPX4geDcgKyB4OCArIHg5DQogICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemFzDQogICAgICAgICAgICAjIEludGVyY2VwdG8NCiAgICAgICAgICAgICcNCmBgYA0KDQojIyMgQW7DoWxpc2lzIEZhY3RvcmlhbCBDb25maXJtYXRvcmlvIChDRkEpDQoNCmBgYHtyfQ0KZml0MSA8LSBjZmEobW9kZWxvMSwgZGYxKQ0Kc3VtbWFyeShmaXQxKQ0KbGF2YWFuUGxvdChmaXQxLCBjb2VmPVRSVUUsIGNvdj1UUlVFKQ0KYGBgDQogIA0KICANCiMjIEVqZXJjaWNpbyAiRGVtb2NyYWNpYSBQb2zDrXRpY2EgZSBJbmR1c3RyaWFsaXphY2nDs24iDQoNCiFbXSh6b3JpZ2RlbW9jcmFjeS5naWYpICANCg0KIyMjIENvbnRleHRvDQoNCkxhIGJhc2UgZGUgZGF0b3MgY29udGllbmUgZGlzdGludGFzIG1lZGljaW9uZXMgc29icmUgbGEgZGVtb2NyYWNpYSBwb2zDrXRpY2EgZSBpbmR1c3RyaWFsaXphY2nDs24gZW4gcGHDrXNlcyBlbiBkZXNhcnJvbGxvIGR1cmFudGUgMTk2MCB5IDE5NjUuDQoNCkxhIHRhYmxhIGluY2x1eWUgbG9zIHNpZ3VpZW50ZXMgZGF0b3M6DQoNCi0gICB5MTogQ2FsaWZpY2FjaW9uZXMgc29icmUgbGEgbGliZXJ0YWQgZGUgcHJlbnNhLg0KLSAgIHkyOiBMaWJlcnRhZCBkZSBsYSBvcG9zaWNpw7NuIHBvbMOtdGljYSBlbiAxOTYwLg0KLSAgIHkzOiBJbXBhcmNpYWxpZGFkIGRlIGVsZWNjaW9uZXMgZW4gMTk2MC4NCi0gICB5NDogRWZpY2FjaWEgZGUgbGEgbGVnaXNsYXR1cmEgZWxlY3RhIGVuIDE5NjAuDQotICAgeTU6IENhbGlmaWNhY2lvbmVzIHNvYnJlIGxhIGxpYmVydGFkIGRlIHByZW5zYSBlbiAxOTY1Lg0KLSAgIHk2OiBMaWJlcnRhZCBkZSBsYSBvcG9zaWNpw7NuIHBvbMOtdGljYSBlbiAxOTY1Lg0KLSAgIHk3OiBJbXBhcmNpYWxpZGFkIGRlIGVsZWNjaW9uZXMgZW4gMTk2NS4NCi0gICB5ODogRWZpY2FjaWEgZGUgbGEgbGVnaXNsYXR1cmEgZWxlY3RhIGVuIDE5NjUuDQotICAgeDE6IFBJQiBwZXIgQ2FwaXRhIDE5NjAuDQotICAgeDI6IENvbnN1bW8gZGUgZW5lcmfDrWEgaW5hbmltYWRhLg0KLSAgIHgzOiBQb3JjZW50YWplIGRlIGxhIGZ1ZXJ6YSBsYWJvcmFsIGVuIGxhIGluZHVzdHJpYSBlbiAxOTYwLg0KDQpTZSBidXNjYSBpZGVudGlmaWNhciBsYXMgcmVsYWNpb25lcyBlbnRyZSBsYSBkZW1vY3JhY2lhIGVuIDE5NjAgKHkxLCB5MiwgeTMsIHk0KSwgZGVtb2NyYWNpYSBlbiAxOTY1ICh5NSwgeTYsIHk3LCB5OCkgeSBsYSBpbmR1c3RyaWFsaXphY2nDs24gKHgxLCB4MiwgeDMpLiAgDQoNCiMjIyBJbXBvcnRhciB5IGVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3MNCg0KYGBge3J9DQpkZjIgPC0gUG9saXRpY2FsRGVtb2NyYWN5DQpgYGANCg0KIyMjIEVzdHJ1Y3R1cmEgZGVsIG1vZGVsbw0KDQpgYGB7cn