Modelos de Ecuaciones Estructurales

Victor Manuel Muñoz Tirado - A01423434

Teoría

Los Modelos de Ecuaciones Estructurales (Sem) es una técnica de análisis de estadística multivariada, que permite analizar paterones complejos de relaciones entre variables, realizar comparaciones entre e intragrupos, y validar modelos teóricos y empíricos.

Ejemplo 1. Estudio de Holzinger y Swineford (1939)

Contexto

Holzinger y Swineford realizaron exámenes de habilidad mental a adolescentes de 7° y 8° de dos escuelas (Pasteur y Grand-white).

La base de datos esta incluida como paquete en R e incluye las siguientes variables y columnas:

    • id: identificador

    • sex: género (1 Hombre, 2 Mujer)

    • ageyr: años

    • agemo: meses

    • school: escuela

    • grade: grado

    • x1: percepción visual

    • x2: juego con cubos

    • x3: juego con pastillas / espaciales

    • x4: comprension de párrafos

    • x5: completar oraciones

    • x6: significados de palabras

    • x7: sumas aceleradas

    • x8: conteo acelerado de puntos

    • x9: discriminacion acelerada de mayusculas rectas y curvas

      Se busca identificar las relaciones entre las habilidades visual (x1,x2,x3), textual (x4,x5,x6) y velocidad (x7,x8,x9) de los adolescentes.

Llamar librerías

library(lavaan) 
library(lavaanPlot)
#lavaan = Latent variable analysis (no se observa, se infiere)

Importar base de datos

df1 <- HolzingerSwineford1939

Entender la base de datos

str(df1)
## 'data.frame':    301 obs. of  15 variables:
##  $ id    : int  1 2 3 4 5 6 7 8 9 11 ...
##  $ sex   : int  1 2 2 1 2 2 1 2 2 2 ...
##  $ ageyr : int  13 13 13 13 12 14 12 12 13 12 ...
##  $ agemo : int  1 7 1 2 2 1 1 2 0 5 ...
##  $ school: Factor w/ 2 levels "Grant-White",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ grade : int  7 7 7 7 7 7 7 7 7 7 ...
##  $ x1    : num  3.33 5.33 4.5 5.33 4.83 ...
##  $ x2    : num  7.75 5.25 5.25 7.75 4.75 5 6 6.25 5.75 5.25 ...
##  $ x3    : num  0.375 2.125 1.875 3 0.875 ...
##  $ x4    : num  2.33 1.67 1 2.67 2.67 ...
##  $ x5    : num  5.75 3 1.75 4.5 4 3 6 4.25 5.75 5 ...
##  $ x6    : num  1.286 1.286 0.429 2.429 2.571 ...
##  $ x7    : num  3.39 3.78 3.26 3 3.7 ...
##  $ x8    : num  5.75 6.25 3.9 5.3 6.3 6.65 6.2 5.15 4.65 4.55 ...
##  $ x9    : num  6.36 7.92 4.42 4.86 5.92 ...
colSums(is.na(df1))
##     id    sex  ageyr  agemo school  grade     x1     x2     x3     x4     x5 
##      0      0      0      0      0      1      0      0      0      0      0 
##     x6     x7     x8     x9 
##      0      0      0      0

Tipos de fórmulas

  1. Regresión (~) Variable que depende de otras
  2. Variables latentes (=~) No se observa, se infiere
  3. Varianzas y covarianzas (~~) Relaciones entre variables latnetes y observadas (Varianza entre si misma, covarianza entre otras)
  4. Intercepto (~1) Valor esperado cuando las demas variables son cero

Estructura Modelo 1

modelo1 <- ' # Regresiones              
             # Variables latentes             
             visual =~ x1 + x2 + x3              
             textual =~ x4 + x5 + x6             
             velocidad =~ x7 + x8 + x9             
             # Varianzas y covarianzas              
             # Intercepto '

Generar el Análisis Factorial Confirmatorio (CFA)

fit <- cfa(modelo1, df1) 
summary(fit) 
## lavaan 0.6.17 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                85.306
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.554    0.100    5.554    0.000
##     x3                0.729    0.109    6.685    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.113    0.065   17.014    0.000
##     x6                0.926    0.055   16.703    0.000
##   velocidad =~                                        
##     x7                1.000                           
##     x8                1.180    0.165    7.152    0.000
##     x9                1.082    0.151    7.155    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.408    0.074    5.552    0.000
##     velocidad         0.262    0.056    4.660    0.000
##   textual ~~                                          
##     velocidad         0.173    0.049    3.518    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .x1                0.549    0.114    4.833    0.000
##    .x2                1.134    0.102   11.146    0.000
##    .x3                0.844    0.091    9.317    0.000
##    .x4                0.371    0.048    7.779    0.000
##    .x5                0.446    0.058    7.642    0.000
##    .x6                0.356    0.043    8.277    0.000
##    .x7                0.799    0.081    9.823    0.000
##    .x8                0.488    0.074    6.573    0.000
##    .x9                0.566    0.071    8.003    0.000
##     visual            0.809    0.145    5.564    0.000
##     textual           0.979    0.112    8.737    0.000
##     velocidad         0.384    0.086    4.451    0.000
lavaanPlot(fit, coef=TRUE, cov=TRUE)

Ejercicio 2: Democracia Política e Industralización

Contexto

La base de datos contiene distintas mediciones sobre la democracia política e industralización en paises en desarrollo durante 1960 y 1965.

La tabla inluye los siguientes datos:

