library(readxl)
df1 <- read_excel("Datos_SEM_Eng.xlsx")
library(lavaan)
## This is lavaan 0.6-17
## lavaan is FREE software! Please report any bugs.
library(lavaanPlot)
#Lavaan = Latent variable analysis
summary(df1)
## ID GEN EXPER EDAD
## Min. : 1.0 Min. :0.0000 Min. : 0.00 Min. :22.00
## 1st Qu.: 56.5 1st Qu.:0.0000 1st Qu.:15.00 1st Qu.:37.50
## Median :112.0 Median :1.0000 Median :20.00 Median :44.00
## Mean :112.0 Mean :0.5919 Mean :21.05 Mean :43.95
## 3rd Qu.:167.5 3rd Qu.:1.0000 3rd Qu.:27.50 3rd Qu.:51.00
## Max. :223.0 Max. :1.0000 Max. :50.00 Max. :72.00
## RPD01 RPD02 RPD03 RPD05 RPD06
## Min. :1.000 Min. :1.00 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:3.00 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:3.000
## Median :5.000 Median :4.00 Median :5.000 Median :5.000 Median :5.000
## Mean :4.596 Mean :4.09 Mean :4.789 Mean :4.327 Mean :4.798
## 3rd Qu.:6.000 3rd Qu.:6.00 3rd Qu.:7.000 3rd Qu.:6.000 3rd Qu.:7.000
## Max. :7.000 Max. :7.00 Max. :7.000 Max. :7.000 Max. :7.000
## RPD07 RPD08 RPD09 RPD10
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:2.500
## Median :4.000 Median :5.000 Median :5.000 Median :5.000
## Mean :3.794 Mean :4.735 Mean :4.466 Mean :4.435
## 3rd Qu.:5.500 3rd Qu.:7.000 3rd Qu.:6.000 3rd Qu.:6.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## RRE02 RRE03 RRE04 RRE05 RRE06
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.0
## 1st Qu.:5.000 1st Qu.:5.000 1st Qu.:5.000 1st Qu.:5.000 1st Qu.:4.0
## Median :6.000 Median :6.000 Median :6.000 Median :6.000 Median :6.0
## Mean :5.691 Mean :5.534 Mean :5.668 Mean :5.623 Mean :5.3
## 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.0
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.0
## RRE07 RRE10 RMA02 RMA03
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:4.000 1st Qu.:5.000 1st Qu.:3.000 1st Qu.:3.000
## Median :6.000 Median :6.000 Median :4.000 Median :5.000
## Mean :5.305 Mean :5.664 Mean :4.215 Mean :4.377
## 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:6.000 3rd Qu.:6.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## RMA04 RMA05 RMA06 RMA07
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:5.000 1st Qu.:4.000
## Median :5.000 Median :5.000 Median :6.000 Median :5.000
## Mean :4.686 Mean :4.637 Mean :5.511 Mean :4.767
## 3rd Qu.:6.000 3rd Qu.:6.000 3rd Qu.:7.000 3rd Qu.:6.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## RMA08 RMA09 RMA10 RCO02 RCO03
## Min. :1.000 Min. :1.000 Min. :1.00 Min. :1.000 Min. :1.000
## 1st Qu.:4.000 1st Qu.:3.000 1st Qu.:3.00 1st Qu.:5.000 1st Qu.:5.000
## Median :5.000 Median :5.000 Median :5.00 Median :6.000 Median :6.000
## Mean :4.942 Mean :4.614 Mean :4.43 Mean :5.336 Mean :5.574
## 3rd Qu.:6.500 3rd Qu.:6.000 3rd Qu.:6.00 3rd Qu.:7.000 3rd Qu.:7.000
## Max. :7.000 Max. :7.000 Max. :7.00 Max. :7.000 Max. :7.000
## RCO04 RCO05 RCO06 RCO07
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:5.000 1st Qu.:5.000 1st Qu.:5.000 1st Qu.:5.000
## Median :6.000 Median :6.000 Median :6.000 Median :6.000
## Mean :5.704 Mean :5.668 Mean :5.619 Mean :5.632
## 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## EN01 EN02 EN04 EN05
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:4.000 1st Qu.:4.000 1st Qu.:4.000
## Median :5.000 Median :6.000 Median :5.000 Median :5.000
## Mean :4.717 Mean :5.004 Mean :4.883 Mean :4.928
## 3rd Qu.:6.000 3rd Qu.:7.000 3rd Qu.:6.000 3rd Qu.:6.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## EN06 EN07 EN08 EVI01
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :0.000
## 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:4.000 1st Qu.:4.000
## Median :5.000 Median :5.000 Median :5.000 Median :5.000
## Mean :4.767 Mean :4.578 Mean :4.776 Mean :5.013
## 3rd Qu.:6.000 3rd Qu.:6.000 3rd Qu.:6.000 3rd Qu.:6.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## EVI02 EVI03 EDE01 EDE02
## Min. :0.000 Min. :0.000 Min. :0.000 Min. :0.000
## 1st Qu.:4.000 1st Qu.:4.000 1st Qu.:5.000 1st Qu.:5.000
## Median :6.000 Median :6.000 Median :6.000 Median :6.000
## Mean :5.076 Mean :4.973 Mean :5.305 Mean :5.543
## 3rd Qu.:6.000 3rd Qu.:6.000 3rd Qu.:7.000 3rd Qu.:7.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## EDE03 EAB01 EAB02 EAB03
## Min. :0.000 Min. :0.000 Min. :0.000 Min. :0.000
## 1st Qu.:6.000 1st Qu.:5.000 1st Qu.:5.000 1st Qu.:5.000
## Median :7.000 Median :6.000 Median :6.000 Median :6.000
## Mean :6.135 Mean :5.605 Mean :5.821 Mean :5.363
## 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
str(df1)