0NCm1vZGVsbzIgPC0gJyAjIFJlZ3Jlc2lvbmVzDQogICAgICAgICAgICB5OCB+IHkxICsgeTINCiAgICAgICAgICAgICMgVmFyaWFibGVzIExhdGVudGVzDQogICAgICAgICAgICBkZW1vY3JhY2lhNjAgPX4geTEgKyB5MiArIHkzICsgeTQNCiAgICAgICAgICAgIGRlbW9jcmFjaWE2NSA9fiB5NSArIHk2ICsgeTcgKyB5OA0KICAgICAgICAgICAgaW5kdXN0cmlhbGl6YWNpb242MCA9fiB4MSArIHgyICsgeDMNCiAgICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YXMNCiAgICAgICAgICAgICMgSW50ZXJjZXB0bw0KICAgICAgICAgICAgJw0KYGBgDQoNCiMjIyBBbsOhbGlzaXMgRmFjdG9yaWFsIENvbmZpcm1hdG9yaW8gKENGQSkNCg0KYGBge3J9DQpmaXQyIDwtIGNmYShtb2RlbG8yLCBkZjIpDQpzdW1tYXJ5KGZpdDIpDQpsYXZhYW5QbG90KGZpdDIsIGNvZWY9VFJVRSwgY292PVRSVUUpDQpgYGANCiAgDQogIA0KIyMgQWN0aXZpZGFkICJCaWVuZXN0YXIgZGUgbG9zIENvbGFib3JhZG9yZXMiDQoNCiFbXShkMWRmZS1pbGx1c3RyYXRpb25kZW1vbnN0cmF0aW5naW5kaXZpZHVhbHNhY2Nlc3NpbmdwZXJzb25hbGl6ZWRtZW50YWxoZWFsdGhjYXJlLmdpZil7d2lkdGg9IjMzNCJ9ICANCg0KDQojIyMgQ29udGV4dG8NCg0KVW5vIGRlIGxvcyByZXRvcyBtw6FzIGltcG9ydGFudGVzIGRlIGxhcyBvcmdhbml6YWNpb25lcyBlcyBlbnRlbmRlciBlbCBlc3RhZG8geSBiaWVuZXN0YXIgZGUgbG9zIGNvbGFib3JhZG9yZXMsIHlhIHF1ZSBwdWVkZSBpbXBhY3RhciBkaXJlY3RhbWVudGUgZW4gZWwgZGVzZW1wZcOxbyB5IGVsIGxvZ3JvIGRlIGxvcyBvYmpldGl2b3MuICANCg0KIyMjIEltcG9ydGFyIHkgZW50ZW5kZXIgbGEgYmFzZSBkZSBkYXRvcw0KDQpgYGB7cn0NCmRmMyA8LSByZWFkeGw6OnJlYWRfeGxzeCgiRGF0b3NfU0VNX0VuZy54bHN4IikNCiNzdW1tYXJ5KGRmMykNCiNzdHIoZGYzKQ0KYGBgDQoNCiMjIyBQYXJ0ZSAxLiBFeHBlcmllbmNpYXMgZGUgUmVjdXBlcmFjacOzbg0KDQojIyMjICpFc3RydWN0dXJhIGRlbCBtb2RlbG8geSBhbsOhbGlzaXMgZmFjdG9yaWFsIGNvbmZpcm1hdG9yaW8qDQoNCmBgYHtyfQ0KbW9kZWxvMyA8LSAnICMgUmVncmVzaW9uZXMNCiAgICAgICAgICAgICMgVmFyaWFibGVzIExhdGVudGVzDQogICAgICAgICAgICBkZXNhcGVnbyA9fiBSUEQwMSArIFJQRDAyICsgUlBEMDMgKyBSUEQwNSArIFJQRDA2ICsgUlBEMDcgKyBSUEQwOCArIFJQRDA5ICsgUlBEMTANCiAgICAgICAgICAgIHJlbGFqYWNpb24gPX4gUlJFMDIgKyBSUkUwMyArIFJSRTA0ICsgUlJFMDUgKyBSUkUwNiArIFJSRTA3ICsgUlJFMTANCiAgICAgICAgICAgIGRvbWluaW8gPX4gUk1BMDIgKyBSTUEwMyArIFJNQTA0ICsgUk1BMDUgKyBSTUEwNiArIFJNQTA