1 Teoría

Los Modelos de Ecuaciones Estructurales es una técnica de análisis de estadística multivariada, que permite analizar patrones complejos de relaciones entre variables, realizar comparaciones entre o intra grupos, y validar modelos teóricos y empíricos.

2 Ejemplo 1. Estudio de Holzinger y Swineford (1939)

2.1 Contexto

Holzinger y Swineford realizaron exámenes de habilidad mental a niños de 7mo y 8vo grado de escuelas (Pasteur y Grand-White)

La base de datos está incluida como paquete en R, e incluye las siguientes columnas:

  • id: identificador
  • sex: género (1=male, 2=female)
  • x1: Percepción Visual
  • x2: Juego con cubos
  • x3: Juego con pastillas/espaciales
  • x4: Comprensión de párrafos
  • x5: Completar oraciones
  • x6: Significado de palabras
  • x7: Sumas aceleradas
  • x8: Conteo acelerado de puntos
  • x9: Discriminación acelerada de mayúsculas rectas y curvas

Se busca identificar las relaciones entre las habilidades visual (x1,x2,x3), textual (x4,x5,x6) y velocidad (x7,x8,x9) de los adolescentes.

2.2 Llamar librerías

library(lavaan)
## Warning: package 'lavaan' was built under R version 4.3.2
## This is lavaan 0.6-17
## lavaan is FREE software! Please report any bugs.
library(lavaanPlot)
## Warning: package 'lavaanPlot' was built under R version 4.3.2

2.3 Importar las bases de datos

df1 <- HolzingerSwineford1939

2.4 Entender las bases de datos

summary(df1)
##        id             sex            ageyr        agemo       
##  Min.   :  1.0   Min.   :1.000   Min.   :11   Min.   : 0.000  
##  1st Qu.: 82.0   1st Qu.:1.000   1st Qu.:12   1st Qu.: 2.000  
##  Median :163.0   Median :2.000   Median :13   Median : 5.000  
##  Mean   :176.6   Mean   :1.515   Mean   :13   Mean   : 5.375  
##  3rd Qu.:272.0   3rd Qu.:2.000   3rd Qu.:14   3rd Qu.: 8.000  
##  Max.   :351.0   Max.   :2.000   Max.   :16   Max.   :11.000  
##                                                               
##          school        grade             x1               x2       
##  Grant-White:145   Min.   :7.000   Min.   :0.6667   Min.   :2.250  
##  Pasteur    :156   1st Qu.:7.000   1st Qu.:4.1667   1st Qu.:5.250  
##                    Median :7.000   Median :5.0000   Median :6.000  
##                    Mean   :7.477   Mean   :4.9358   Mean   :6.088  
##                    3rd Qu.:8.000   3rd Qu.:5.6667   3rd Qu.:6.750  
##                    Max.   :8.000   Max.   :8.5000   Max.   :9.250  
##                    NA's   :1                                       
##        x3              x4              x5              x6        
##  Min.   :0.250   Min.   :0.000   Min.   :1.000   Min.   :0.1429  
##  1st Qu.:1.375   1st Qu.:2.333   1st Qu.:3.500   1st Qu.:1.4286  
##  Median :2.125   Median :3.000   Median :4.500   Median :2.0000  
##  Mean   :2.250   Mean   :3.061   Mean   :4.341   Mean   :2.1856  
##  3rd Qu.:3.125   3rd Qu.:3.667   3rd Qu.:5.250   3rd Qu.:2.7143  
##  Max.   :4.500   Max.   :6.333   Max.   :7.000   Max.   :6.1429  
##                                                                  
##        x7              x8               x9       
##  Min.   :1.304   Min.   : 3.050   Min.   :2.778  
##  1st Qu.:3.478   1st Qu.: 4.850   1st Qu.:4.750  
##  Median :4.087   Median : 5.500   Median :5.417  
##  Mean   :4.186   Mean   : 5.527   Mean   :5.374  
##  3rd Qu.:4.913   3rd Qu.: 6.100   3rd Qu.:6.083  
##  Max.   :7.435   Max.   :10.000   Max.   :9.250  
## 

2.5 Tipos de Fórmulas

  1. Regresión (~)
  2. Variables Latentes (=~) No se observa, se infiere.
  3. Varianzas y covarianzas (~~) Relaciones entre variables latentes y observadas. (Varianza entre sí misma, Covarianza entre otras)
  4. Intercepto (~1) Valor esperado cuando las demás variables son cero.

2.6 Estructurar modelo

modelo1 <- '# Regresiones
            # Variables Latentes
            visual=~ x1 + x2 + x3
            textual=~ x4 + x5 + x6
            velocidad=~ x7 + x8 + x9
            # Varianzas y Covarianzas
            visual~~textual
            textual~~velocidad
            velocidad~~visual
            # Intercepto
            '

2.7 Generar el Análisis Factorial Confirmatorio (cfa)

fit<-cfa(modelo1,df1)
summary(fit)
## lavaan 0.6.17 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                85.306
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.554    0.100    5.554    0.000
##     x3                0.729    0.109    6.685    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.113    0.065   17.014    0.000
##     x6                0.926    0.055   16.703    0.000
##   velocidad =~                                        
##     x7                1.000                           
##     x8                1.180    0.165    7.152    0.000
##     x9                1.082    0.151    7.155    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.408    0.074    5.552    0.000
##   textual ~~                                          
##     velocidad         0.173    0.049    3.518    0.000
##   visual ~~                                           
##     velocidad         0.262    0.056    4.660    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .x1                0.549    0.114    4.833    0.000
##    .x2                1.134    0.102   11.146    0.000
##    .x3                0.844    0.091    9.317    0.000
##    .x4                0.371    0.048    7.779    0.000
##    .x5                0.446    0.058    7.642    0.000
##    .x6                0.356    0.043    8.277    0.000
##    .x7                0.799    0.081    9.823    0.000
##    .x8                0.488    0.074    6.573    0.000
##    .x9                0.566    0.071    8.003    0.000
##     visual            0.809    0.145    5.564    0.000
##     textual           0.979    0.112    8.737    0.000
##     velocidad         0.384    0.086    4.451    0.000
lavaanPlot(fit,coef=TRUE,cov=TRUE)

3 Ejemplo 2

3.1 Contexto

La base de datos contiene distintas mediciones sobre la democracia política e industrialización en países en desarrollo durante 1960 y 1965

La tabla incluye los siguientes datos:

