Teoría

Markdown

Contexto

Uno de los retos más importantes de las organizaciones es entender el estado y bienestar de los colaboradores, ya que puede impactar directamente en el desempeño y el logro de los objetivos.

Parte 1

Análisis factorial confirmatorio (segundo orden) sobre el constructo de experiencias de recuperación

Importar la base de datos

library(readxl)
df1 <- read_excel("Datos_SEM_Eng.xlsx")

Instalar paquetes y librerías

library(lavaan)
## This is lavaan 0.6-17
## lavaan is FREE software! Please report any bugs.
library(lavaanPlot)
#Lavaan = Latent variable analysis

Entender la base de datos

summary(df1)
##        ID             GEN             EXPER            EDAD      
##  Min.   :  1.0   Min.   :0.0000   Min.   : 0.00   Min.   :22.00  
##  1st Qu.: 56.5   1st Qu.:0.0000   1st Qu.:15.00   1st Qu.:37.50  
##  Median :112.0   Median :1.0000   Median :20.00   Median :44.00  
##  Mean   :112.0   Mean   :0.5919   Mean   :21.05   Mean   :43.95  
##  3rd Qu.:167.5   3rd Qu.:1.0000   3rd Qu.:27.50   3rd Qu.:51.00  
##  Max.   :223.0   Max.   :1.0000   Max.   :50.00   Max.   :72.00  
##      RPD01           RPD02          RPD03           RPD05           RPD06      
##  Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.00   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :5.000   Median :4.00   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :4.596   Mean   :4.09   Mean   :4.789   Mean   :4.327   Mean   :4.798  
##  3rd Qu.:6.000   3rd Qu.:6.00   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RPD07           RPD08           RPD09           RPD10      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:2.500  
##  Median :4.000   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :3.794   Mean   :4.735   Mean   :4.466   Mean   :4.435  
##  3rd Qu.:5.500   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RRE02           RRE03           RRE04           RRE05           RRE06    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.0  
##  1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:4.0  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000   Median :6.0  
##  Mean   :5.691   Mean   :5.534   Mean   :5.668   Mean   :5.623   Mean   :5.3  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.0  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.0  
##      RRE07           RRE10           RMA02           RMA03      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:5.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :6.000   Median :6.000   Median :4.000   Median :5.000  
##  Mean   :5.305   Mean   :5.664   Mean   :4.215   Mean   :4.377  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RMA04           RMA05           RMA06           RMA07      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:5.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :6.000   Median :5.000  
##  Mean   :4.686   Mean   :4.637   Mean   :5.511   Mean   :4.767  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RMA08           RMA09           RMA10          RCO02           RCO03      
##  Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:3.000   1st Qu.:3.00   1st Qu.:5.000   1st Qu.:5.000  
##  Median :5.000   Median :5.000   Median :5.00   Median :6.000   Median :6.000  
##  Mean   :4.942   Mean   :4.614   Mean   :4.43   Mean   :5.336   Mean   :5.574  
##  3rd Qu.:6.500   3rd Qu.:6.000   3rd Qu.:6.00   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.00   Max.   :7.000   Max.   :7.000  
##      RCO04           RCO05           RCO06           RCO07      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :5.704   Mean   :5.668   Mean   :5.619   Mean   :5.632  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       EN01            EN02            EN04            EN05      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :6.000   Median :5.000   Median :5.000  
##  Mean   :4.717   Mean   :5.004   Mean   :4.883   Mean   :4.928  
##  3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       EN06            EN07            EN08           EVI01      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :0.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :4.767   Mean   :4.578   Mean   :4.776   Mean   :5.013  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      EVI02           EVI03           EDE01           EDE02      
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :5.076   Mean   :4.973   Mean   :5.305   Mean   :5.543  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      EDE03           EAB01           EAB02           EAB03      
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:6.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :7.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :6.135   Mean   :5.605   Mean   :5.821   Mean   :5.363  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000
str(df1)
## tibble [223 × 51] (S3: tbl_df/tbl/data.frame)
##  $ ID   : num [1:223] 1 2 3 4 5 6 7 8 9 10 ...
##  $ GEN  : num [1:223] 1 1 1 1 1 0 0 1 1 1 ...
##  $ EXPER: num [1:223] 22 22 30 17 23 31 26 30 15 15 ...
##  $ EDAD : num [1:223] 45 44 52 41 51 52 53 48 40 38 ...
##  $ RPD01: num [1:223] 5 4 7 5 7 3 5 6 4 2 ...
##  $ RPD02: num [1:223] 1 4 7 5 6 4 5 7 4 3 ...
##  $ RPD03: num [1:223] 3 6 7 1 7 5 4 6 4 2 ...
##  $ RPD05: num [1:223] 2 5 7 1 6 4 4 7 4 3 ...
##  $ RPD06: num [1:223] 3 3 7 3 7 3 5 2 6 7 ...
##  $ RPD07: num [1:223] 1 2 6 5 6 5 6 5 4 1 ...
##  $ RPD08: num [1:223] 3 3 7 3 7 4 6 2 5 3 ...
##  $ RPD09: num [1:223] 2 4 7 2 6 4 7 4 4 2 ...
##  $ RPD10: num [1:223] 4 4 7 2 6 4 7 1 6 2 ...
##  $ RRE02: num [1:223] 6 6 7 6 7 5 7 5 6 7 ...
##  $ RRE03: num [1:223] 6 6 7 6 7 4 7 4 4 7 ...
##  $ RRE04: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE05: num [1:223] 6 6 7 6 7 5 7 4 6 7 ...
##  $ RRE06: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE07: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE10: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RMA02: num [1:223] 4 6 4 3 4 7 5 2 6 7 ...
##  $ RMA03: num [1:223] 5 6 5 4 4 7 5 1 2 7 ...
##  $ RMA04: num [1:223] 5 5 6 4 4 5 5 1 4 7 ...
##  $ RMA05: num [1:223] 5 5 6 4 4 6 5 3 4 7 ...
##  $ RMA06: num [1:223] 6 6 7 6 5 4 5 7 6 7 ...
##  $ RMA07: num [1:223] 4 6 6 5 4 5 7 4 6 7 ...
##  $ RMA08: num [1:223] 5 6 4 4 4 6 6 4 2 7 ...
##  $ RMA09: num [1:223] 3 5 4 3 5 4 5 2 4 7 ...
##  $ RMA10: num [1:223] 7 5 5 4 5 5 6 4 3 7 ...
##  $ RCO02: num [1:223] 7 7 7 5 7 6 7 7 3 7 ...
##  $ RCO03: num [1:223] 7 7 7 5 7 5 7 7 3 7 ...
##  $ RCO04: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
##  $ RCO05: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
##  $ RCO06: num [1:223] 7 7 7 6 7 4 7 7 4 7 ...
##  $ RCO07: num [1:223] 5 7 7 6 7 4 7 7 7 7 ...
##  $ EN01 : num [1:223] 6 6 7 4 6 4 7 7 4 7 ...
##  $ EN02 : num [1:223] 7 6 7 4 6 4 7 7 4 7 ...
##  $ EN04 : num [1:223] 6 6 7 4 6 4 7 6 4 7 ...
##  $ EN05 : num [1:223] 5 5 7 5 6 5 7 6 4 7 ...
##  $ EN06 : num [1:223] 5 5 7 5 6 3 7 5 5 7 ...
##  $ EN07 : num [1:223] 5 5 7 2 6 4 7 4 4 7 ...
##  $ EN08 : num [1:223] 6 5 7 5 6 4 7 4 4 7 ...
##  $ EVI01: num [1:223] 6 5 7 5 6 4 7 6 6 0 ...
##  $ EVI02: num [1:223] 6 5 7 6 6 4 6 5 5 1 ...
##  $ EVI03: num [1:223] 6 6 6 7 6 4 6 6 7 0 ...
##  $ EDE01: num [1:223] 6 6 6 5 7 6 7 7 7 1 ...
##  $ EDE02: num [1:223] 7 6 7 6 7 5 7 7 7 5 ...
##  $ EDE03: num [1:223] 7 7 7 7 7 5 7 7 7 6 ...
##  $ EAB01: num [1:223] 7 7 7 6 7 5 7 7 7 0 ...
##  $ EAB02: num [1:223] 7 7 7 6 7 5 7 2 5 1 ...
##  $ EAB03: num [1:223] 6 5 6 5 6 5 7 3 5 0 ...