3ICsgUk1BMDggKyBSTUEwOSArIFJNQTEwIA0KICAgICAgICAgICAgY29udHJvbCA9fiBSQ08wMiArIFJDTzAzICsgUkNPMDQgKyBSQ08wNSArIFJDTzA2ICsgUkNPMDcNCiAgICAgICAgICAgIHJlY3VwZXJhY2lvbiA9fiBkZXNhcGVnbyArIHJlbGFqYWNpb24gKyBkb21pbmlvICsgY29udHJvbA0KICAgICAgICAgICAgIyBWYXJpYW56YXMgeSBDb3Zhcmlhbnphcw0KICAgICAgICAgICAgIyBJbnRlcmNlcHRvDQogICAgICAgICAgICAnDQoNCmZpdDMgPC0gY2ZhKG1vZGVsbzMsIGRmMykNCnN1bW1hcnkoZml0MykNCmxhdmFhblBsb3QoZml0MywgY29lZj1UUlVFLCBjb3Y9VFJVRSkNCmBgYA0KDQojIyMjICpFc3RydWN0dXJhIGRlbCBtb2RlbG8geSBhbsOhbGlzaXMgZmFjdG9yaWFsIGNvbmZpcm1hdG9yaW8gZGVwdXJhZG8qDQoNCmBgYHtyfQ0KbW9kZWxvNCA8LSAnICMgUmVncmVzaW9uZXMNCiAgICAgICAgICAgICMgVmFyaWFibGVzIExhdGVudGVzDQogICAgICAgICAgICBkZXNhcGVnbyA9fiBSUEQwMSArIFJQRDAyICsgUlBEMDMgKyBSUEQwNSArIFJQRDA3ICsgUlBEMDggKyBSUEQwOSArIFJQRDEwDQogICAgICAgICAgICByZWxhamFjaW9uID1+IFJSRTAyICsgUlJFMDMgKyBSUkUwNCArIFJSRTA1ICsgUlJFMDYgKyBSUkUwNw0KICAgICAgICAgICAgZG9taW5pbyA9fiBSTUEwMiArIFJNQTAzICsgUk1BMDQgKyBSTUEwNSArIFJNQTA3ICsgUk1BMDggKyBSTUEwOSArIFJNQTEwIA0KICAgICAgICAgICAgY29udHJvbCA9fiBSQ08wMiArIFJDTzAzICsgUkNPMDUgKyBSQ08wNiArIFJDTzA3DQogICAgICAgICAgICByZWN1cGVyYWNpb24gPX4gZGVzYXBlZ28gKyByZWxhamFjaW9uICsgZG9taW5pbyArIGNvbnRyb2wNCiAgICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YXMNCiAgICAgICAgICAgICMgSW50ZXJjZXB0bw0KICAgICAgICAgICAgJw0KDQpmaXQ0IDwtIGNmYShtb2RlbG80LCBkZjMpDQpzdW1tYXJ5KGZpdDQpDQpsYXZhYW5QbG90KGZpdDQsIGNvZWY9VFJVRSwgY292PVRSVUUpDQpgYGANCiAgDQogIA0KIyMjIFBhcnRlIDIuIEVuZXJnw61hIFJlY3VwZXJhZGENCg0KIyMjIyAqRXN0cnVjdHVyYSBkZWwgbW9kZWxvKg0KDQpgYGB7cn0NCm1vZGVsbzUgPC0gJyAjIFJlZ3Jlc2lvbmVzDQogICAgICAgICAgICAjIFZhcmlhYmxlcyBMYXRlbnRlcw0KICAgICAgICAgICAgZW5lcmdpYSA9fiBFTjAxICsgRU4wMiArIEVOMDQgKyBFTjA1ICsgRU4wNiArIEVOMDcgKyBFTjA4DQogICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemFzDQogICAgICAgICAgICAjIEludGVyY2VwdG8NCiAgICAgICAgICAgICcNCmBgYA0KDQojIyMjICpBbsOhbGlzaXMgRmFjdG9yaWFsIENvbmZpcm1hdG9yaW8qDQoNCmBgYHtyfQ0KZml0