  • y1: calificaciones de libertad en 1960

  • y2: libertad de la oposcion política 1960

  • y3: imparcialidad de elecciones 1960

  • y4: eficacia de la legislatura en 1960

  • y5: calificaciones de libertad en 1965

  • y6: libertad de la oposcion política 1965

  • y7: imparcialidad de elecciones 1965

  • y8: eficacia de la legislatura en 1965

  • x1: PIB per cápita en 1960

  • x2: consumo de energia inanimada per cápita 1960

  • x3: porcentaje de la fuerza laboral en la industria 1960

Importat base de datos

df2 <- PoliticalDemocracy
modelo2 <- ' # Regresiones
             Politica1965 ~ Politica1960 + Economia1960
              Politica1960 ~ Economia1960
             # Variables latentes
             Politica1965 =~ y5 + y6 + y7 + y8
             Politica1960 =~ y1 + y2 + y3 + y4
             Economia1960 =~ x1 + x2 + x3
             # Varianzas y covarianzas
             # Intercepto7
    '
fit2 <- cfa(modelo2, df2) 
summary(fit2) 
## lavaan 0.6.17 ended normally after 42 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        25
## 
##   Number of observations                            75
## 
## Model Test User Model:
##                                                       
##   Test statistic                                72.462
##   Degrees of freedom                                41
##   P-value (Chi-square)                           0.002
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Politica1965 =~                                     
##     y5                1.000                           
##     y6                1.258    0.164    7.651    0.000
##     y7                1.282    0.158    8.137    0.000
##     y8                1.310    0.154    8.529    0.000
##   Politica1960 =~                                     
##     y1                1.000                           
##     y2                1.354    0.175    7.755    0.000
##     y3                1.044    0.150    6.961    0.000
##     y4                1.300    0.138    9.412    0.000
##   Economia1960 =~                                     
##     x1                1.000                           
##     x2                2.182    0.139   15.714    0.000
##     x3                1.819    0.152   11.956    0.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Politica1965 ~                                      
##     Politica1960      0.864    0.113    7.671    0.000
##     Economia1960      0.453    0.220    2.064    0.039
##   Politica1960 ~                                      
##     Economia1960      1.474    0.392    3.763    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .y5                2.390    0.447    5.351    0.000
##    .y6                4.343    0.796    5.456    0.000
##    .y7                3.510    0.668    5.252    0.000
##    .y8                2.940    0.586    5.019    0.000
##    .y1                1.942    0.395    4.910    0.000
##    .y2                6.490    1.185    5.479    0.000
##    .y3                5.340    0.943    5.662    0.000
##    .y4                2.887    0.610    4.731    0.000
##    .x1                0.082    0.020    4.180    0.000
##    .x2                0.118    0.070    1.689    0.091
##    .x3                0.467    0.090    5.174    0.000
##    .Politica1965      0.115    0.200    0.575    0.565
##    .Politica1960      3.872    0.893    4.338    0.000
##     Economia1960      0.448    0.087    5.169    0.000
lavaanPlot(fit2, coef=TRUE, cov=TRUE)

Contexto

Uno de los retos más importantes de las organizaciones es entender el estado y bienestar de los colaboradores, ya que puede impactar directamente en el desempeño y el logro de los objetivos.

Parte 1: Análisis factorial confirmatorio (segundo orden) sobre el constructo de experiencias de recuperación.

Instalar paquetes y llamar librerías

library(lavaan)
library(lavaanPlot)
library(readxl)
df <- read_xlsx("Datos_SEM_Eng.xlsx")
summary(df)
##        ID             GEN             EXPER            EDAD      
##  Min.   :  1.0   Min.   :0.0000   Min.   : 0.00   Min.   :22.00  
##  1st Qu.: 56.5   1st Qu.:0.0000   1st Qu.:15.00   1st Qu.:37.50  
##  Median :112.0   Median :1.0000   Median :20.00   Median :44.00  
##  Mean   :112.0   Mean   :0.5919   Mean   :21.05   Mean   :43.95  
##  3rd Qu.:167.5   3rd Qu.:1.0000   3rd Qu.:27.50   3rd Qu.:51.00  
##  Max.   :223.0   Max.   :1.0000   Max.   :50.00   Max.   :72.00  
##      RPD01           RPD02          RPD03           RPD05           RPD06      
##  Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.00   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :5.000   Median :4.00   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :4.596   Mean   :4.09   Mean   :4.789   Mean   :4.327   Mean   :4.798  
##  3rd Qu.:6.000   3rd Qu.:6.00   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RPD07           RPD08           RPD09           RPD10      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:2.500  
##  Median :4.000   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :3.794   Mean   :4.735   Mean   :4.466   Mean   :4.435  
##  3rd Qu.:5.500   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RRE02           RRE03           RRE04           RRE05           RRE06    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.0  
##  1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:4.0  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000   Median :6.0  
##  Mean   :5.691   Mean   :5.534   Mean   :5.668   Mean   :5.623   Mean   :5.3  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.0  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.0  
##      RRE07           RRE10           RMA02           RMA03      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:5.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :6.000   Median :6.000   Median :4.000   Median :5.000  
##  Mean   :5.305   Mean   :5.664   Mean   :4.215   Mean   :4.377  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RMA04           RMA05           RMA06           RMA07      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:5.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :6.000   Median :5.000  
##  Mean   :4.686   Mean   :4.637   Mean   :5.511   Mean   :4.767  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RMA08           RMA09           RMA10          RCO02           RCO03      
##  Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:3.000   1st Qu.:3.00   1st Qu.:5.000   1st Qu.:5.000  
##  Median :5.000   Median :5.000   Median :5.00   Median :6.000   Median :6.000  
##  Mean   :4.942   Mean   :4.614   Mean   :4.43   Mean   :5.336   Mean   :5.574  
##  3rd Qu.:6.500   3rd Qu.:6.000   3rd Qu.:6.00   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.00   Max.   :7.000   Max.   :7.000  
##      RCO04           RCO05           RCO06           RCO07      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :5.704   Mean   :5.668   Mean   :5.619   Mean   :5.632  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       EN01            EN02            EN04            EN05      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :6.000   Median :5.000   Median :5.000  
##  Mean   :4.717   Mean   :5.004   Mean   :4.883   Mean   :4.928  
##  3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       EN06            EN07            EN08           EVI01      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :0.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :4.767   Mean   :4.578   Mean   :4.776   Mean   :5.013  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      EVI02           EVI03           EDE01           EDE02      
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :5.076   Mean   :4.973   Mean   :5.305   Mean   :5.543  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      EDE03           EAB01           EAB02           EAB03      
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:6.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :7.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :6.135   Mean   :5.605   Mean   :5.821   Mean   :5.363  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000

Modelo 1

modelo1 <- ' # Regresiones
             # Variables latentes
             desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
             relajación =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
             maestria =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
             control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
             recuperación =~ desapego + relajación + maestria + control
             # Varianzas y covarianzas
             # Intercepto
'