## tibble [223 × 51] (S3: tbl_df/tbl/data.frame)
## $ ID : num [1:223] 1 2 3 4 5 6 7 8 9 10 ...
## $ GEN : num [1:223] 1 1 1 1 1 0 0 1 1 1 ...
## $ EXPER: num [1:223] 22 22 30 17 23 31 26 30 15 15 ...
## $ EDAD : num [1:223] 45 44 52 41 51 52 53 48 40 38 ...
## $ RPD01: num [1:223] 5 4 7 5 7 3 5 6 4 2 ...
## $ RPD02: num [1:223] 1 4 7 5 6 4 5 7 4 3 ...
## $ RPD03: num [1:223] 3 6 7 1 7 5 4 6 4 2 ...
## $ RPD05: num [1:223] 2 5 7 1 6 4 4 7 4 3 ...
## $ RPD06: num [1:223] 3 3 7 3 7 3 5 2 6 7 ...
## $ RPD07: num [1:223] 1 2 6 5 6 5 6 5 4 1 ...
## $ RPD08: num [1:223] 3 3 7 3 7 4 6 2 5 3 ...
## $ RPD09: num [1:223] 2 4 7 2 6 4 7 4 4 2 ...
## $ RPD10: num [1:223] 4 4 7 2 6 4 7 1 6 2 ...
## $ RRE02: num [1:223] 6 6 7 6 7 5 7 5 6 7 ...
## $ RRE03: num [1:223] 6 6 7 6 7 4 7 4 4 7 ...
## $ RRE04: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
## $ RRE05: num [1:223] 6 6 7 6 7 5 7 4 6 7 ...
## $ RRE06: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
## $ RRE07: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
## $ RRE10: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
## $ RMA02: num [1:223] 4 6 4 3 4 7 5 2 6 7 ...
## $ RMA03: num [1:223] 5 6 5 4 4 7 5 1 2 7 ...
## $ RMA04: num [1:223] 5 5 6 4 4 5 5 1 4 7 ...
## $ RMA05: num [1:223] 5 5 6 4 4 6 5 3 4 7 ...
## $ RMA06: num [1:223] 6 6 7 6 5 4 5 7 6 7 ...
## $ RMA07: num [1:223] 4 6 6 5 4 5 7 4 6 7 ...
## $ RMA08: num [1:223] 5 6 4 4 4 6 6 4 2 7 ...
## $ RMA09: num [1:223] 3 5 4 3 5 4 5 2 4 7 ...
## $ RMA10: num [1:223] 7 5 5 4 5 5 6 4 3 7 ...
## $ RCO02: num [1:223] 7 7 7 5 7 6 7 7 3 7 ...
## $ RCO03: num [1:223] 7 7 7 5 7 5 7 7 3 7 ...
## $ RCO04: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
## $ RCO05: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
## $ RCO06: num [1:223] 7 7 7 6 7 4 7 7 4 7 ...
## $ RCO07: num [1:223] 5 7 7 6 7 4 7 7 7 7 ...
## $ EN01 : num [1:223] 6 6 7 4 6 4 7 7 4 7 ...
## $ EN02 : num [1:223] 7 6 7 4 6 4 7 7 4 7 ...
## $ EN04 : num [1:223] 6 6 7 4 6 4 7 6 4 7 ...
## $ EN05 : num [1:223] 5 5 7 5 6 5 7 6 4 7 ...
## $ EN06 : num [1:223] 5 5 7 5 6 3 7 5 5 7 ...
## $ EN07 : num [1:223] 5 5 7 2 6 4 7 4 4 7 ...
## $ EN08 : num [1:223] 6 5 7 5 6 4 7 4 4 7 ...
## $ EVI01: num [1:223] 6 5 7 5 6 4 7 6 6 0 ...
## $ EVI02: num [1:223] 6 5 7 6 6 4 6 5 5 1 ...
## $ EVI03: num [1:223] 6 6 6 7 6 4 6 6 7 0 ...
## $ EDE01: num [1:223] 6 6 6 5 7 6 7 7 7 1 ...
## $ EDE02: num [1:223] 7 6 7 6 7 5 7 7 7 5 ...
## $ EDE03: num [1:223] 7 7 7 7 7 5 7 7 7 6 ...
## $ EAB01: num [1:223] 7 7 7 6 7 5 7 7 7 0 ...
## $ EAB02: num [1:223] 7 7 7 6 7 5 7 2 5 1 ...
## $ EAB03: num [1:223] 6 5 6 5 6 5 7 3 5 0 ...
modelo1 <- ' #Regresiones