NSA8LSBjZmEobW9kZWxvNSwgZGYzKQ0Kc3VtbWFyeShmaXQ1KQ0KbGF2YWFuUGxvdChmaXQ1LCBjb2VmPVRSVUUsIGNvdj1UUlVFKQ0KYGBgDQoNCkRlc3B1w6lzIGRlIGV2YWx1YXIgbG9zIHZhbG9yZXMgZXN0aW1hdGl2b3MsIGxvcyBlcnJvcmVzIGVzdMOhbmRhciB5IGVsIHAtdmFsdWUsIGRldGVybWluYW1vcyBpbm5lY2VzYXJpbyBkZXB1cmFyIGVsIG1vZGVsby4gIA0KDQoNCiMjIyBQYXJ0ZSAzLiAqRW5nYWdlbWVudCogTGFib3JhbA0KDQojIyMjICpFc3RydWN0dXJhIGRlbCBtb2RlbG8qDQoNCmBgYHtyfQ0KbW9kZWxvNiA8LSAnICMgUmVncmVzaW9uZXMNCiAgICAgICAgICAgICMgVmFyaWFibGVzIExhdGVudGVzIDENCiAgICAgICAgICAgIGRlc2FwZWdvID1+IFJQRDAxICsgUlBEMDIgKyBSUEQwMyArIFJQRDA1ICsgUlBEMDYgKyBSUEQwNyArIFJQRDA4ICsgUlBEMDkgKyBSUEQxMA0KICAgICAgICAgICAgcmVsYWphY2lvbiA9fiBSUkUwMiArIFJSRTAzICsgUlJFMDQgKyBSUkUwNSArIFJSRTA2ICsgUlJFMDcgKyBSUkUxMA0KICAgICAgICAgICAgZG9taW5pbyA9fiBSTUEwMiArIFJNQTAzICsgUk1BMDQgKyBSTUEwNSArIFJNQTA2ICsgUk1BMDcgKyBSTUEwOCArIFJNQTA5ICsgUk1BMTAgDQogICAgICAgICAgICBjb250cm9sID1+IFJDTzAyICsgUkNPMDMgKyBSQ08wNCArIFJDTzA1ICsgUkNPMDYgKyBSQ08wNw0KICAgICAgICAgICAgcmVjdXBlcmFjaW9uID1+IGRlc2FwZWdvICsgcmVsYWphY2lvbiArIGRvbWluaW8gKyBjb250cm9sDQogICAgICAgICAgICANCiAgICAgICAgICAgICMgVmFyaWFibGVzIExhdGVudGVzIDINCiAgICAgICAgICAgIGVuZXJnaWEgPX4gRU4wMSArIEVOMDIgKyBFTjA0ICsgRU4wNSArIEVOMDYgKyBFTjA3ICsgRU4wOA0KICAgICAgICAgICAgDQogICAgICAgICAgICAjIFZhcmlhYmxlcyBMYXRlbnRlcyAzDQogICAgICAgICAgICB2aWdvciA9fiBFVkkwMSArIEVWSTAyICsgRVZJMDMNCiAgICAgICAgICAgIGRlZGljYWNpb24gPX4gRURFMDEgKyBFREUwMiArIEVERTAzDQogICAgICAgICAgICBhYnNvcmNpb24gPX4gRUFCMDEgKyBFQUIwMg0KICAgICAgICAgICAgZW5nYWdlbWVudCA9fiB2aWdvciArIGRlZGljYWNpb24gKyBhYnNvcmNpb24NCiAgICAgICAgICAgIA0KICAgICAgICAgICAgIyBWYXJpYW56YXMgeSBDb3Zhcmlhbnphcw0KICAgICAgICAgICAgZW5nYWdlbWVudCB+fiBlbmVyZ2lhICsgcmVjdXBlcmFjaW9uDQogICAgICAgICAgICAjIEludGVyY2VwdG8NCiAgICAgICAgICAgICcNCmBgYA0KDQojIyMjICpBbsOhbGlzaXMgZGUgU2VuZGVyb3MqDQoNCmBgYHtyfQ0KZml0NiA8LSBzZW0obW9kZWxvNiwgZGYzKQ0Kc3VtbWFyeShmaXQ2KQ0KbGF2YWFuUGxvdChmaXQ2LCBjb2VmPVRSVUUsIGNvdj1UUlVFKQ0KYGBgDQo=