  • y1: Calificaciones sobre la libertad de prensa en 1960
  • y2: Libertad de la oposición política en 1960
  • y3: Imparicalidad en elecciones en 1960
  • y4: Eficacia de la legislatura electa en 1960
  • y5: Calificaciones sobre la libertad de prensa en 1965
  • y6: Libertad de la oposición política en 1965
  • y7: Imparicalidad en elecciones en 1965
  • y8: Eficacia de la legislatura electa en 1965
  • x1: PIB per cápita en 1960
  • x2: Consumo de energía inanimada per cápita en 1960
  • x3: Porcentaje de la fuerza laboral en la industria en 1960

3.2 Importar la base de datos

df2 <- PoliticalDemocracy

3.3 Estructurar el modelo

modelo2 <- ' # Regresiones 
            # Variables latentes
            Democracia60 =~ y1 + y2 + y3 + y4
            Democracia65 =~ y5 + y6 + y7 + y8
            Industrial =~ x1 + x2 + x3
            # Varianzas y Covarianzas
            # Intercepto
            '

3.4 Genera el Análisis Factorial Confirmatorio (CFA)

fit2 <- cfa(modelo2, df2)
summary(fit2)
## lavaan 0.6.17 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        25
## 
##   Number of observations                            75
## 
## Model Test User Model:
##                                                       
##   Test statistic                                72.462
##   Degrees of freedom                                41
##   P-value (Chi-square)                           0.002
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Democracia60 =~                                     
##     y1                1.000                           
##     y2                1.354    0.175    7.755    0.000
##     y3                1.044    0.150    6.961    0.000
##     y4                1.300    0.138    9.412    0.000
##   Democracia65 =~                                     
##     y5                1.000                           
##     y6                1.258    0.164    7.651    0.000
##     y7                1.282    0.158    8.137    0.000
##     y8                1.310    0.154    8.529    0.000
##   Industrial =~                                       
##     x1                1.000                           
##     x2                2.182    0.139   15.714    0.000
##     x3                1.819    0.152   11.956    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Democracia60 ~~                                     
##     Democracia65      4.487    0.911    4.924    0.000
##     Industrial        0.660    0.206    3.202    0.001
##   Democracia65 ~~                                     
##     Industrial        0.774    0.208    3.715    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .y1                1.942    0.395    4.910    0.000
##    .y2                6.490    1.185    5.479    0.000
##    .y3                5.340    0.943    5.662    0.000
##    .y4                2.887    0.610    4.731    0.000
##    .y5                2.390    0.447    5.351    0.000
##    .y6                4.343    0.796    5.456    0.000
##    .y7                3.510    0.668    5.252    0.000
##    .y8                2.940    0.586    5.019    0.000
##    .x1                0.082    0.020    4.180    0.000
##    .x2                0.118    0.070    1.689    0.091
##    .x3                0.467    0.090    5.174    0.000
##     Democracia60      4.845    1.088    4.453    0.000
##     Democracia65      4.345    1.051    4.134    0.000
##     Industrial        0.448    0.087    5.169    0.000
lavaanPlot(fit2, coef = TRUE, cov = TRUE)

4 Bienestar de los Colaboradores

4.1 Teoría

4.1.1 Contexto

Uno de los retos más importantes de las organizaciones es entender el estado y bienestar de los colaboradores, ya que puede impactar directamente en el desempeño y el logro de los objetivos.

4.2 Parte 1. Experiencias de recuperación

Las experiencias de recuperación se refieren a la medida en que un individuo percibe que las actividades que se realizan fuera del horario laboral le ayudarán a restaurar los recursos energéticos que le permitirán sortear efectivamente el estrés y las presiones laborales.

4.2.1 Cargar librerías

library(lavaan)
library(lavaanPlot)
library(readxl)
## Warning: package 'readxl' was built under R version 4.3.2

4.2.2 Cargar base de datos

datos<-read_excel("Datos_SEM_Eng.xlsx")

4.2.3 Creación del Modelo

modelo1 <- '# Regresiones
            # Variables Latentes
            desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
            relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
            maestria=~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
            control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
            recuperacion =~ desapego + relajacion + maestria + control 
            # Varianzas y Covarianzas
            # Intercepto
            '

4.2.4 Generar el Análisis Factorial Confirmatorio (cfa)

fit<-cfa(modelo1,datos)
summary(fit)
## lavaan 0.6.17 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        66
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1221.031
##   Degrees of freedom                               430
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.206    0.082   14.780    0.000
##     RPD03             1.143    0.085   13.374    0.000
##     RPD05             1.312    0.086   15.244    0.000
##     RPD06             1.088    0.089   12.266    0.000
##     RPD07             1.229    0.085   14.440    0.000
##     RPD08             1.164    0.087   13.447    0.000
##     RPD09             1.317    0.087   15.153    0.000
##     RPD10             1.346    0.088   15.258    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.227    0.000
##     RRE04             1.025    0.058   17.713    0.000
##     RRE05             1.055    0.056   18.758    0.000
##     RRE06             1.245    0.074   16.869    0.000
##     RRE07             1.117    0.071   15.689    0.000
##     RRE10             0.815    0.067   12.120    0.000
##   maestria =~                                         
##     RMA02             1.000                           
##     RMA03             1.155    0.096   12.079    0.000
##     RMA04             1.178    0.089   13.274    0.000
##     RMA05             1.141    0.087   13.072    0.000
##     RMA06             0.645    0.075    8.597    0.000
##     RMA07             1.103    0.084   13.061    0.000
##     RMA08             1.109    0.085   12.994    0.000
##     RMA09             1.028    0.084   12.246    0.000
##     RMA10             1.055    0.088   12.044    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.948    0.049   19.182    0.000
##     RCO04             0.796    0.044   18.110    0.000
##     RCO05             0.818    0.043   18.990    0.000
##     RCO06             0.834    0.046   18.216    0.000
##     RCO07             0.835    0.046   18.057    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.149    0.131    8.787    0.000
##     maestria          0.858    0.129    6.666    0.000
##     control           1.341    0.156    8.605    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.172    0.120    9.782    0.000
##    .RPD02             0.999    0.108    9.228    0.000
##    .RPD03             1.441    0.148    9.733    0.000
##    .RPD05             0.987    0.110    8.964    0.000
##    .RPD06             1.817    0.182    9.967    0.000
##    .RPD07             1.173    0.125    9.383    0.000
##    .RPD08             1.460    0.150    9.714    0.000
##    .RPD09             1.032    0.114    9.021    0.000
##    .RPD10             1.034    0.115    8.955    0.000
##    .RRE02             0.626    0.068    9.274    0.000
##    .RRE03             0.653    0.073    9.011    0.000
##    .RRE04             0.481    0.055    8.794    0.000
##    .RRE05             0.374    0.046    8.153    0.000
##    .RRE06             0.886    0.097    9.149    0.000
##    .RRE07             0.950    0.100    9.505    0.000
##    .RRE10             1.137    0.113   10.093    0.000
##    .RMA02             1.740    0.175    9.931    0.000
##    .RMA03             1.485    0.155    9.575    0.000
##    .RMA04             0.855    0.097    8.772    0.000
##    .RMA05             0.899    0.100    8.967    0.000
##    .RMA06             1.631    0.159   10.281    0.000
##    .RMA07             0.845    0.094    8.977    0.000
##    .RMA08             0.886    0.098    9.034    0.000
##    .RMA09             1.094    0.115    9.500    0.000
##    .RMA10             1.259    0.131    9.590    0.000
##    .RCO02             0.983    0.105    9.379    0.000
##    .RCO03             0.484    0.058    8.391    0.000
##    .RCO04             0.462    0.052    8.963    0.000
##    .RCO05             0.382    0.045    8.513    0.000
##    .RCO06             0.494    0.055    8.917    0.000
##    .RCO07             0.515    0.057    8.985    0.000
##    .desapego          0.943    0.152    6.207    0.000
##    .relajacion        0.333    0.089    3.757    0.000
##    .maestria          1.260    0.212    5.942    0.000
##    .control           0.900    0.159    5.666    0.000
##     recuperacion      0.978    0.202    4.833    0.000
lavaanPlot(fit,coef=TRUE,cov=TRUE)