Tipos de Fórmulas

  1. Regresión (~) Variable que depende de otras.
  2. Variables Latentes (=~) No se observa, se infiere.
  3. Varianzas y covarianzas (~~) Relaciones entre variables latentes y observadas (Varianza entre sí misma, Covarianza entre otras).
  4. Intercepto (~1) Valor esperado cuando las demás variables son cero.

Estructurar el modelo

modelo1 <- ' #Regresiones
            # Variables latentes
            desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD07 + RPD08 + RPD09 + RPD10
            relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
            dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
            control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
            recuperacion =~ desapego + relajacion + dominio + control
            # Varianzas y Covarianzas
            # Intercepto
            '

Generar el Análisis Factorial Confirmatorio (CFA)

fit1 <- cfa(modelo1, df1)
summary(fit1)
## lavaan 0.6.17 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        64
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1053.279
##   Degrees of freedom                               401
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.204    0.079   15.156    0.000
##     RPD03             1.145    0.083   13.744    0.000
##     RPD05             1.310    0.084   15.663    0.000
##     RPD07             1.219    0.083   14.672    0.000
##     RPD08             1.114    0.086   13.007    0.000
##     RPD09             1.301    0.085   15.321    0.000
##     RPD10             1.328    0.086   15.410    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.119    0.065   17.216    0.000
##     RRE04             1.025    0.058   17.716    0.000
##     RRE05             1.055    0.056   18.760    0.000
##     RRE06             1.245    0.074   16.867    0.000
##     RRE07             1.117    0.071   15.684    0.000
##     RRE10             0.814    0.067   12.108    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.155    0.096   12.079    0.000
##     RMA04             1.178    0.089   13.273    0.000
##     RMA05             1.141    0.087   13.072    0.000
##     RMA06             0.645    0.075    8.597    0.000
##     RMA07             1.103    0.084   13.060    0.000
##     RMA08             1.109    0.085   12.993    0.000
##     RMA09             1.028    0.084   12.246    0.000
##     RMA10             1.055    0.088   12.043    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.948    0.049   19.187    0.000
##     RCO04             0.796    0.044   18.115    0.000
##     RCO05             0.818    0.043   18.993    0.000
##     RCO06             0.834    0.046   18.217    0.000
##     RCO07             0.835    0.046   18.058    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.144    0.131    8.742    0.000
##     dominio           0.859    0.129    6.654    0.000
##     control           1.345    0.157    8.585    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.134    0.117    9.697    0.000
##    .RPD02             0.957    0.105    9.073    0.000
##    .RPD03             1.383    0.144    9.631    0.000
##    .RPD05             0.933    0.107    8.751    0.000
##    .RPD07             1.163    0.125    9.307    0.000
##    .RPD08             1.629    0.166    9.815    0.000
##    .RPD09             1.051    0.117    8.978    0.000
##    .RPD10             1.060    0.119    8.923    0.000
##    .RRE02             0.627    0.068    9.273    0.000
##    .RRE03             0.654    0.073    9.013    0.000
##    .RRE04             0.480    0.055    8.788    0.000
##    .RRE05             0.374    0.046    8.145    0.000
##    .RRE06             0.886    0.097    9.147    0.000
##    .RRE07             0.951    0.100    9.504    0.000
##    .RRE10             1.138    0.113   10.093    0.000
##    .RMA02             1.740    0.175    9.931    0.000
##    .RMA03             1.485    0.155    9.575    0.000
##    .RMA04             0.855    0.097    8.772    0.000
##    .RMA05             0.899    0.100    8.967    0.000
##    .RMA06             1.631    0.159   10.281    0.000
##    .RMA07             0.845    0.094    8.977    0.000
##    .RMA08             0.886    0.098    9.034    0.000
##    .RMA09             1.094    0.115    9.500    0.000
##    .RMA10             1.259    0.131    9.590    0.000
##    .RCO02             0.983    0.105    9.379    0.000
##    .RCO03             0.484    0.058    8.391    0.000
##    .RCO04             0.462    0.052    8.963    0.000
##    .RCO05             0.382    0.045    8.514    0.000
##    .RCO06             0.494    0.055    8.918    0.000
##    .RCO07             0.516    0.057    8.987    0.000
##    .desapego          0.979    0.156    6.291    0.000
##    .relajacion        0.342    0.090    3.827    0.000
##    .dominio           1.258    0.212    5.938    0.000
##    .control           0.887    0.159    5.582    0.000
##     recuperacion      0.979    0.203    4.815    0.000
lavaanPlot(fit1, coef= TRUE, cov=TRUE)