# Variables latentes
desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD07 + RPD08 + RPD09 + RPD10
relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
recuperacion =~ desapego + relajacion + dominio + control
# Varianzas y Covarianzas
# Intercepto
'
fit1 <- cfa(modelo1, df1)
summary(fit1)
## lavaan 0.6.17 ended normally after 44 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 64
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 1053.279
## Degrees of freedom 401
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## desapego =~
## RPD01 1.000
## RPD02 1.204 0.079 15.156 0.000
## RPD03 1.145 0.083 13.744 0.000
## RPD05 1.310 0.084 15.663 0.000
## RPD07 1.219 0.083 14.672 0.000
## RPD08 1.114 0.086 13.007 0.000
## RPD09 1.301 0.085 15.321 0.000
## RPD10 1.328 0.086 15.410 0.000
## relajacion =~
## RRE02 1.000
## RRE03 1.119 0.065 17.216 0.000
## RRE04 1.025 0.058 17.716 0.000
## RRE05 1.055 0.056 18.760 0.000
## RRE06 1.245 0.074 16.867 0.000
## RRE07 1.117 0.071 15.684 0.000
## RRE10 0.814 0.067 12.108 0.000
## dominio =~
## RMA02 1.000
## RMA03 1.155 0.096 12.079 0.000
## RMA04 1.178 0.089 13.273 0.000
## RMA05 1.141 0.087 13.072 0.000
## RMA06 0.645 0.075 8.597 0.000
## RMA07 1.103 0.084 13.060 0.000
## RMA08 1.109 0.085 12.993 0.000
## RMA09 1.028 0.084 12.246 0.000
## RMA10 1.055 0.088 12.043 0.000
## control =~
## RCO02 1.000
## RCO03 0.948 0.049 19.187 0.000
## RCO04 0.796 0.044 18.115 0.000
## RCO05 0.818 0.043 18.993 0.000
## RCO06 0.834 0.046 18.217 0.000
## RCO07 0.835 0.046 18.058 0.000
## recuperacion =~
## desapego 1.000
## relajacion 1.144 0.131 8.742 0.000
## dominio 0.859 0.129 6.654 0.000
## control 1.345 0.157 8.585 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .RPD01 1.134 0.117 9.697 0.000
## .RPD02 0.957 0.105 9.073 0.000
## .RPD03 1.383 0.144 9.631 0.000
## .RPD05 0.933 0.107 8.751 0.000
## .RPD07 1.163 0.125 9.307 0.000
## .RPD08 1.629 0.166 9.815 0.000
## .RPD09 1.051 0.117 8.978 0.000
## .RPD10 1.060 0.119 8.923 0.000
## .RRE02 0.627 0.068 9.273 0.000
## .RRE03 0.654 0.073 9.013 0.000
## .RRE04 0.480 0.055 8.788 0.000
## .RRE05 0.374 0.046 8.145 0.000
## .RRE06 0.886 0.097 9.147 0.000
## .RRE07 0.951 0.100 9.504 0.000
## .RRE10 1.138 0.113 10.093 0.000
## .RMA02 1.740 0.175 9.931 0.000
## .RMA03 1.485 0.155 9.575 0.000
## .RMA04 0.855 0.097 8.772 0.000
## .RMA05 0.899 0.100 8.967 0.000
## .RMA06 1.631 0.159 10.281 0.000
## .RMA07 0.845 0.094 8.977 0.000
## .RMA08 0.886 0.098 9.034 0.000
## .RMA09 1.094 0.115 9.500 0.000
## .RMA10 1.259 0.131 