Generar CFA

fit <- cfa(modelo1, df)
summary(fit)
## lavaan 0.6.17 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        66
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1221.031
##   Degrees of freedom                               430
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.206    0.082   14.780    0.000
##     RPD03             1.143    0.085   13.374    0.000
##     RPD05             1.312    0.086   15.244    0.000
##     RPD06             1.088    0.089   12.266    0.000
##     RPD07             1.229    0.085   14.440    0.000
##     RPD08             1.164    0.087   13.447    0.000
##     RPD09             1.317    0.087   15.153    0.000
##     RPD10             1.346    0.088   15.258    0.000
##   relajación =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.227    0.000
##     RRE04             1.025    0.058   17.713    0.000
##     RRE05             1.055    0.056   18.758    0.000
##     RRE06             1.245    0.074   16.869    0.000
##     RRE07             1.117    0.071   15.689    0.000
##     RRE10             0.815    0.067   12.120    0.000
##   maestria =~                                         
##     RMA02             1.000                           
##     RMA03             1.155    0.096   12.079    0.000
##     RMA04             1.178    0.089   13.274    0.000
##     RMA05             1.141    0.087   13.072    0.000
##     RMA06             0.645    0.075    8.597    0.000
##     RMA07             1.103    0.084   13.061    0.000
##     RMA08             1.109    0.085   12.994    0.000
##     RMA09             1.028    0.084   12.246    0.000
##     RMA10             1.055    0.088   12.044    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.948    0.049   19.182    0.000
##     RCO04             0.796    0.044   18.110    0.000
##     RCO05             0.818    0.043   18.990    0.000
##     RCO06             0.834    0.046   18.216    0.000
##     RCO07             0.835    0.046   18.057    0.000
##   recuperación =~                                     
##     desapego          1.000                           
##     relajación        1.149    0.131    8.787    0.000
##     maestria          0.858    0.129    6.666    0.000
##     control           1.341    0.156    8.605    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.172    0.120    9.782    0.000
##    .RPD02             0.999    0.108    9.228    0.000
##    .RPD03             1.441    0.148    9.733    0.000
##    .RPD05             0.987    0.110    8.964    0.000
##    .RPD06             1.817    0.182    9.967    0.000
##    .RPD07             1.173    0.125    9.383    0.000
##    .RPD08             1.460    0.150    9.714    0.000
##    .RPD09             1.032    0.114    9.021    0.000
##    .RPD10             1.034    0.115    8.955    0.000
##    .RRE02             0.626    0.068    9.274    0.000
##    .RRE03             0.653    0.073    9.011    0.000
##    .RRE04             0.481    0.055    8.794    0.000
##    .RRE05             0.374    0.046    8.153    0.000
##    .RRE06             0.886    0.097    9.149    0.000
##    .RRE07             0.950    0.100    9.505    0.000
##    .RRE10             1.137    0.113   10.093    0.000
##    .RMA02             1.740    0.175    9.931    0.000
##    .RMA03             1.485    0.155    9.575    0.000
##    .RMA04             0.855    0.097    8.772    0.000
##    .RMA05             0.899    0.100    8.967    0.000
##    .RMA06             1.631    0.159   10.281    0.000
##    .RMA07             0.845    0.094    8.977    0.000
##    .RMA08             0.886    0.098    9.034    0.000
##    .RMA09             1.094    0.115    9.500    0.000
##    .RMA10             1.259    0.131    9.590    0.000
##    .RCO02             0.983    0.105    9.379    0.000
##    .RCO03             0.484    0.058    8.391    0.000
##    .RCO04             0.462    0.052    8.963    0.000
##    .RCO05             0.382    0.045    8.513    0.000
##    .RCO06             0.494    0.055    8.917    0.000
##    .RCO07             0.515    0.057    8.985    0.000
##    .desapego          0.943    0.152    6.207    0.000
##    .relajación        0.333    0.089    3.757    0.000
##    .maestria          1.260    0.212    5.942    0.000
##    .control           0.900    0.159    5.666    0.000
##     recuperación      0.978    0.202    4.833    0.000
lavaanPlot(fit, coef=TRUE, cov=TRUE)

Revisar estimates en variances (eliminar las más bajas), eliminar las P(>|Z|) mayor a 0.05, otro criterio a eliminar es los que tengan un error estandar más grande que los demas. Analizar latentes

modelo1_depurado <- ' # Regresiones
             # Variables latentes
             desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD07 + RPD08 + RPD09 + RPD10
             relajación =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07
             maestria =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA07 + RMA08 + RMA09 + RMA10
             control =~ RCO02 + RCO03 + RCO05 + RCO06 + RCO07
             recuperación =~ desapego + relajación + maestria + control
             # Varianzas y covarianzas
             # Intercepto
'
fit2 <- cfa(modelo1_depurado, df)
summary(fit2)
## lavaan 0.6.17 ended normally after 48 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        58
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                               886.791
##   Degrees of freedom                               320
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.204    0.079   15.158    0.000
##     RPD03             1.146    0.083   13.750    0.000
##     RPD05             1.310    0.084   15.663    0.000
##     RPD07             1.219    0.083   14.675    0.000
##     RPD08             1.114    0.086   13.004    0.000
##     RPD09             1.301    0.085   15.315    0.000
##     RPD10             1.328    0.086   15.404    0.000
##   relajación =~                                       
##     RRE02             1.000                           
##     RRE03             1.111    0.064   17.245    0.000
##     RRE04             1.025    0.057   17.974    0.000
##     RRE05             1.054    0.055   19.046    0.000
##     RRE06             1.237    0.073   16.904    0.000
##     RRE07             1.105    0.071   15.618    0.000
##   maestria =~                                         
##     RMA02             1.000                           
##     RMA03             1.155    0.095   12.223    0.000
##     RMA04             1.176    0.088   13.412    0.000
##     RMA05             1.140    0.086   13.220    0.000
##     RMA07             1.091    0.083   13.067    0.000
##     RMA08             1.103    0.084   13.087    0.000
##     RMA09             1.020    0.083   12.287    0.000
##     RMA10             1.049    0.087   12.097    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.944    0.051   18.648    0.000
##     RCO05             0.820    0.044   18.683    0.000
##     RCO06             0.840    0.046   18.083    0.000
##     RCO07             0.842    0.047   18.010    0.000
##   recuperación =~                                     
##     desapego          1.000                           
##     relajación        1.145    0.132    8.696    0.000
##     maestria          0.843    0.129    6.525    0.000
##     control           1.356    0.159    8.549    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.134    0.117    9.697    0.000
##    .RPD02             0.956    0.105    9.070    0.000
##    .RPD03             1.381    0.143    9.629    0.000
##    .RPD05             0.932    0.107    8.749    0.000
##    .RPD07             1.162    0.125    9.304    0.000
##    .RPD08             1.629    0.166    9.815    0.000
##    .RPD09             1.053    0.117    8.980    0.000
##    .RPD10             1.061    0.119    8.926    0.000
##    .RRE02             0.612    0.067    9.179    0.000
##    .RRE03             0.666    0.074    8.988    0.000
##    .RRE04             0.467    0.054    8.651    0.000
##    .RRE05             0.361    0.045    7.940    0.000
##    .RRE06             0.898    0.098    9.119    0.000
##    .RRE07             0.974    0.102    9.502    0.000
##    .RMA02             1.720    0.174    9.901    0.000
##    .RMA03             1.456    0.153    9.519    0.000
##    .RMA04             0.839    0.097    8.681    0.000
##    .RMA05             0.879    0.099    8.876    0.000
##    .RMA07             0.874    0.097    9.009    0.000
##    .RMA08             0.884    0.098    8.993    0.000
##    .RMA09             1.105    0.116    9.490    0.000
##    .RMA10             1.265    0.132    9.573    0.000
##    .RCO02             0.999    0.109    9.187    0.000
##    .RCO03             0.517    0.063    8.171    0.000
##    .RCO05             0.385    0.047    8.145    0.000
##    .RCO06             0.482    0.056    8.540    0.000
##    .RCO07             0.495    0.058    8.582    0.000
##    .desapego          0.985    0.157    6.286    0.000
##    .relajación        0.360    0.092    3.917    0.000
##    .maestria          1.309    0.218    5.994    0.000
##    .control           0.850    0.159    5.341    0.000
##     recuperación      0.974    0.203    4.795    0.000
lavaanPlot(fit2, coef=TRUE, cov=TRUE)