Depurar el modelo

modelodepurado <- ' #Regresiones
            # Variables latentes
            desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD07 + RPD08 + RPD09 + RPD10
            relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07
            dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA07 + RMA08 + RMA09 + RMA10
            control =~ RCO02 + RCO03  + RCO05 + RCO06 + RCO07
            recuperacion =~ desapego + relajacion + dominio + control
            # Varianzas y Covarianzas
            # Intercepto
            '

Generar el Análisis Factorial Confirmatorio (CFA)

fitdepurado <- cfa(modelodepurado, df1)
summary(fitdepurado)
## lavaan 0.6.17 ended normally after 48 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        58
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                               886.791
##   Degrees of freedom                               320
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.204    0.079   15.158    0.000
##     RPD03             1.146    0.083   13.750    0.000
##     RPD05             1.310    0.084   15.663    0.000
##     RPD07             1.219    0.083   14.675    0.000
##     RPD08             1.114    0.086   13.004    0.000
##     RPD09             1.301    0.085   15.315    0.000
##     RPD10             1.328    0.086   15.404    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.111    0.064   17.245    0.000
##     RRE04             1.025    0.057   17.974    0.000
##     RRE05             1.054    0.055   19.046    0.000
##     RRE06             1.237    0.073   16.904    0.000
##     RRE07             1.105    0.071   15.618    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.155    0.095   12.223    0.000
##     RMA04             1.176    0.088   13.412    0.000
##     RMA05             1.140    0.086   13.220    0.000
##     RMA07             1.091    0.083   13.067    0.000
##     RMA08             1.103    0.084   13.087    0.000
##     RMA09             1.020    0.083   12.287    0.000
##     RMA10             1.049    0.087   12.097    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.944    0.051   18.648    0.000
##     RCO05             0.820    0.044   18.683    0.000
##     RCO06             0.840    0.046   18.083    0.000
##     RCO07             0.842    0.047   18.010    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.145    0.132    8.696    0.000
##     dominio           0.843    0.129    6.525    0.000
##     control           1.356    0.159    8.549    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.134    0.117    9.697    0.000
##    .RPD02             0.956    0.105    9.070    0.000
##    .RPD03             1.381    0.143    9.629    0.000
##    .RPD05             0.932    0.107    8.749    0.000
##    .RPD07             1.162    0.125    9.304    0.000
##    .RPD08             1.629    0.166    9.815    0.000
##    .RPD09             1.053    0.117    8.980    0.000
##    .RPD10             1.061    0.119    8.926    0.000
##    .RRE02             0.612    0.067    9.179    0.000
##    .RRE03             0.666    0.074    8.988    0.000
##    .RRE04             0.467    0.054    8.651    0.000
##    .RRE05             0.361    0.045    7.940    0.000
##    .RRE06             0.898    0.098    9.119    0.000
##    .RRE07             0.974    0.102    9.502    0.000
##    .RMA02             1.720    0.174    9.901    0.000
##    .RMA03             1.456    0.153    9.519    0.000
##    .RMA04             0.839    0.097    8.681    0.000
##    .RMA05             0.879    0.099    8.876    0.000
##    .RMA07             0.874    0.097    9.009    0.000
##    .RMA08             0.884    0.098    8.993    0.000
##    .RMA09             1.105    0.116    9.490    0.000
##    .RMA10             1.265    0.132    9.573    0.000
##    .RCO02             0.999    0.109    9.187    0.000
##    .RCO03             0.517    0.063    8.171    0.000
##    .RCO05             0.385    0.047    8.145    0.000
##    .RCO06             0.482    0.056    8.540    0.000
##    .RCO07             0.495    0.058    8.582    0.000
##    .desapego          0.985    0.157    6.286    0.000
##    .relajacion        0.360    0.092    3.917    0.000
##    .dominio           1.309    0.218    5.994    0.000
##    .control           0.850    0.159    5.341    0.000
##     recuperacion      0.974    0.203    4.795    0.000
lavaanPlot(fitdepurado, coef= TRUE, cov=TRUE)