9.590 0.000
## .RCO02 0.983 0.105 9.379 0.000
## .RCO03 0.484 0.058 8.391 0.000
## .RCO04 0.462 0.052 8.963 0.000
## .RCO05 0.382 0.045 8.514 0.000
## .RCO06 0.494 0.055 8.918 0.000
## .RCO07 0.516 0.057 8.987 0.000
## .desapego 0.979 0.156 6.291 0.000
## .relajacion 0.342 0.090 3.827 0.000
## .dominio 1.258 0.212 5.938 0.000
## .control 0.887 0.159 5.582 0.000
## recuperacion 0.979 0.203 4.815 0.000
lavaanPlot(fit1, coef= TRUE, cov=TRUE)
modelodepurado <- ' #Regresiones
# Variables latentes
desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD07 + RPD08 + RPD09 + RPD10
relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07
dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA07 + RMA08 + RMA09 + RMA10
control =~ RCO02 + RCO03 + RCO05 + RCO06 + RCO07
recuperacion =~ desapego + relajacion + dominio + control
# Varianzas y Covarianzas
# Intercepto
'
fitdepurado <- cfa(modelodepurado, df1)
summary(fitdepurado)
## lavaan 0.6.17 ended normally after 48 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 58
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 886.791
## Degrees of freedom 320
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## desapego =~
## RPD01 1.000
## RPD02 1.204 0.079 15.158 0.000
## RPD03 1.146 0.083 13.750 0.000
## RPD05 1.310 0.084 15.663 0.000
## RPD07 1.219 0.083 14.675 0.000
## RPD08 1.114 0.086 13.004 0.000
## RPD09 1.301 0.085 15.315 0.000
## RPD10 1.328 0.086 15.404 0.000
## relajacion =~
## RRE02 1.000
## RRE03 1.111 0.064 17.245 0.000
## RRE04 1.025 0.057 17.974 0.000
## RRE05 1.054 0.055 19.046 0.000
## RRE06 1.237 0.073 16.904 0.000
## RRE07 1.105 0.071 15.618 0.000
## dominio =~
## RMA02 1.000
## RMA03 1.155 0.095 12.223 0.000
## RMA04 1.176 0.088 13.412 0.000
## RMA05 1.140 0.086 13.220 0.000
## RMA07 1.091 0.083 13.067 0.000
## RMA08 1.103 0.084 13.087 0.000
## RMA09 1.020 0.083 12.287 0.000
## RMA10 1.049 0.087 12.097 0.000
## control =~
## RCO02 1.000
## RCO03 0.944 0.051 18.648 0.000
## RCO05 0.820 0.044 18.683 0.000
## RCO06 0.840 0.046 18.083 0.000
## RCO07 0.842 0.047 18.010 0.000
## recuperacion =~
## desapego 1.000
## relajacion 1.145 0.132 8.696 0.000
## dominio 0.843 0.129 6.525 0.000
## control 1.356 0.159 8.549 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .RPD01 1.134 0.117 9.697 0.000
## .RPD02 0.956 0.105 9.070 0.000
## .RPD03 1.381 0.143 9.629 0.000
## .RPD05 0.932 0.107 8.749 0.000
## .RPD07 1.162 0.125 9.304 0.000
## .RPD08 1.629 0.166 9.815 0.000
## .RPD09 1.053 0.117 8.980 0.000
## .RPD10 1.061 0.119 8.926 0.000
## .RRE02 0.612 0.067 9.179 0.000
## .RRE03 0.666 0.074 8.988 