Parte 2

modelo2 <- ' # Regresiones
             # Variables latentes
             energia =~ EN01 + EN02 +EN04 + EN05 + EN06 + EN07 + EN08
             # Varianzas y covarianzas
             # Intercepto
'
fit3 <- cfa(modelo2, df)
summary(fit3)
## lavaan 0.6.17 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.222
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.029    0.044   23.192    0.000
##     EN04              0.999    0.044   22.583    0.000
##     EN05              0.999    0.042   23.649    0.000
##     EN06              0.986    0.042   23.722    0.000
##     EN07              1.049    0.046   22.856    0.000
##     EN08              1.036    0.043   24.173    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .EN01              0.711    0.074    9.651    0.000
##    .EN02              0.444    0.049    9.012    0.000
##    .EN04              0.481    0.052    9.214    0.000
##    .EN05              0.375    0.042    8.830    0.000
##    .EN06              0.359    0.041    8.798    0.000
##    .EN07              0.499    0.055    9.129    0.000
##    .EN08              0.353    0.041    8.580    0.000
##     energia           2.801    0.327    8.565    0.000
lavaanPlot(fit3, coef=TRUE, cov=TRUE)

Despues de valiar los valores estimativos, los errores estandar y el p-value, determinamos innecesario depurar el modelo

Parte 3

modelo3 <- ' # Regresiones
             # Variables latentes
             vigor =~ EVI01 + EVI02 + EVI03
             dedicacion =~ EDE01 + EDE02 + EDE03
             absorcion =~ EAB01 + EAB02
             engagement =~ vigor + dedicacion + absorcion
             # Varianzas y covarianzas
             # Intercepto
'
fit4 <- cfa(modelo3, df)
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
summary(fit4)
## lavaan 0.6.17 ended normally after 34 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        19
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                               203.167
##   Degrees of freedom                                17
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.986    0.028   35.155    0.000
##     EVI03             0.995    0.049   20.476    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.912    0.035   26.335    0.000
##     EDE03             0.578    0.037   15.767    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.658    0.053   12.526    0.000
##   engagement =~                                       
##     vigor             1.000                           
##     dedicacion        1.280    0.069   18.579    0.000
##     absorcion         1.012    0.061   16.461    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .EVI01             0.200    0.040    4.964    0.000
##    .EVI02             0.221    0.040    5.455    0.000
##    .EVI03             1.218    0.125    9.770    0.000
##    .EDE01             0.388    0.065    6.004    0.000
##    .EDE02             0.498    0.066    7.599    0.000
##    .EDE03             0.844    0.085    9.903    0.000
##    .EAB01             0.387    0.124    3.118    0.002
##    .EAB02             1.145    0.120    9.543    0.000
##    .vigor             0.678    0.096    7.052    0.000
##    .dedicacion       -0.072    0.098   -0.734    0.463
##    .absorcion         0.476    0.138    3.451    0.001
##     engagement        2.158    0.281    7.691    0.000
lavaanPlot(fit4, coef=TRUE, cov=TRUE)
modelo4 <- ' # Regresiones
             # Variables latentes1
             desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD07 + RPD08 + RPD09 + RPD10
             relajación =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07
             maestria =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA07 + RMA08 + RMA09 + RMA10
             control =~ RCO02 + RCO03 + RCO05 + RCO06 + RCO07
             recuperación =~ desapego + relajación + maestria + control
             
             # Variables latentes2
             energia =~ EN01 + EN02 +EN04 + EN05 + EN06 + EN07 + EN08
             
             # Variables latentes3
             vigor =~ EVI01 + EVI02 + EVI03
             dedicacion =~ EDE01 + EDE02 + EDE03
             absorcion =~ EAB01 + EAB02
             engagement =~ vigor + dedicacion + absorcion
        