Parte 2. Energía Recuperada

Estructurar el modelo

modelo2 <- ' #Regresiones
            # Variables latentes
            energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
            # Varianzas y Covarianzas
            # Intercepto
            '
fit2 <- cfa(modelo2, df1)
summary(fit2)
## lavaan 0.6.17 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.222
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.029    0.044   23.192    0.000
##     EN04              0.999    0.044   22.583    0.000
##     EN05              0.999    0.042   23.649    0.000
##     EN06              0.986    0.042   23.722    0.000
##     EN07              1.049    0.046   22.856    0.000
##     EN08              1.036    0.043   24.173    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .EN01              0.711    0.074    9.651    0.000
##    .EN02              0.444    0.049    9.012    0.000
##    .EN04              0.481    0.052    9.214    0.000
##    .EN05              0.375    0.042    8.830    0.000
##    .EN06              0.359    0.041    8.798    0.000
##    .EN07              0.499    0.055    9.129    0.000
##    .EN08              0.353    0.041    8.580    0.000
##     energia           2.801    0.327    8.565    0.000
lavaanPlot(fit2, coef= TRUE, cov=TRUE)

Después de evaluar los valores estimativos, los errores estándar y el p-value, determinamos innecesario depurar el modelo.

Parte 3. Engagement laboral

modelo3 <- ' #Regresiones
            # Variables latentes 1
            desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD07 + RPD08 + RPD09 + RPD10
            relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
            dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
            control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
            recuperacion =~ desapego + relajacion + dominio + control
            # Variables latentes 2
            energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
            
            # Variables latentes 3
            vigor =~ EVI01 + EVI02 + EVI03
            dedicacion =~ EDE01 + EDE02 + EDE03
            absorcion =~ EAB01 + EAB02
            engagement =~ vigor + dedicacion + absorcion
            