4.2.5 Depuración del Modelo

modelo_depurado <- '# Regresiones
            # Variables Latentes
            desapego =~ RPD01 + RPD02 + RPD03 + RPD05  + RPD07 + RPD08 + RPD09 + RPD10
            relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07
            maestria=~ RMA02 + RMA03 + RMA04 + RMA05 + RMA07 + RMA08 + RMA09 + RMA10
            control =~ RCO02 + RCO03  + RCO05 + RCO06 + RCO07
            recuperacion =~ desapego + relajacion + maestria + control 
            # Varianzas y Covarianzas
            # Intercepto
            '

4.2.5.1 Generar el Análisis Factorial Confirmatorio (cfa)

fit_depurado<-cfa(modelo_depurado,datos)
summary(fit_depurado)
## lavaan 0.6.17 ended normally after 48 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        58
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                               886.791
##   Degrees of freedom                               320
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.204    0.079   15.158    0.000
##     RPD03             1.146    0.083   13.750    0.000
##     RPD05             1.310    0.084   15.663    0.000
##     RPD07             1.219    0.083   14.675    0.000
##     RPD08             1.114    0.086   13.004    0.000
##     RPD09             1.301    0.085   15.315    0.000
##     RPD10             1.328    0.086   15.404    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.111    0.064   17.245    0.000
##     RRE04             1.025    0.057   17.974    0.000
##     RRE05             1.054    0.055   19.046    0.000
##     RRE06             1.237    0.073   16.904    0.000
##     RRE07             1.105    0.071   15.618    0.000
##   maestria =~                                         
##     RMA02             1.000                           
##     RMA03             1.155    0.095   12.223    0.000
##     RMA04             1.176    0.088   13.412    0.000
##     RMA05             1.140    0.086   13.220    0.000
##     RMA07             1.091    0.083   13.067    0.000
##     RMA08             1.103    0.084   13.087    0.000
##     RMA09             1.020    0.083   12.287    0.000
##     RMA10             1.049    0.087   12.097    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.944    0.051   18.648    0.000
##     RCO05             0.820    0.044   18.683    0.000
##     RCO06             0.840    0.046   18.083    0.000
##     RCO07             0.842    0.047   18.010    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.145    0.132    8.696    0.000
##     maestria          0.843    0.129    6.525    0.000
##     control           1.356    0.159    8.549    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.134    0.117    9.697    0.000
##    .RPD02             0.956    0.105    9.070    0.000
##    .RPD03             1.381    0.143    9.629    0.000
##    .RPD05             0.932    0.107    8.749    0.000
##    .RPD07             1.162    0.125    9.304    0.000
##    .RPD08             1.629    0.166    9.815    0.000
##    .RPD09             1.053    0.117    8.980    0.000
##    .RPD10             1.061    0.119    8.926    0.000
##    .RRE02             0.612    0.067    9.179    0.000
##    .RRE03             0.666    0.074    8.988    0.000
##    .RRE04             0.467    0.054    8.651    0.000
##    .RRE05             0.361    0.045    7.940    0.000
##    .RRE06             0.898    0.098    9.119    0.000
##    .RRE07             0.974    0.102    9.502    0.000
##    .RMA02             1.720    0.174    9.901    0.000
##    .RMA03             1.456    0.153    9.519    0.000
##    .RMA04             0.839    0.097    8.681    0.000
##    .RMA05             0.879    0.099    8.876    0.000
##    .RMA07             0.874    0.097    9.009    0.000
##    .RMA08             0.884    0.098    8.993    0.000
##    .RMA09             1.105    0.116    9.490    0.000
##    .RMA10             1.265    0.132    9.573    0.000
##    .RCO02             0.999    0.109    9.187    0.000
##    .RCO03             0.517    0.063    8.171    0.000
##    .RCO05             0.385    0.047    8.145    0.000
##    .RCO06             0.482    0.056    8.540    0.000
##    .RCO07             0.495    0.058    8.582    0.000
##    .desapego          0.985    0.157    6.286    0.000
##    .relajacion        0.360    0.092    3.917    0.000
##    .maestria          1.309    0.218    5.994    0.000
##    .control           0.850    0.159    5.341    0.000
##     recuperacion      0.974    0.203    4.795    0.000
lavaanPlot(fit_depurado,coef=TRUE,cov=TRUE)

4.3 Parte 2. Energía Recuperada

4.3.1 Estructurar Modelo

modelo2 <- '# Regresiones
            # Variables Latentes
            energia=~EN01+ EN02+ EN04+ EN05+ EN06+ EN07+ EN08
            # Varianzas y Covarianzas
            # Intercepto
            '