0.000
## .RRE04 0.467 0.054 8.651 0.000
## .RRE05 0.361 0.045 7.940 0.000
## .RRE06 0.898 0.098 9.119 0.000
## .RRE07 0.974 0.102 9.502 0.000
## .RMA02 1.720 0.174 9.901 0.000
## .RMA03 1.456 0.153 9.519 0.000
## .RMA04 0.839 0.097 8.681 0.000
## .RMA05 0.879 0.099 8.876 0.000
## .RMA07 0.874 0.097 9.009 0.000
## .RMA08 0.884 0.098 8.993 0.000
## .RMA09 1.105 0.116 9.490 0.000
## .RMA10 1.265 0.132 9.573 0.000
## .RCO02 0.999 0.109 9.187 0.000
## .RCO03 0.517 0.063 8.171 0.000
## .RCO05 0.385 0.047 8.145 0.000
## .RCO06 0.482 0.056 8.540 0.000
## .RCO07 0.495 0.058 8.582 0.000
## .desapego 0.985 0.157 6.286 0.000
## .relajacion 0.360 0.092 3.917 0.000
## .dominio 1.309 0.218 5.994 0.000
## .control 0.850 0.159 5.341 0.000
## recuperacion 0.974 0.203 4.795 0.000
lavaanPlot(fitdepurado, coef= TRUE, cov=TRUE)
modelo2 <- ' #Regresiones
# Variables latentes
energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
# Varianzas y Covarianzas
# Intercepto
'
fit2 <- cfa(modelo2, df1)
summary(fit2)
## lavaan 0.6.17 ended normally after 32 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 14
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 47.222
## Degrees of freedom 14
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## energia =~
## EN01 1.000
## EN02 1.029 0.044 23.192 0.000
## EN04 0.999 0.044 22.583 0.000
## EN05 0.999 0.042 23.649 0.000
## EN06 0.986 0.042 23.722 0.000
## EN07 1.049 0.046 22.856 0.000
## EN08 1.036 0.043 24.173 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .EN01 0.711 0.074 9.651 0.000
## .EN02 0.444 0.049 9.012 0.000
## .EN04 0.481 0.052 9.214 0.000
## .EN05 0.375 0.042 8.830 0.000
## .EN06 0.359 0.041 8.798 0.000
## .EN07 0.499 0.055 9.129 0.000
## .EN08 0.353 0.041 8.580 0.000
## energia 2.801 0.327 8.565 0.000
lavaanPlot(fit2, coef= TRUE, cov=TRUE)
Después de evaluar los valores estimativos, los errores estándar y el p-value, determinamos innecesario depurar el modelo.
modelo3 <- ' #Regresiones
# Variables latentes 1
desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD07 + RPD08 + RPD09 + RPD10
relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
recuperacion =~ desapego + relajacion + dominio + control
# Variables latentes 2
energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
# Variables latentes 3
vigor =~ EVI01 + EVI02 + EVI03
dedicacion =~ EDE01 + EDE02 + EDE03
absorcion =~ EAB01 + EAB02
engagement =~ vigor + dedicacion + absorcion
# Varianzas y Covarianzas
engagement ~~ energia + recperacion
# Intercepto
'
#fit3<- sem(modelo3, df1)
#summary(fit3)
#lavaanPlot(fit3, coef= TRUE, cov=TRUE)