            # Varianzas y Covarianzas
            engagement ~~ energia + recperacion
            # Intercepto
            '
#fit3<- sem(modelo3, df1)
#summary(fit3)
#lavaanPlot(fit3, coef= TRUE, cov=TRUE)
LS0tCnRpdGxlOiAiQWN0aXZpZGFkIDMiCmF1dGhvcjogIlRhbmlhIE9ydGVnYSIKZGF0ZTogIjIwMjQtMDItMjMiCm91dHB1dDogCiAgaHRtbF9kb2N1bWVudDoKICAgIHRvYzogVFJVRQogICAgdG9jX2Zsb2F0OiBUUlVFCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFCi0tLQoKIVtdKGRvY3Rvci5naWYpCgoKIyBUZW9yw61hCgpbTWFya2Rvd25dKGh0dHBzOi8vcnB1YnMuY29tL3Rhbmlhb3J0ZWdhbS8xMTUzNzU2KQoKIyBDb250ZXh0byAKIyMjIyBVbm8gZGUgbG9zIHJldG9zIG3DoXMgaW1wb3J0YW50ZXMgZGUgbGFzIG9yZ2FuaXphY2lvbmVzIGVzIGVudGVuZGVyIGVsIGVzdGFkbyB5IGJpZW5lc3RhciBkZSBsb3MgY29sYWJvcmFkb3JlcywgeWEgcXVlIHB1ZWRlIGltcGFjdGFyIGRpcmVjdGFtZW50ZSBlbiBlbCBkZXNlbXBlw7FvIHkgZWwgbG9ncm8gZGUgbG9zIG9iamV0aXZvcy4KCiMgUGFydGUgMSMKIyMjIyBBbsOhbGlzaXMgZmFjdG9yaWFsIGNvbmZpcm1hdG9yaW8gKHNlZ3VuZG8gb3JkZW4pIHNvYnJlIGVsIGNvbnN0cnVjdG8gZGUgZXhwZXJpZW5jaWFzIGRlIHJlY3VwZXJhY2nDs24KCiMjIEltcG9ydGFyIGxhIGJhc2UgZGUgZGF0b3MKYGBge3J9CmxpYnJhcnkocmVhZHhsKQpkZjEgPC0gcmVhZF9leGNlbCgiRGF0b3NfU0VNX0VuZy54bHN4IikKYGBgCgojIyBJbnN0YWxhciBwYXF1ZXRlcyB5IGxpYnJlcsOtYXMKYGBge3J9CmxpYnJhcnkobGF2YWFuKQpsaWJyYXJ5KGxhdmFhblBsb3QpCiNMYXZhYW4gPSBMYXRlbnQgdmFyaWFibGUgYW5hbHlzaXMKYGBgCgojIyBFbnRlbmRlciBsYSBiYXNlIGRlIGRhdG9zCmBgYHtyfQpzdW1tYXJ5KGRmMSkKc3RyKGRmMSkKYGBgCgojIyBUaXBvcyBkZSBGw7NybXVsYXMKMS4gUmVncmVzacOzbiAofikgVmFyaWFibGUgcXVlIGRlcGVuZGUgZGUgb3RyYXMuICAgICAgICAKMi4gVmFyaWFibGVzIExhdGVudGVzICg9fikgIE5vIHNlIG9ic2VydmEsIHNlIGluZmllcmUuICAgICAgICAgICAgICAgICAgICAgICAgCjMuIFZhcmlhbnphcyB5IGNvdmFyaWFuemFzICh+fikgUmVsYWNpb25lcyBlbnRyZSB2YXJpYWJsZXMgbGF0ZW50ZXMgeSBvYnNlcnZhZGFzIChWYXJpYW56YSBlbnRyZSBzw60gbWlzbWEsIENvdmFyaWFuemEgZW50cmUgb3RyYXMpLiAgICAgICAKNC4gSW50ZXJjZXB0byAofjEpIFZhbG9yIGVzcGVyYWRvIGN1YW5kbyBsYXMgZGVtw6FzIHZhcmlhYmxlcyBzb24gY2Vyby4KCiMjIEVzdHJ1Y3R1cmFyIGVsIG1vZGVsbwpgYGB7cn0KbW9kZWxvMSA8LSAnICNSZWdyZXNpb25lcwogICAgICAgICAgICAjIFZhcmlhYmxlcyBsYXRlbnRlcwogICAgICAgICAgICBkZXNhcGVnbyA9fiBSUEQwMSArIFJQRDAyICsgUlBEMDMgKyBSUEQwNSArIFJQRDA3ICsgUlBEMDggKyBSUEQwOSArIFJQRDEwCiAgICAgICAgICAgIHJlbGFqYWNpb24gPX4gUlJFMDIgKyBSUkUwMyArIFJSRTA0ICsgUlJFMDUgKyBSUkUwNiArIFJSRTA3ICsgUlJFMTAKICAgICAgICAgICAgZG9taW5pbyA9fiBSTUEwMiArIFJNQTAzICsgUk1BMDQgKyBSTUEwNSArIFJNQTA2ICsgUk1BMDcgKyBSTUEwOCArIFJNQTA5ICsgUk1BMTAKICAgICAgICAgICAgY29udHJvbCA9fiBSQ08wMiArIFJDTzAzICsgUkNPMDQgKyBSQ08wNSArIFJDTzA2ICsgUkNPMDcKICAgICAgICAgICAgcmVjdXBlcmFjaW9uID1+IGRlc2FwZWdvICsgcmVsYWphY2lvbiArIGRvbWluaW8gKyBjb250cm9sCiAgICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YXMKICAgICAgICAgICAgIyBJbnRlcmNlcHRvCiAgICAgICAgICAgICcKYGBgCgoKIyMgR2VuZXJhciBlbCBBbsOhbGlzaXMgRmFjdG9yaWFsIENvbmZpcm1hdG9yaW8gKENGQSkKYGBge3J9CmZpdDEgPC0gY2ZhKG1vZGVsbzEsIGRmMSkKc3VtbWFyeShmaXQxKQpsYXZhYW5QbG90KGZpdDEsIGNvZWY9IFRSVUUsIGNvdj1UUlVFKQpgYGAKCiMjIERlcHVyYXIgZWwgbW9kZWxvCmBgYHtyfQptb2RlbG9kZXB1cmFkbyA8LSAnICNSZWdyZXNpb25lcwogICAgICAgICAgICAjIFZhcmlhYmxlcyBsYXRlbnRlcwogICAgICAgICAgICBkZXNhcGVnbyA9fiBSUEQwMSArIFJQRDAyICsgUlBEMDMgKyBSUEQwNSArIFJQRDA3ICsgUlBEMDggKyBSUEQwOSArIFJQRDEwCiAgICAgICAgICAgIHJlbGFqYWNpb24gPX4gUlJFMDIgKyBSUkUwMyArIFJSRTA0ICsgUlJFMDUgKyBSUkUwNiArIFJSRTA3CiAgICAgICAgICAgIGRvbWluaW8gPX4gUk1BMDIgKyBSTUEwMyArIFJNQTA0ICsgUk1BMDUgKyBSTUEwNyArIFJNQTA4ICsgUk1BMDkgKyBSTUExMAogICAgICAgICAgICBjb250cm9sID1+IFJDTzAyICsgUkNPMDMgICsgUkNPMDUgKyBSQ08wNiArIFJDTzA3CiAgICAgICAgICAgIHJlY3VwZXJhY2lvbiA9fiBkZXNhcGVnbyArIHJlbGFqYWNpb24gKyBkb21pbmlvICsgY29udHJvbAogICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemFzCiAgICAgICAgICAgICMgSW50ZXJjZXB0bwogICAgICAgICAgICAnCmBgYAoKCiMjIEdlbmVyYXIgZWwgQW7DoWxpc2lzIEZhY3RvcmlhbCBDb25maXJtYXRvcmlvIChDRkEpCmBgYHtyfQpmaXRkZXB1cmFkbyA8LSBjZmEobW9kZWxvZGVwdXJhZG8sIGRmMSkKc3VtbWFyeShmaXRkZXB1cmFkbykKbGF2YWFuUGxvdChmaXRkZXB1cmFkbywgY29lZj0gVFJVRSwgY292PVRSVUUpCmBgYAoKIyBQYXJ0ZSAyLiBFbmVyZ8OtYSBSZWN1cGVyYWRhIAoKIyMgRXN0cnVjdHVyYXIgZWwgbW9kZWxvIApgYGB7cn0KbW9kZWxvMiA8LSAnICNSZWdyZXNpb25lcwogICAgICAgICAgICAjIFZhcmlhYmxlcyBsYXRlbnRlcwogICAgICAgICAgICBlbmVyZ2lhID1+IEVOMDEgKyBFTjAyICsgRU4wNCArIEVOMDUgKyBFTjA2ICsgRU4wNyArIEVOMDgKICAgICAgICAgICAgIyBWYXJpYW56YXMgeSBDb3ZhcmlhbnphcwogICAgICAgICAgICAjIEludGVyY2VwdG8KICAgICAgICAgICAgJwpgYGAKCmBgYHtyfQpmaXQyIDwtIGNmYShtb2RlbG8yLCBkZjEpCnN1bW1hcnkoZml0MikKbGF2YWFuUGxvdChmaXQyLCBjb2VmPSBUUlVFLCBjb3Y9VFJVRSkKYGBgCgpEZXNwdcOpcyBkZSBldmFsdWFyIGxvcyB2YWxvcmVzIGVzdGltYXRpdm9zLCBsb3MgZXJyb3JlcyBlc3TDoW5kYXIgeSBlbCBwLXZhbHVlLCBkZXRlcm1pbmFtb3MgaW5uZWNlc2FyaW8gZGVwdXJhciBlbCBtb2RlbG8uIAoKCiMgUGFydGUgMy4gRW5nYWdlbWVudCBsYWJvcmFsCmBgYHtyfQptb2RlbG8zIDwtICcgI1JlZ3Jlc2lvbmVzCiAgICAgICAgICAgICMgVmFyaWFibGVzIGxhdGVudGVzIDEKICAgICAgICAgICAgZGVzYXBlZ28gPX4gUlBEMDEgKyBSUEQwMiArIFJQRDAzICsgUlBEMDUgKyBSUEQwNyArIFJQRDA4ICsgUlBEMDkgKyBSUEQxMAogICAgICAgICAgICByZWxhamFjaW9uID1+IFJSRTAyICsgUlJFMDMgKyBSUkUwNCArIFJSRTA1ICsgUlJFMDYgKyBSUkUwNyArIFJSRTEwCiAgICAgICAgICAgIGRvbWluaW8gPX4gUk1BMDIgKyBSTUEwMyArIFJNQTA0ICsgUk1BMDUgKyBSTUEwNiArIFJNQTA3ICsgUk1BMDggKyBSTUEwOSArIFJNQTEwCiAgICAgICAgICAgIGNvbnRyb2wgPX4gUkNPMDIgKyBSQ08wMyArIFJDTzA0ICsgUkNPMDUgKyBSQ08wNiArIFJDTzA3CiAgICAgICAgICAgIHJlY3VwZXJhY2lvbiA9fiBkZXNhcGVnbyArIHJlbGFqYWNpb24gKyBkb21pbmlvICsgY29udHJvbAogICAgICAgICAgICAjIFZhcmlhYmxlcyBsYXRlbnRlcyAyCiAgICAgICAgICAgIGVuZXJnaWEgPX4gRU4wMSArIEVOMDIgKyBFTjA0ICsgRU4wNSArIEVOMDYgKyBFTjA3ICsgRU4wOAogICAgICAgICAgICAKICAgICAgICAgICAgIyBWYXJpYWJsZXMgbGF0ZW50ZXMgMwogICAgICAgICAgICB2aWdvciA9fiBFVkkwMSArIEVWSTAyICsgRVZJMDMKICAgICAgICAgICAgZGVkaWNhY2lvbiA9fiBFREUwMSArIEVERTAyICsgRURFMDMKICAgICAgICAgICAgYWJzb3JjaW9uID1+IEVBQjAxICsgRUFCMDIKICAgICAgICAgICAgZW5nYWdlbWVudCA9fiB2aWdvciArIGRlZGljYWNpb24gKyBhYnNvcmNpb24KICAgICAgICAgICAgCiAgICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YXMKICAgICAgICAgICAgZW5nYWdlbWVudCB+fiBlbmVyZ2lhICsgcmVjcGVyYWNpb24KICAgICAgICAgICAgIyBJbnRlcmNlcHRvCiAgICAgICAgICAgICcKYGBgCgpgYGB7cn0KI2ZpdDM8LSBzZW0obW9kZWxvMywgZGYxKQojc3VtbWFyeShmaXQzKQojbGF2YWFuUGxvdChmaXQzLCBjb2VmPSBUUlVFLCBjb3Y9VFJVRSkKYGBgCgoKCgoKCg==