4.3.1.1 Generar el Análisis Factorial Confirmatorio (cfa)

fit2<-cfa(modelo2,datos)
summary(fit2)
## lavaan 0.6.17 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.222
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.029    0.044   23.192    0.000
##     EN04              0.999    0.044   22.583    0.000
##     EN05              0.999    0.042   23.649    0.000
##     EN06              0.986    0.042   23.722    0.000
##     EN07              1.049    0.046   22.856    0.000
##     EN08              1.036    0.043   24.173    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .EN01              0.711    0.074    9.651    0.000
##    .EN02              0.444    0.049    9.012    0.000
##    .EN04              0.481    0.052    9.214    0.000
##    .EN05              0.375    0.042    8.830    0.000
##    .EN06              0.359    0.041    8.798    0.000
##    .EN07              0.499    0.055    9.129    0.000
##    .EN08              0.353    0.041    8.580    0.000
##     energia           2.801    0.327    8.565    0.000
lavaanPlot(fit2,coef=TRUE,cov=TRUE)

Despues de evaluar los valroes estimativos, los errores estándar y el p-value, determinamos no depurar el modelo.

4.4 Parte 3. Engagement laboral

4.4.1 Estructurar Modelo

modelo3 <- '# Regresiones
            # Variables Latentes 1
            desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
            relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
            maestria=~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
            control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
            recuperacion =~ desapego + relajacion + maestria + control 
            
            # Variables Latentes 2
            energia=~EN01+ EN02+ EN04+ EN05+ EN06+ EN07+ EN08
            
            # Variables Latentes 3
            vigor=~EVI01+EVI02+EVI03
            dedicacion=~ EDE01+ EDE02 + EDE03
            absorcion =~ EAB01 + EAB02
            engagement=~ vigor+dedicacion+absorcion
            
            # Varianzas y Covarianzas
            engagement~~energia+recuperacion
            # Intercepto
            '

4.4.2 Generar el Análisis Factorial Confirmatorio (cfa)

fit3<-sem(modelo3,datos)
summary(fit3)
## lavaan 0.6.17 ended normally after 73 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       102
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              2395.225
##   Degrees of freedom                               979
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.209    0.081   14.866    0.000
##     RPD03             1.144    0.085   13.419    0.000
##     RPD05             1.313    0.086   15.317    0.000
##     RPD06             1.082    0.089   12.214    0.000
##     RPD07             1.229    0.085   14.487    0.000
##     RPD08             1.157    0.086   13.375    0.000
##     RPD09             1.315    0.087   15.163    0.000
##     RPD10             1.343    0.088   15.247    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.295    0.000
##     RRE04             1.021    0.058   17.626    0.000
##     RRE05             1.051    0.056   18.687    0.000
##     RRE06             1.246    0.074   16.924    0.000
##     RRE07             1.121    0.071   15.837    0.000
##     RRE10             0.814    0.067   12.134    0.000
##   maestria =~                                         
##     RMA02             1.000                           
##     RMA03             1.152    0.096   12.041    0.000
##     RMA04             1.178    0.089   13.265    0.000
##     RMA05             1.141    0.087   13.057    0.000
##     RMA06             0.648    0.075    8.625    0.000
##     RMA07             1.104    0.085   13.062    0.000
##     RMA08             1.110    0.085   13.001    0.000
##     RMA09             1.030    0.084   12.257    0.000
##     RMA10             1.056    0.088   12.047    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.945    0.049   19.172    0.000
##     RCO04             0.794    0.044   18.100    0.000
##     RCO05             0.814    0.043   18.926    0.000
##     RCO06             0.837    0.045   18.409    0.000
##     RCO07             0.836    0.046   18.206    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.070    0.121    8.838    0.000
##     maestria          0.900    0.129    6.959    0.000
##     control           1.424    0.157    9.063    0.000
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.027    0.044   23.416    0.000
##     EN04              0.998    0.044   22.870    0.000
##     EN05              0.996    0.042   23.836    0.000
##     EN06              0.983    0.041   23.857    0.000
##     EN07              1.045    0.045   22.964    0.000
##     EN08              1.033    0.042   24.399    0.000
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.985    0.028   35.255    0.000
##     EVI03             0.996    0.048   20.570    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.905    0.034   26.515    0.000
##     EDE03             0.567    0.037   15.447    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.656    0.053   12.368    0.000
##   engagement =~                                       
##     vigor             1.000                           
##     dedicacion        1.216    0.061   20.023    0.000
##     absorcion         0.984    0.057   17.202    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia ~~                                          
##     engagement        1.616    0.222    7.269    0.000
##   recuperacion ~~                                     
##     engagement        0.893    0.152    5.888    0.000
##     energia           1.365    0.197    6.933    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.168    0.119    9.781    0.000
##    .RPD02             0.982    0.107    9.202    0.000
##    .RPD03             1.434    0.147    9.729    0.000
##    .RPD05             0.972    0.109    8.938    0.000
##    .RPD06             1.837    0.184    9.980    0.000
##    .RPD07             1.165    0.124    9.377    0.000
##    .RPD08             1.486    0.153    9.740    0.000
##    .RPD09             1.037    0.115    9.036    0.000
##    .RPD10             1.046    0.116    8.984    0.000
##    .RRE02             0.623    0.067    9.252    0.000
##    .RRE03             0.647    0.072    8.976    0.000
##    .RRE04             0.492    0.056    8.829    0.000