             # Varianzas y covarianzas
             engagement ~~ energia + recuperación
             # Intercepto
'
fit5 <- sem(modelo4, df)
summary(fit5)
## lavaan 0.6.17 ended normally after 70 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        94
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1976.721
##   Degrees of freedom                               809
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.207    0.079   15.227    0.000
##     RPD03             1.146    0.083   13.777    0.000
##     RPD05             1.312    0.083   15.717    0.000
##     RPD07             1.220    0.083   14.704    0.000
##     RPD08             1.108    0.086   12.927    0.000
##     RPD09             1.299    0.085   15.301    0.000
##     RPD10             1.325    0.086   15.367    0.000
##   relajación =~                                       
##     RRE02             1.000                           
##     RRE03             1.112    0.064   17.353    0.000
##     RRE04             1.019    0.057   17.900    0.000
##     RRE05             1.050    0.055   18.994    0.000
##     RRE06             1.236    0.073   16.969    0.000
##     RRE07             1.109    0.070   15.777    0.000
##   maestria =~                                         
##     RMA02             1.000                           
##     RMA03             1.153    0.095   12.187    0.000
##     RMA04             1.176    0.088   13.407    0.000
##     RMA05             1.139    0.086   13.209    0.000
##     RMA07             1.092    0.084   13.071    0.000
##     RMA08             1.105    0.084   13.099    0.000
##     RMA09             1.022    0.083   12.301    0.000
##     RMA10             1.049    0.087   12.102    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.941    0.051   18.597    0.000
##     RCO05             0.815    0.044   18.556    0.000
##     RCO06             0.843    0.046   18.316    0.000
##     RCO07             0.844    0.046   18.181    0.000
##   recuperación =~                                     
##     desapego          1.000                           
##     relajación        1.059    0.121    8.777    0.000
##     maestria          0.880    0.129    6.848    0.000
##     control           1.432    0.158    9.070    0.000
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.027    0.044   23.429    0.000
##     EN04              0.998    0.044   22.876    0.000
##     EN05              0.996    0.042   23.843    0.000
##     EN06              0.982    0.041   23.859    0.000
##     EN07              1.044    0.045   22.967    0.000
##     EN08              1.033    0.042   24.399    0.000
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.985    0.028   35.254    0.000
##     EVI03             0.996    0.048   20.570    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.905    0.034   26.521    0.000
##     EDE03             0.567    0.037   15.443    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.656    0.053   12.366    0.000
##   engagement =~                                       
##     vigor             1.000                           
##     dedicacion        1.217    0.061   20.030    0.000
##     absorcion         0.984    0.057   17.200    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia ~~                                          
##     engagement        1.615    0.222    7.268    0.000
##   recuperación ~~                                     
##     engagement        0.907    0.153    5.927    0.000
##     energia           1.375    0.198    6.937    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.133    0.117    9.698    0.000
##    .RPD02             0.941    0.104    9.044    0.000
##    .RPD03             1.376    0.143    9.627    0.000
##    .RPD05             0.921    0.105    8.726    0.000
##    .RPD07             1.157    0.124    9.301    0.000
##    .RPD08             1.653    0.168    9.836    0.000
##    .RPD09             1.061    0.118    9.002    0.000
##    .RPD10             1.076    0.120    8.962    0.000
##    .RRE02             0.607    0.066    9.147    0.000
##    .RRE03             0.657    0.073    8.942    0.000
##    .RRE04             0.479    0.055    8.691    0.000
##    .RRE05             0.371    0.046    7.997    0.000
##    .RRE06             0.894    0.098    9.092    0.000
##    .RRE07             0.954    0.101    9.457    0.000
##    .RMA02             1.720    0.174    9.905    0.000
##    .RMA03             1.470    0.154    9.539    0.000
##    .RMA04             0.840    0.097    8.692    0.000
##    .RMA05             0.882    0.099    8.892    0.000
##    .RMA07             0.872    0.097    9.011    0.000
##    .RMA08             0.880    0.098    8.988    0.000
##    .RMA09             1.099    0.116    9.487    0.000
##    .RMA10             1.262    0.132    9.575    0.000
##    .RCO02             0.994    0.108    9.210    0.000
##    .RCO03             0.531    0.064    8.307    0.000
##    .RCO05             0.403    0.048    8.335    0.000
##    .RCO06             0.463    0.055    8.487    0.000
##    .RCO07             0.482    0.056    8.566    0.000
##    .EN01              0.695    0.072    9.659    0.000
##    .EN02              0.442    0.049    9.061    0.000
##    .EN04              0.473    0.051    9.236    0.000
##    .EN05              0.378    0.042    8.907    0.000
##    .EN06              0.366    0.041    8.900    0.000
##    .EN07              0.507    0.055    9.209    0.000
##    .EN08              0.354    0.041    8.661    0.000
##    .EVI01             0.199    0.039    5.057    0.000
##    .EVI02             0.224    0.040    5.635    0.000
##    .EVI03             1.211    0.124    9.770    0.000
##    .EDE01             0.352    0.064    5.524    0.000
##    .EDE02             0.510    0.067    7.652    0.000
##    .EDE03             0.874    0.088    9.947    0.000
##    .EAB01             0.378    0.128    2.946    0.003
##    .EAB02             1.149    0.121    9.493    0.000
##    .desapego          0.984    0.152    6.474    0.000
##    .relajación        0.548    0.089    6.176    0.000
##    .maestria          1.244    0.207    6.015    0.000
##    .control           0.646    0.123    5.240    0.000
##     recuperación      0.975    0.200    4.882    0.000
##     energia           2.817    0.327    8.606    0.000
##    .vigor             0.537    0.084    6.421    0.000
##    .dedicacion        0.098    0.087    1.123    0.261
##    .absorcion         0.469    0.138    3.397    0.001
##     engagement        2.300    0.284    8.098    0.000
lavaanPlot(fit5, coef=TRUE, cov=TRUE)
LS0tDQp0aXRsZTogIkFjdGl2aWRhZCAzIg0KYXV0aG9yOiAiVmljdG9yIE1hbnVlbCBNdcOxb3ogVGlyYWRvIEEwMTQyMzQzNCINCmRhdGU6ICIyMDI0LTAyLTIzIg0Kb3V0cHV0OiANCiBodG1sX2RvY3VtZW50Og0KICB0b2M6IFRSVUUNCiAgdG9jX2Zsb2F0OiBUUlVFDQogIGNvZGVfZG93bmxvYWQ6IFRSVUUNCiBlZGl0b3Jfb3B0aW9uczoNCiAgbWFya2Rvd246DQogIHdyYXA6IDcyDQotLS0NCg0KYGBge3IsIGluY2x1ZGU9RkFMU0V9DQpzZXR3ZCgiRTovQ2FycmVyYS9PY3Rhdm8gc2VtZXN0cmUgTElUIikNCmBgYA0KDQohW10oaHR0cHM6Ly9lbmNyeXB0ZWQtdGJuMC5nc3RhdGljLmNvbS9pbWFnZXM/cT10Ym46QU5kOUdjUWFuQlpuWHU3MTVsZVBZTEZWUjUzSEt2RkpsLTRDRG4td2JBJnVzcXA9Q0FVKQ0KDQojIE1vZGVsb3MgZGUgRWN1YWNpb25lcyBFc3RydWN0dXJhbGVzDQoNClZpY3RvciBNYW51ZWwgTXXDsW96IFRpcmFkbyAtIEEwMTQyMzQzNA0KDQojIyBUZW9yw61hDQoNCkxvcyAqKk1vZGVsb3MgZGUgRWN1YWNpb25lcyBFc3RydWN0dXJhbGVzIChTZW0pKiogZXMgdW5hIHTDqWNuaWNhIGRlIGFuw6FsaXNpcyBkZSBlc3RhZMOtc3RpY2EgbXVsdGl2YXJpYWRhLCBxdWUgcGVybWl0ZSBhbmFsaXphciBwYXRlcm9uZXMgY29tcGxlam9zIGRlIHJlbGFjaW9uZXMgZW50cmUgdmFyaWFibGVzLCByZWFsaXphciBjb21wYXJhY2lvbmVzIGVudHJlIGUgaW50cmFncnVwb3MsIHkgdmFsaWRhciBtb2RlbG9zIHRlw7NyaWNvcyB5IGVtcMOtcmljb3MuDQoNCiMjIEVqZW1wbG8gMS4gRXN0dWRpbyBkZSBIb2x6aW5nZXIgeSBTd2luZWZvcmQgKDE5MzkpDQoNCiMjIyBDb250ZXh0bw0KDQpIb2x6aW5nZXIgeSBTd2luZWZvcmQgcmVhbGl6YXJvbiBleMOhbWVuZXMgZGUgaGFiaWxpZGFkIG1lbnRhbCBhIGFkb2xlc2NlbnRlcyBkZSA3wrAgeSA4wrAgZGUgZG9zIGVzY3VlbGFzIChQYXN0ZXVyIHkgR3JhbmQtd2hpdGUpLg0KDQpMYSBiYXNlIGRlIGRhdG9zIGVzdGEgaW5jbHVpZGEgY29tbyBwYXF1ZXRlIGVuIFIgZSBpbmNsdXllIGxhcyBzaWd1aWVudGVzIHZhcmlhYmxlcyB5IGNvbHVtbmFzOg0KDQotICAgPGRpdj4NCg0KICAgID4gLSAgIGlkOiBpZGVudGlmaWNhZG9yDQogICAgPg0KICAgID4gLSAgIHNleDogZ8OpbmVybyAoMSBIb21icmUsIDIgTXVqZXIpDQogICAgPg0KICAgID4gLSAgIGFnZXlyOiBhw7Fvcw0KICAgID4NCiAgICA+IC0gICBhZ2VtbzogbWVzZXMNCiAgICA+DQogICAgPiAtICAgc2Nob29sOiBlc2N1ZWxhDQogICAgPg0KICAgID4gLSAgIGdyYWRlOiBncmFkbw0KICAgID4NCiAgICA+IC0gICB4MTogcGVyY2VwY2nDs24gdmlzdWFsDQogICAgPg0KICAgID4gLSAgIHgyOiBqdWVnbyBjb24gY3Vib3MNCiAgICA+DQogICAgPiAtICAgeDM6IGp1ZWdvIGNvbiBwYXN0aWxsYXMgLyBlc3BhY2lhbGVzDQogICAgPg0KICAgID4gLSAgIHg0OiBjb21wcmVuc2lvbiBkZSBww6FycmFmb3MNCiAgICA+DQogICAgPiAtICAgeDU6IGNvbXBsZXRhciBvcmFjaW9uZXMNCiAgICA+DQogICAgPiAtICAgeDY6IHNpZ25pZmljYWRvcyBkZSBwYWxhYnJhcw0KICAgID4NCiAgICA+IC0gICB4Nzogc3VtYXMgYWNlbGVyYWRhcw0KICAgID4NCiAgICA+IC0gICB4ODogY29udGVvIGFjZWxlcmFkbyBkZSBwdW50b3MNCiAgICA+DQogICAgPiAtICAgeDk6IGRpc2NyaW1pbmFjaW9uIGFjZWxlcmFkYSBkZSBtYXl1c2N1bGFzIHJlY3RhcyB5IGN1cnZhcw0KICAgID4NCiAgICA+ICAgICBTZSBidXNjYSBpZGVudGlmaWNhciBsYXMgcmVsYWNpb25lcyBlbnRyZSBsYXMgaGFiaWxpZGFkZXMgdmlzdWFsICh4MSx4Mix4MyksIHRleHR1YWwgKHg0LHg1LHg2KSB5IHZlbG9jaWRhZCAoeDcseDgseDkpIGRlIGxvcyBhZG9sZXNjZW50ZXMuDQoNCiAgICA8L2Rpdj4NCg0KIyMjIExsYW1hciBsaWJyZXLDrWFzDQoNCmBgYHtyLCBtZXNzYWdlPUZBTFNFfQ0KbGlicmFyeShsYXZhYW4pIA0KbGlicmFyeShsYXZhYW5QbG90KQ0KI2xhdmFhbiA9IExhdGVudCB2YXJpYWJsZSBhbmFseXNpcyAobm8gc2Ugb2JzZXJ2YSwgc2UgaW5maWVyZSkNCmBgYA0KDQojIyMgSW1wb3J0YXIgYmFzZSBkZSBkYXRvcw0KDQpgYGB7cn0NCmRmMSA8LSBIb2x6aW5nZXJTd2luZWZvcmQxOTM5DQpgYGANCg0KIyMjIEVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3MNCg0KYGBge3J9DQpzdHIoZGYxKQ0KYGBgDQoNCmBgYHtyfQ0KY29sU3Vtcyhpcy5uYShkZjEpKQ0KYGBgDQoNCiMjIyBUaXBvcyBkZSBmw7NybXVsYXMNCg0KMS4gIFJlZ3Jlc2nDs24gKFx+KSBWYXJpYWJsZSBxdWUgZGVwZW5kZSBkZSBvdHJhcw0KMi4gIFZhcmlhYmxlcyBsYXRlbnRlcyAoPVx+KSBObyBzZSBvYnNlcnZhLCBzZSBpbmZpZXJlDQozLiAgVmFyaWFuemFzIHkgY292YXJpYW56YXMgKFx+XH4pIFJlbGFjaW9uZXMgZW50cmUgdmFyaWFibGVzIGxhdG5ldGVzIHkgb2JzZXJ2YWRhcyAoVmFyaWFuemEgZW50cmUgc2kgbWlzbWEsIGNvdmFyaWFuemEgZW50cmUgb3RyYXMpDQo0LiAgSW50ZXJjZXB0byAoXH4xKSBWYWxvciBlc3BlcmFkbyBjdWFuZG8gbGFzIGRlbWFzIHZhcmlhYmxlcyBzb24gY2Vybw0KDQojIyMgRXN0cnVjdHVyYSBNb2RlbG8gMQ0KDQpgYGB7cn0NCm1vZGVsbzEgPC0gJyAjIFJlZ3Jlc2lvbmVzICAgICAgICAgICAgICANCiAgICAgICAgICAgICAjIFZhcmlhYmxlcyBsYXRlbnRlcyAgICAgICAgICAgICANCiAgICAgICAgICAgICB2aXN1YWwgPX4geDEgKyB4MiArIHgzICAgICAgICAgICAgICANCiAgICAgICAgICAgICB0ZXh0dWFsID1+IHg0ICsgeDUgKyB4NiAgICAgICAgICAgICANCiAgICAgICAgICAgICB2ZWxvY2lkYWQgPX4geDcgKyB4OCArIHg5ICAgICAgICAgICAgIA0KICAgICAgICAgICAgICMgVmFyaWFuemFzIHkgY292YXJpYW56YXMgICAgICAgICAgICAgIA0KICAgICAgICAgICAgICMgSW50ZXJjZXB0byAnDQpgYGANCg0KIyMjIEdlbmVyYXIgZWwgQW7DoWxpc2lzIEZhY3RvcmlhbCBDb25maXJtYXRvcmlvIChDRkEpDQoNCmBgYHtyfQ0KZml0IDwtIGNmYShtb2RlbG8xLCBkZjEpIA0Kc3VtbWFyeShmaXQpIA0KbGF2YWFuUGxvdChmaXQsIGNvZWY9VFJVRSwgY292PVRSVUUpDQpgYGANCg0KIyMgRWplcmNpY2lvIDI6IERlbW9jcmFjaWEgUG9sw610aWNhIGUgSW5kdXN0cmFsaXphY2nDs24NCg0KIyMjIENvbnRleHRvDQoNCkxhIGJhc2UgZGUgZGF0b3MgY29udGllbmUgZGlzdGludGFzIG1lZGljaW9uZXMgc29icmUgbGEgZGVtb2NyYWNpYSBwb2zDrXRpY2EgZSBpbmR1c3RyYWxpemFjacOzbiBlbiBwYWlzZXMgZW4gZGVzYXJyb2xsbyBkdXJhbnRlIDE5NjAgeSAxOTY1Lg0KDQpMYSB0YWJsYSBpbmx1eWUgbG9zIHNpZ3VpZW50ZXMgZGF0b3M6DQoNCi0gICB5MTogY2FsaWZpY2FjaW9uZXMgZGUgbGliZXJ0YWQgZW4gMTk2MA0KDQotICAgeTI6IGxpYmVydGFkIGRlIGxhIG9wb3NjaW9uIHBvbMOtdGljYSAxOTYwDQoNCi0gICB5MzogaW1wYXJjaWFsaWRhZCBkZSBlbGVjY2lvbmVzIDE5NjANCg0KLSAgIHk0OiBlZmljYWNpYSBkZSBsYSBsZWdpc2xhdHVyYSBlbiAxOTYwDQoNCi0gICB5NTogY2FsaWZpY2FjaW9uZXMgZGUgbGliZXJ0YWQgZW4gMTk2NQ0KDQotICAgeTY6IGxpYmVydGFkIGRlIGxhIG9wb3NjaW9uIHBvbMOtdGljYSAxOTY1DQoNCi0gICB5NzogaW1wYXJjaWFsaWRhZCBkZSBlbGVjY2lvbmVzIDE5NjUNCg0KLSAgIHk4OiBlZmljYWNpYSBkZSBsYSBsZWdpc2xhdHVyYSBlbiAxOTY1DQoNCi0gICB4MTogUElCIHBlciBjw6FwaXRhIGVuIDE5NjANCg0KLSAgIHgyOiBjb25zdW1vIGRlIGVuZXJnaWEgaW5hbmltYWRhIHBlciBjw6FwaXRhIDE5NjANCg0KLSAgIHgzOiBwb3JjZW50YWplIGRlIGxhIGZ1ZXJ6YSBsYWJvcmFsIGVuIGxhIGluZHVzdHJpYSAxOTYwDQoNCiMjIyBJbXBvcnRhdCBiYXNlIGRlIGRhdG9zDQoNCmBgYHtyfQ0KZGYyIDwtIFBvbGl0aWNhbERlbW9jcmFjeQ0KYGBgDQoNCmBgYHtyfQ0KbW9kZWxvMiA8LSAnICMgUmVncmVzaW9uZXMNCiAgICAgICAgICAgICBQb2xpdGljYTE5NjUgfiBQb2xpdGljYTE5NjAgKyBFY29ub21pYTE5NjANCiAgICAgICAgICAgICAgUG9saXRpY2ExOTYwIH4gRWNvbm9taWExOTYwDQogICAgICAgICAgICAgIyBWYXJpYWJsZXMgbGF0ZW50ZXMNCiAgICAgICAgICAgICBQb2xpdGljYTE5NjUgPX4geTUgKyB5NiArIHk3ICsgeTgNCiAgICAgICAgICAgICBQb2xpdGljYTE5NjAgPX4geTEgKyB5MiArIHkzICsgeTQNCiAgICAgICAgICAgICBFY29ub21pYTE5NjAgPX4geDEgKyB4MiArIHgzDQogICAgICAgICAgICAgIyBWYXJpYW56YXMgeSBjb3Zhcmlhbnphcw0KICAgICAgICAgICAgICMgSW50ZXJjZXB0bzcNCiAgICAnDQpgYGANCg0KYGBge3J9DQpmaXQyIDwtIGNmYShtb2RlbG8yLCBkZjIpIA0Kc3VtbWFyeShmaXQyKSANCmxhdmFhblBsb3QoZml0MiwgY29lZj1UUlVFLCBjb3Y9VFJVRSkNCmBgYA0KDQohW10oaHR0cHM6Ly9tZWRpYTEuZ2lwaHkuY29tL21lZGlhL0taYVhXZWlMZzZGMHBuekltNS8yMDB3LmdpZikNCg0KIyBDb250ZXh0bw0KDQpVbm8gZGUgbG9zIHJldG9zIG3DoXMgaW1wb3J0YW50ZXMgZGUgbGFzIG9yZ2FuaXphY2lvbmVzIGVzIGVudGVuZGVyIGVsIGVzdGFkbyB5IGJpZW5lc3RhciBkZSBsb3MgY29sYWJvcmFkb3JlcywgeWEgcXVlIHB1ZWRlIGltcGFjdGFyIGRpcmVjdGFtZW50ZSBlbiBlbCBkZXNlbXBlw7FvIHkgZWwgbG9ncm8gZGUgbG9zIG9iamV0aXZvcy4NCg0KIyBQYXJ0ZSAxOiBBbsOhbGlzaXMgZmFjdG9yaWFsIGNvbmZpcm1hdG9yaW8gKHNlZ3VuZG8gb3JkZW4pIHNvYnJlIGVsIGNvbnN0cnVjdG8gZGUgZXhwZXJpZW5jaWFzIGRlIHJlY3VwZXJhY2nDs24uDQoNCiMjIEluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcsOtYXMNCg0KYGBge3IsIG1lc3NhZ2U9RkFMU0V9DQpsaWJyYXJ5KGxhdmFhbikNCmxpYnJhcnkobGF2YWFuUGxvdCkNCmxpYnJhcnkocmVhZHhsKQ0KYGBgDQoNCmBgYHtyfQ0KZGYgPC0gcmVhZF94bHN4KCJEYXRvc19TRU1fRW5nLnhsc3giKQ0KYGBgDQoNCmBgYHtyfQ0Kc3VtbWFyeShkZikNCmBgYA0KDQojIyBNb2RlbG8gMQ0KDQpgYGB7cn0NCm1vZGVsbzEgPC0gJyAjIFJlZ3Jlc2lvbmVzDQogICAgICAgICAgICAgIyBWYXJpYWJsZXMgbGF0ZW50ZXMNCiAgICAgICAgICAgICBkZXNhcGVnbyA9fiBSUEQwMSArIFJQRDAyICsgUlBEMDMgKyBSUEQwNSArIFJQRDA2ICsgUlBEMDcgKyBSUEQwOCArIFJQRDA5ICsgUlBEMTANCiAgICAgICAgICAgICByZWxhamFjacOzbiA9fiBSUkUwMiArIFJSRTAzICsgUlJFMDQgKyBSUkUwNSArIFJSRTA2ICsgUlJFMDcgKyBSUkUxMA0KICAgICAgICAgICAgIG1hZXN0cmlhID1+IFJNQTAyICsgUk1BMDMgKyBSTUEwNCArIFJNQTA1ICsgUk1BMDYgKyBSTUEwNyArIFJNQTA4ICsgUk1BMDkgKyBSTUExMA0KICAgICAgICAgICAgIGNvbnRyb2wgPX4gUkNPMDIgKyBSQ08wMyArIFJDTzA0ICsgUkNPMDUgKyBSQ08wNiArIFJDTzA3DQogICAgICAgICAgICAgcmVjdXBlcmFjacOzbiA9fiBkZXNhcGVnbyArIHJlbGFqYWNpw7NuICsgbWFlc3RyaWEgKyBjb250cm9sDQogICAgICAgICAgICAgIyBWYXJpYW56YXMgeSBjb3Zhcmlhbnphcw0KICAgICAgICAgICAgICMgSW50ZXJjZXB0bw0KJw0KYGBgDQoNCiMjIEdlbmVyYXIgQ0ZBDQoNCmBgYHtyfQ0KZml0IDwtIGNmYShtb2RlbG8xLCBkZikNCnN1bW1hcnkoZml0KQ0KbGF2YWFuUGxvdChmaXQsIGNvZWY9VFJVRSwgY292PVRSVUUpDQpgYGANCg0KUmV2aXNhciBlc3RpbWF0ZXMgZW4gdmFyaWFuY2VzIChlbGltaW5hciBsYXMgbcOhcyBiYWphcyksIGVsaW1pbmFyIGxhcyBQKFw+XHxaXHwpIG1heW9yIGEgMC4wNSwgb3RybyBjcml0ZXJpbyBhIGVsaW1pbmFyIGVzIGxvcyBxdWUgdGVuZ2FuIHVuIGVycm9yIGVzdGFuZGFyIG3DoXMgZ3JhbmRlIHF1ZSBsb3MgZGVtYXMuIEFuYWxpemFyIGxhdGVudGVzDQoNCmBgYHtyfQ0KbW9kZWxvMV9kZXB1cmFkbyA8LSAnICMgUmVncmVzaW9uZXMNCiAgICAgICAgICAgICAjIFZhcmlhYmxlcyBsYXRlbnRlcw0KICAgICAgICAgICAgIGRlc2FwZWdvID1+IFJQRDAxICsgUlBEMDIgKyBSUEQwMyArIFJQRDA1ICsgUlBEMDcgKyBSUEQwOCArIFJQRDA5ICsgUlBEMTANCiAgICAgICAgICAgICByZWxhamFjacOzbiA9fiBSUkUwMiArIFJSRTAzICsgUlJFMDQgKyBSUkUwNSArIFJSRTA2ICsgUlJFMDcNCiAgICAgICAgICAgICBtYWVzdHJpYSA9fiBSTUEwMiArIFJNQTAzICsgUk1BMDQgKyBSTUEwNSArIFJNQTA3ICsgUk1BMDggKyBSTUEwOSArIFJNQTEwDQogICAgICAgICAgICAgY29udHJvbCA9fiBSQ08wMiArIFJDTzAzICsgUkNPMDUgKyBSQ08wNiArIFJDTzA3DQogICAgICAgICAgICAgcmVjdXBlcmFjacOzbiA9fiBkZXNhcGVnbyArIHJlbGFqYWNpw7NuICsgbWFlc3RyaWEgKyBjb250cm9sDQogICAgICAgICAgICAgIyBWYXJpYW56YXMgeSBjb3Zhcmlhbnphcw0KICAgICAgICAgICAgICMgSW50ZXJjZXB0bw0KJw0KYGBgDQoNCmBgYHtyfQ0KZml0MiA8LSBjZmEobW9kZWxvMV9kZXB1cmFkbywgZGYpDQpzdW1tYXJ5KGZpdDIpDQpsYXZhYW5QbG90KGZpdDIsIGNvZWY9VFJVRSwgY292PVRSVUUpDQpgYGANCg0KIyBQYXJ0ZSAyDQoNCmBgYHtyfQ0KbW9kZWxvMiA8LSAnICMgUmVncmVzaW9uZXMNCiAgICAgICAgICAgICAjIFZhcmlhYmxlcyBsYXRlbnRlcw0KICAgICAgICAgICAgIGVuZXJnaWEgPX4gRU4wMSArIEVOMDIgK0VOMDQgKyBFTjA1ICsgRU4wNiArIEVOMDcgKyBFTjA4DQogICAgICAgICAgICAgIyBWYXJpYW56YXMgeSBjb3Zhcmlhbnphcw0KICAgICAgICAgICAgICMgSW50ZXJjZXB0bw0KJw0KYGBgDQoNCmBgYHtyfQ0KZml0MyA8LSBjZmEobW9kZWxvMiwgZGYpDQpzdW1tYXJ5KGZpdDMpDQpsYXZhYW5QbG90KGZpdDMsIGNvZWY9VFJVRSwgY292PVRSVUUpDQpgYGANCg0KRGVzcHVlcyBkZSB2YWxpYXIgbG9zIHZhbG9yZXMgZXN0aW1hdGl2b3MsIGxvcyBlcnJvcmVzIGVzdGFuZGFyIHkgZWwgcC12YWx1ZSwgZGV0ZXJtaW5hbW9zIGlubmVjZXNhcmlvIGRlcHVyYXIgZWwgbW9kZWxvDQoNCiMgUGFydGUgMw0KDQpgYGB7cn0NCm1vZGVsbzMgPC0gJyAjIFJlZ3Jlc2lvbmVzDQogICAgICAgICAgICAgIyBWYXJpYWJsZXMgbGF0ZW50ZXMNCiAgICAgICAgICAgICB2aWdvciA9fiBFVkkwMSArIEVWSTAyICsgRVZJMDMNCiAgICAgICAgICAgICBkZWRpY2FjaW9uID1+IEVERTAxICsgRURFMDIgKyBFREUwMw0KICAgICAgICAgICAgIGFic29yY2lvbiA9fiBFQUIwMSArIEVBQjAyDQogICAgICAgICAgICAgZW5nYWdlbWVudCA9fiB2aWdvciArIGRlZGljYWNpb24gKyBhYnNvcmNpb24NCiAgICAgICAgICAgICAjIFZhcmlhbnphcyB5IGNvdmFyaWFuemFzDQogICAgICAgICAgICAgIyBJbnRlcmNlcHRvDQonDQpgYGANCg0KYGBge3J9DQpmaXQ0IDwtIGNmYShtb2RlbG8zLCBkZikNCnN1bW1hcnkoZml0NCkNCmxhdmFhblBsb3QoZml0NCwgY29lZj1UUlVFLCBjb3Y9VFJVRSkNCmBgYA0KDQpgYGB7cn0NCm1vZGVsbzQgPC0gJyAjIFJlZ3Jlc2lvbmVzDQogICAgICAgICAgICAgIyBWYXJpYWJsZXMgbGF0ZW50ZXMxDQogICAgICAgICAgICAgZGVzYXBlZ28gPX4gUlBEMDEgKyBSUEQwMiArIFJQRDAzICsgUlBEMDUgKyBSUEQwNyArIFJQRDA4ICsgUlBEMDkgKyBSUEQxMA0KICAgICAgICAgICAgIHJlbGFqYWNpw7NuID1+IFJSRTAyICsgUlJFMDMgKyBSUkUwNCArIFJSRTA1ICsgUlJFMDYgKyBSUkUwNw0KICAgICAgICAgICAgIG1hZXN0cmlhID1+IFJNQTAyICsgUk1BMDMgKyBSTUEwNCArIFJNQTA1ICsgUk1BMDcgKyBSTUEwOCArIFJNQTA5ICsgUk1BMTANCiAgICAgICAgICAgICBjb250cm9sID1+IFJDTzAyICsgUkNPMDMgKyBSQ08wNSArIFJDTzA2ICsgUkNPMDcNCiAgICAgICAgICAgICByZWN1cGVyYWNpw7NuID1+IGRlc2FwZWdvICsgcmVsYWphY2nDs24gKyBtYWVzdHJpYSArIGNvbnRyb2wNCiAgICAgICAgICAgICANCiAgICAgICAgICAgICAjIFZhcmlhYmxlcyBsYXRlbnRlczINCiAgICAgICAgICAgICBlbmVyZ2lhID1+IEVOMDEgKyBFTjAyICtFTjA0ICsgRU4wNSArIEVOMDYgKyBFTjA3ICsgRU4wOA0KICAgICAgICAgICAgIA0KICAgICAgICAgICAgICMgVmFyaWFibGVzIGxhdGVudGVzMw0KICAgICAgICAgICAgIHZpZ29yID1+IEVWSTAxICsgRVZJMDIgKyBFVkkwMw0KICAgICAgICAgICAgIGRlZGljYWNpb24gPX4gRURFMDEgKyBFREUwMiArIEVERTAzDQogICAgICAgICAgICAgYWJzb3JjaW9uID1+IEVBQjAxICsgRUFCMDINCiAgICAgICAgICAgICBlbmdhZ2VtZW50ID1+IHZpZ29yICsgZGVkaWNhY2lvbiArIGFic29yY2lvbg0KICAgICAgICANCiAgICAgICAgICAgICAjIFZhcmlhbnphcyB5IGNvdmFyaWFuemFzDQogICAgICAgICAgICAgZW5nYWdlbWVudCB+fiBlbmVyZ2lhICsgcmVjdXBlcmFjacOzbg0KICAgICAgICAgICAgICMgSW50ZXJjZXB0bw0KJw0KYGBgDQoNCmBgYHtyfQ0KZml0NSA8LSBzZW0obW9kZWxvNCwgZGYpDQpzdW1tYXJ5KGZpdDUpDQpsYXZhYW5QbG90KGZpdDUsIGNvZWY9VFJVRSwgY292PVRSVUUpDQpgYGANCg==