##    .RRE05             0.384    0.047    8.202    0.000
##    .RRE06             0.880    0.097    9.122    0.000
##    .RRE07             0.930    0.098    9.460    0.000
##    .RRE10             1.136    0.113   10.087    0.000
##    .RMA02             1.741    0.175    9.935    0.000
##    .RMA03             1.499    0.156    9.594    0.000
##    .RMA04             0.857    0.098    8.785    0.000
##    .RMA05             0.903    0.101    8.983    0.000
##    .RMA06             1.626    0.158   10.280    0.000
##    .RMA07             0.844    0.094    8.979    0.000
##    .RMA08             0.882    0.098    9.031    0.000
##    .RMA09             1.090    0.115    9.498    0.000
##    .RMA10             1.257    0.131    9.592    0.000
##    .RCO02             0.977    0.104    9.391    0.000
##    .RCO03             0.493    0.058    8.475    0.000
##    .RCO04             0.468    0.052    9.017    0.000
##    .RCO05             0.393    0.046    8.621    0.000
##    .RCO06             0.479    0.054    8.883    0.000
##    .RCO07             0.505    0.056    8.972    0.000
##    .EN01              0.696    0.072    9.660    0.000
##    .EN02              0.443    0.049    9.063    0.000
##    .EN04              0.473    0.051    9.236    0.000
##    .EN05              0.378    0.042    8.907    0.000
##    .EN06              0.366    0.041    8.899    0.000
##    .EN07              0.507    0.055    9.209    0.000
##    .EN08              0.353    0.041    8.658    0.000
##    .EVI01             0.199    0.039    5.056    0.000
##    .EVI02             0.224    0.040    5.637    0.000
##    .EVI03             1.211    0.124    9.770    0.000
##    .EDE01             0.352    0.064    5.529    0.000
##    .EDE02             0.509    0.067    7.646    0.000
##    .EDE03             0.874    0.088    9.945    0.000
##    .EAB01             0.379    0.128    2.953    0.003
##    .EAB02             1.149    0.121    9.491    0.000
##    .desapego          0.953    0.149    6.397    0.000
##    .relajacion        0.514    0.085    6.027    0.000
##    .maestria          1.191    0.200    5.956    0.000
##    .control           0.693    0.125    5.534    0.000
##     recuperacion      0.972    0.199    4.892    0.000
##     energia           2.816    0.327    8.605    0.000
##    .vigor             0.536    0.084    6.413    0.000
##    .dedicacion        0.099    0.087    1.131    0.258
##    .absorcion         0.469    0.138    3.392    0.001
##     engagement        2.300    0.284    8.099    0.000
lavaanPlot(fit3,coef=TRUE,cov=TRUE)
LS0tDQp0aXRsZTogIkFjdGl2aWRhZCAzIC4gTW9kZWxvcyBkZSBFY3VhY2lvbmVzIEVzdHJ1Y3R1cmFsZXMiDQphdXRob3I6ICJKb3PDqSBHYWJyaWVsIFVzacOxYSBNb2dybyBBMDA4MzE0MzUiDQpkYXRlOiAiMjAyNC0wMi0yMiINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdGhlbWU6IHVuaXRlZA0KICAgIGhpZ2hsaWdodDogdGFuZ28NCiAgICB0b2M6IHRydWUNCiAgICB0b2NfZGVwdGg6IDMNCiAgICBudW1iZXJfc2VjdGlvbnM6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IHRydWUNCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlDQotLS0NCg0KIVtdKGh0dHBzOi8vbWVkaWEuZ2lwaHkuY29tL21lZGlhL1RZelJGUnJaWVczR0d3SElQNS9naXBoeS5naWYpDQoNCiMgVGVvcsOtYQ0KDQpMb3MgKipNb2RlbG9zIGRlIEVjdWFjaW9uZXMgRXN0cnVjdHVyYWxlcyoqIGVzIHVuYSB0w6ljbmljYSBkZSBhbsOhbGlzaXMgZGUgZXN0YWTDrXN0aWNhIG11bHRpdmFyaWFkYSwgcXVlIHBlcm1pdGUgYW5hbGl6YXIgcGF0cm9uZXMgY29tcGxlam9zIGRlIHJlbGFjaW9uZXMgZW50cmUgdmFyaWFibGVzLCByZWFsaXphciBjb21wYXJhY2lvbmVzIGVudHJlIG8gaW50cmEgZ3J1cG9zLCB5IHZhbGlkYXIgbW9kZWxvcyB0ZcOzcmljb3MgeSBlbXDDrXJpY29zLg0KDQojIEVqZW1wbG8gMS4gRXN0dWRpbyBkZSBIb2x6aW5nZXIgeSBTd2luZWZvcmQgKDE5MzkpDQoNCiMjIENvbnRleHRvDQoNCkhvbHppbmdlciB5IFN3aW5lZm9yZCByZWFsaXphcm9uIGV4w6FtZW5lcyBkZSBoYWJpbGlkYWQgbWVudGFsIGEgbmnDsW9zIGRlIDdtbyB5IDh2byBncmFkbyBkZSBlc2N1ZWxhcyAoUGFzdGV1ciB5IEdyYW5kLVdoaXRlKQ0KDQpMYSBiYXNlIGRlIGRhdG9zIGVzdMOhIGluY2x1aWRhIGNvbW8gcGFxdWV0ZSBlbiBSLCBlIGluY2x1eWUgbGFzIHNpZ3VpZW50ZXMgY29sdW1uYXM6DQoNCi0gICBpZDogaWRlbnRpZmljYWRvcg0KLSAgIHNleDogZ8OpbmVybyAoMT1tYWxlLCAyPWZlbWFsZSkNCi0gICB4MTogUGVyY2VwY2nDs24gVmlzdWFsDQotICAgeDI6IEp1ZWdvIGNvbiBjdWJvcw0KLSAgIHgzOiBKdWVnbyBjb24gcGFzdGlsbGFzL2VzcGFjaWFsZXMNCi0gICB4NDogQ29tcHJlbnNpw7NuIGRlIHDDoXJyYWZvcw0KLSAgIHg1OiBDb21wbGV0YXIgb3JhY2lvbmVzDQotICAgeDY6IFNpZ25pZmljYWRvIGRlIHBhbGFicmFzDQotICAgeDc6IFN1bWFzIGFjZWxlcmFkYXMNCi0gICB4ODogQ29udGVvIGFjZWxlcmFkbyBkZSBwdW50b3MNCi0gICB4OTogRGlzY3JpbWluYWNpw7NuIGFjZWxlcmFkYSBkZSBtYXnDunNjdWxhcyByZWN0YXMgeSBjdXJ2YXMNCg0KU2UgYnVzY2EgaWRlbnRpZmljYXIgbGFzIHJlbGFjaW9uZXMgZW50cmUgbGFzIGhhYmlsaWRhZGVzIHZpc3VhbCAoeDEseDIseDMpLCB0ZXh0dWFsICh4NCx4NSx4NikgeSB2ZWxvY2lkYWQgKHg3LHg4LHg5KSBkZSBsb3MgYWRvbGVzY2VudGVzLg0KDQojIyBMbGFtYXIgbGlicmVyw61hcw0KDQpgYGB7cn0NCmxpYnJhcnkobGF2YWFuKQ0KbGlicmFyeShsYXZhYW5QbG90KQ0KYGBgDQoNCiMjIEltcG9ydGFyIGxhcyBiYXNlcyBkZSBkYXRvcw0KDQpgYGB7cn0NCmRmMSA8LSBIb2x6aW5nZXJTd2luZWZvcmQxOTM5DQpgYGANCg0KIyMgRW50ZW5kZXIgbGFzIGJhc2VzIGRlIGRhdG9zDQoNCmBgYHtyfQ0Kc3VtbWFyeShkZjEpDQpgYGANCg0KIyMgVGlwb3MgZGUgRsOzcm11bGFzDQoNCjEuICBSZWdyZXNpw7NuIChcfikNCjIuICBWYXJpYWJsZXMgTGF0ZW50ZXMgKD1cfikgTm8gc2Ugb2JzZXJ2YSwgc2UgaW5maWVyZS4NCjMuICBWYXJpYW56YXMgeSBjb3ZhcmlhbnphcyAoXH5cfikgUmVsYWNpb25lcyBlbnRyZSB2YXJpYWJsZXMgbGF0ZW50ZXMgeSBvYnNlcnZhZGFzLiAoVmFyaWFuemEgZW50cmUgc8OtIG1pc21hLCBDb3ZhcmlhbnphIGVudHJlIG90cmFzKQ0KNC4gIEludGVyY2VwdG8gKFx+MSkgVmFsb3IgZXNwZXJhZG8gY3VhbmRvIGxhcyBkZW3DoXMgdmFyaWFibGVzIHNvbiBjZXJvLg0KDQojIyBFc3RydWN0dXJhciBtb2RlbG8NCg0KYGBge3J9DQptb2RlbG8xIDwtICcjIFJlZ3Jlc2lvbmVzDQogICAgICAgICAgICAjIFZhcmlhYmxlcyBMYXRlbnRlcw0KICAgICAgICAgICAgdmlzdWFsPX4geDEgKyB4MiArIHgzDQogICAgICAgICAgICB0ZXh0dWFsPX4geDQgKyB4NSArIHg2DQogICAgICAgICAgICB2ZWxvY2lkYWQ9fiB4NyArIHg4ICsgeDkNCiAgICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YXMNCiAgICAgICAgICAgIHZpc3VhbH5+dGV4dHVhbA0KICAgICAgICAgICAgdGV4dHVhbH5+dmVsb2NpZGFkDQogICAgICAgICAgICB2ZWxvY2lkYWR+fnZpc3VhbA0KICAgICAgICAgICAgIyBJbnRlcmNlcHRvDQogICAgICAgICAgICAnDQpgYGANCg0KIyMgR2VuZXJhciBlbCBBbsOhbGlzaXMgRmFjdG9yaWFsIENvbmZpcm1hdG9yaW8gKGNmYSkNCg0KYGBge3J9DQpmaXQ8LWNmYShtb2RlbG8xLGRmMSkNCnN1bW1hcnkoZml0KQ0KbGF2YWFuUGxvdChmaXQsY29lZj1UUlVFLGNvdj1UUlVFKQ0KYGBgDQoNCiMgRWplbXBsbyAyDQoNCiMjIENvbnRleHRvDQoNCkxhIGJhc2UgZGUgZGF0b3MgY29udGllbmUgZGlzdGludGFzIG1lZGljaW9uZXMgc29icmUgbGEgZGVtb2NyYWNpYSBwb2zDrXRpY2EgZSBpbmR1c3RyaWFsaXphY2nDs24gZW4gcGHDrXNlcyBlbiBkZXNhcnJvbGxvIGR1cmFudGUgMTk2MCB5IDE5NjUNCg0KTGEgdGFibGEgaW5jbHV5ZSBsb3Mgc2lndWllbnRlcyBkYXRvczoNCg0KLSAgIHkxOiBDYWxpZmljYWNpb25lcyBzb2JyZSBsYSBsaWJlcnRhZCBkZSBwcmVuc2EgZW4gMTk2MA0KLSAgIHkyOiBMaWJlcnRhZCBkZSBsYSBvcG9zaWNpw7NuIHBvbMOtdGljYSBlbiAxOTYwDQotICAgeTM6IEltcGFyaWNhbGlkYWQgZW4gZWxlY2Npb25lcyBlbiAxOTYwDQotICAgeTQ6IEVmaWNhY2lhIGRlIGxhIGxlZ2lzbGF0dXJhIGVsZWN0YSBlbiAxOTYwDQotICAgeTU6IENhbGlmaWNhY2lvbmVzIHNvYnJlIGxhIGxpYmVydGFkIGRlIHByZW5zYSBlbiAxOTY1DQotICAgeTY6IExpYmVydGFkIGRlIGxhIG9wb3NpY2nDs24gcG9sw610aWNhIGVuIDE5NjUNCi0gICB5NzogSW1wYXJpY2FsaWRhZCBlbiBlbGVjY2lvbmVzIGVuIDE5NjUNCi0gICB5ODogRWZpY2FjaWEgZGUgbGEgbGVnaXNsYXR1cmEgZWxlY3RhIGVuIDE5NjUNCi0gICB4MTogUElCIHBlciBjw6FwaXRhIGVuIDE5NjANCi0gICB4MjogQ29uc3VtbyBkZSBlbmVyZ8OtYSBpbmFuaW1hZGEgcGVyIGPDoXBpdGEgZW4gMTk2MA0KLSAgIHgzOiBQb3JjZW50YWplIGRlIGxhIGZ1ZXJ6YSBsYWJvcmFsIGVuIGxhIGluZHVzdHJpYSBlbiAxOTYwDQoNCiMjIEltcG9ydGFyIGxhIGJhc2UgZGUgZGF0b3MgDQpgYGB7cn0NCmRmMiA8LSBQb2xpdGljYWxEZW1vY3JhY3kNCmBgYA0KDQojIyBFc3RydWN0dXJhciBlbCBtb2RlbG8NCmBgYHtyfQ0KbW9kZWxvMiA8LSAnICMgUmVncmVzaW9uZXMgDQogICAgICAgICAgICAjIFZhcmlhYmxlcyBsYXRlbnRlcw0KICAgICAgICAgICAgRGVtb2NyYWNpYTYwID1+IHkxICsgeTIgKyB5MyArIHk0DQogICAgICAgICAgICBEZW1vY3JhY2lhNjUgPX4geTUgKyB5NiArIHk3ICsgeTgNCiAgICAgICAgICAgIEluZHVzdHJpYWwgPX4geDEgKyB4MiArIHgzDQogICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemFzDQogICAgICAgICAgICAjIEludGVyY2VwdG8NCiAgICAgICAgICAgICcNCmBgYA0KDQojIyBHZW5lcmEgZWwgQW7DoWxpc2lzIEZhY3RvcmlhbCBDb25maXJtYXRvcmlvIChDRkEpDQpgYGB7cn0NCmZpdDIgPC0gY2ZhKG1vZGVsbzIsIGRmMikNCnN1bW1hcnkoZml0MikNCmxhdmFhblBsb3QoZml0MiwgY29lZiA9IFRSVUUsIGNvdiA9IFRSVUUpDQpgYGAgDQoNCiMgQmllbmVzdGFyIGRlIGxvcyBDb2xhYm9yYWRvcmVzDQoNCiMjIFRlb3LDrWENCg0KIyMjIENvbnRleHRvDQpVbm8gZGUgbG9zIHJldG9zIG3DoXMgaW1wb3J0YW50ZXMgZGUgbGFzIG9yZ2FuaXphY2lvbmVzIGVzIGVudGVuZGVyIGVsIGVzdGFkbyB5IGJpZW5lc3RhciBkZSBsb3MgY29sYWJvcmFkb3JlcywgeWEgcXVlIHB1ZWRlIGltcGFjdGFyIGRpcmVjdGFtZW50ZSBlbiBlbCBkZXNlbXBlw7FvIHkgZWwgbG9ncm8gZGUgbG9zIG9iamV0aXZvcy4NCg0KIyMgUGFydGUgMS4gRXhwZXJpZW5jaWFzIGRlIHJlY3VwZXJhY2nDs24NCg0KTGFzIGV4cGVyaWVuY2lhcyBkZSByZWN1cGVyYWNpw7NuIHNlIHJlZmllcmVuIGEgbGEgbWVkaWRhIGVuIHF1ZSB1biBpbmRpdmlkdW8gcGVyY2liZSBxdWUgbGFzIGFjdGl2aWRhZGVzIHF1ZSBzZSByZWFsaXphbiBmdWVyYSBkZWwgaG9yYXJpbyBsYWJvcmFsIGxlIGF5dWRhcsOhbiBhIHJlc3RhdXJhciBsb3MgcmVjdXJzb3MgZW5lcmfDqXRpY29zIHF1ZSBsZSBwZXJtaXRpcsOhbiBzb3J0ZWFyIGVmZWN0aXZhbWVudGUgZWwgZXN0csOpcyB5IGxhcyBwcmVzaW9uZXMgbGFib3JhbGVzLg0KDQojIyMgQ2FyZ2FyIGxpYnJlcsOtYXMNCg0KYGBge3J9DQpsaWJyYXJ5KGxhdmFhbikNCmxpYnJhcnkobGF2YWFuUGxvdCkNCmxpYnJhcnkocmVhZHhsKQ0KYGBgDQoNCiMjIyBDYXJnYXIgYmFzZSBkZSBkYXRvcw0KDQpgYGB7cn0NCmRhdG9zPC1yZWFkX2V4Y2VsKCJEYXRvc19TRU1fRW5nLnhsc3giKQ0KYGBgDQoNCiMjIyBDcmVhY2nDs24gZGVsIE1vZGVsbw0KYGBge3J9DQptb2RlbG8xIDwtICcjIFJlZ3Jlc2lvbmVzDQogICAgICAgICAgICAjIFZhcmlhYmxlcyBMYXRlbnRlcw0KICAgICAgICAgICAgZGVzYXBlZ28gPX4gUlBEMDEgKyBSUEQwMiArIFJQRDAzICsgUlBEMDUgKyBSUEQwNiArIFJQRDA3ICsgUlBEMDggKyBSUEQwOSArIFJQRDEwDQogICAgICAgICAgICByZWxhamFjaW9uID1+IFJSRTAyICsgUlJFMDMgKyBSUkUwNCArIFJSRTA1ICsgUlJFMDYgKyBSUkUwNyArIFJSRTEwDQogICAgICAgICAgICBtYWVzdHJpYT1+IFJNQTAyICsgUk1BMDMgKyBSTUEwNCArIFJNQTA1ICsgUk1BMDYgKyBSTUEwNyArIFJNQTA4ICsgUk1BMDkgKyBSTUExMA0KICAgICAgICAgICAgY29udHJvbCA9fiBSQ08wMiArIFJDTzAzICsgUkNPMDQgKyBSQ08wNSArIFJDTzA2ICsgUkNPMDcNCiAgICAgICAgICAgIHJlY3VwZXJhY2lvbiA9fiBkZXNhcGVnbyArIHJlbGFqYWNpb24gKyBtYWVzdHJpYSArIGNvbnRyb2wgDQogICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemFzDQogICAgICAgICAgICAjIEludGVyY2VwdG8NCiAgICAgICAgICAgICcNCmBgYA0KDQojIyMgR2VuZXJhciBlbCBBbsOhbGlzaXMgRmFjdG9yaWFsIENvbmZpcm1hdG9yaW8gKGNmYSkNCg0KYGBge3J9DQpmaXQ8LWNmYShtb2RlbG8xLGRhdG9zKQ0Kc3VtbWFyeShmaXQpDQpsYXZhYW5QbG90KGZpdCxjb2VmPVRSVUUsY292PVRSVUUpDQpgYGANCg0KIyMjIERlcHVyYWNpw7NuIGRlbCBNb2RlbG8NCmBgYHtyfQ0KbW9kZWxvX2RlcHVyYWRvIDwtICcjIFJlZ3Jlc2lvbmVzDQogICAgICAgICAgICAjIFZhcmlhYmxlcyBMYXRlbnRlcw0KICAgICAgICAgICAgZGVzYXBlZ28gPX4gUlBEMDEgKyBSUEQwMiArIFJQRDAzICsgUlBEMDUgICsgUlBEMDcgKyBSUEQwOCArIFJQRDA5ICsgUlBEMTANCiAgICAgICAgICAgIHJlbGFqYWNpb24gPX4gUlJFMDIgKyBSUkUwMyArIFJSRTA0ICsgUlJFMDUgKyBSUkUwNiArIFJSRTA3DQogICAgICAgICAgICBtYWVzdHJpYT1+IFJNQTAyICsgUk1BMDMgKyBSTUEwNCArIFJNQTA1ICsgUk1BMDcgKyBSTUEwOCArIFJNQTA5ICsgUk1BMTANCiAgICAgICAgICAgIGNvbnRyb2wgPX4gUkNPMDIgKyBSQ08wMyAgKyBSQ08wNSArIFJDTzA2ICsgUkNPMDcNCiAgICAgICAgICAgIHJlY3VwZXJhY2lvbiA9fiBkZXNhcGVnbyArIHJlbGFqYWNpb24gKyBtYWVzdHJpYSArIGNvbnRyb2wgDQogICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemFzDQogICAgICAgICAgICAjIEludGVyY2VwdG8NCiAgICAgICAgICAgICcNCmBgYA0KDQojIyMjIEdlbmVyYXIgZWwgQW7DoWxpc2lzIEZhY3RvcmlhbCBDb25maXJtYXRvcmlvIChjZmEpDQoNCmBgYHtyfQ0KZml0X2RlcHVyYWRvPC1jZmEobW9kZWxvX2RlcHVyYWRvLGRhdG9zKQ0Kc3VtbWFyeShmaXRfZGVwdXJhZG8pDQpsYXZhYW5QbG90KGZpdF9kZXB1cmFkbyxjb2VmPVRSVUUsY292PVRSVUUpDQpgYGANCg0KIyMgUGFydGUgMi4gRW5lcmfDrWEgUmVjdXBlcmFkYQ0KDQojIyMgRXN0cnVjdHVyYXIgTW9kZWxvDQpgYGB7cn0NCm1vZGVsbzIgPC0gJyMgUmVncmVzaW9uZXMNCiAgICAgICAgICAgICMgVmFyaWFibGVzIExhdGVudGVzDQogICAgICAgICAgICBlbmVyZ2lhPX5FTjAxKyBFTjAyKyBFTjA0KyBFTjA1KyBFTjA2KyBFTjA3KyBFTjA4DQogICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemFzDQogICAgICAgICAgICAjIEludGVyY2VwdG8NCiAgICAgICAgICAgICcNCmBgYA0KDQojIyMjIEdlbmVyYXIgZWwgQW7DoWxpc2lzIEZhY3RvcmlhbCBDb25maXJtYXRvcmlvIChjZmEpDQpgYGB7cn0NCmZpdDI8LWNmYShtb2RlbG8yLGRhdG9zKQ0Kc3VtbWFyeShmaXQyKQ0KbGF2YWFuUGxvdChmaXQyLGNvZWY9VFJVRSxjb3Y9VFJVRSkNCmBgYA0KDQpEZXNwdWVzIGRlIGV2YWx1YXIgbG9zIHZhbHJvZXMgZXN0aW1hdGl2b3MsIGxvcyBlcnJvcmVzIGVzdMOhbmRhciB5IGVsIHAtdmFsdWUsIGRldGVybWluYW1vcyBubyBkZXB1cmFyIGVsIG1vZGVsby4NCg0KIyMgUGFydGUgMy4gRW5nYWdlbWVudCBsYWJvcmFsDQoNCiMjIyBFc3RydWN0dXJhciBNb2RlbG8NCmBgYHtyfQ0KbW9kZWxvMyA8LSAnIyBSZWdyZXNpb25lcw0KICAgICAgICAgICAgIyBWYXJpYWJsZXMgTGF0ZW50ZXMgMQ0KICAgICAgICAgICAgZGVzYXBlZ28gPX4gUlBEMDEgKyBSUEQwMiArIFJQRDAzICsgUlBEMDUgKyBSUEQwNiArIFJQRDA3ICsgUlBEMDggKyBSUEQwOSArIFJQRDEwDQogICAgICAgICAgICByZWxhamFjaW9uID1+IFJSRTAyICsgUlJFMDMgKyBSUkUwNCArIFJSRTA1ICsgUlJFMDYgKyBSUkUwNyArIFJSRTEwDQogICAgICAgICAgICBtYWVzdHJpYT1+IFJNQTAyICsgUk1BMDMgKyBSTUEwNCArIFJNQTA1ICsgUk1BMDYgKyBSTUEwNyArIFJNQTA4ICsgUk1BMDkgKyBSTUExMA0KICAgICAgICAgICAgY29udHJvbCA9fiBSQ08wMiArIFJDTzAzICsgUkNPMDQgKyBSQ08wNSArIFJDTzA2ICsgUkNPMDcNCiAgICAgICAgICAgIHJlY3VwZXJhY2lvbiA9fiBkZXNhcGVnbyArIHJlbGFqYWNpb24gKyBtYWVzdHJpYSArIGNvbnRyb2wgDQogICAgICAgICAgICANCiAgICAgICAgICAgICMgVmFyaWFibGVzIExhdGVudGVzIDINCiAgICAgICAgICAgIGVuZXJnaWE9fkVOMDErIEVOMDIrIEVOMDQrIEVOMDUrIEVOMDYrIEVOMDcrIEVOMDgNCiAgICAgICAgICAgIA0KICAgICAgICAgICAgIyBWYXJpYWJsZXMgTGF0ZW50ZXMgMw0KICAgICAgICAgICAgdmlnb3I9fkVWSTAxK0VWSTAyK0VWSTAzDQogICAgICAgICAgICBkZWRpY2FjaW9uPX4gRURFMDErIEVERTAyICsgRURFMDMNCiAgICAgICAgICAgIGFic29yY2lvbiA9fiBFQUIwMSArIEVBQjAyDQogICAgICAgICAgICBlbmdhZ2VtZW50PX4gdmlnb3IrZGVkaWNhY2lvbithYnNvcmNpb24NCiAgICAgICAgICAgIA0KICAgICAgICAgICAgIyBWYXJpYW56YXMgeSBDb3Zhcmlhbnphcw0KICAgICAgICAgICAgZW5nYWdlbWVudH5+ZW5lcmdpYStyZWN1cGVyYWNpb24NCiAgICAgICAgICAgICMgSW50ZXJjZXB0bw0KICAgICAgICAgICAgJw0KYGBgDQoNCiMjIyBHZW5lcmFyIGVsIEFuw6FsaXNpcyBGYWN0b3JpYWwgQ29uZmlybWF0b3JpbyAoY2ZhKQ0KYGBge3J9DQpmaXQzPC1zZW0obW9kZWxvMyxkYXRvcykNCnN1bW1hcnkoZml0MykNCmxhdmFhblBsb3QoZml0Myxjb2VmPVRSVUUsY292PVRSVUUpDQpgYGANCg0KDQoNCg==