Harold Nelson
2/28/2024
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
On what days has the maximum daily temperature exceeded 100 degrees? How many? When?
## # A tibble: 13 × 2
## DATE TMAX
## <date> <dbl>
## 1 1942-06-30 101
## 2 2006-07-21 101
## 3 2009-07-28 101
## 4 1942-07-01 102
## 5 1981-08-10 102
## 6 1994-07-20 102
## 7 2021-06-26 102
## 8 1941-07-15 103
## 9 1941-07-16 103
## 10 1981-08-09 104
## 11 2009-07-29 104
## 12 2021-06-27 105
## 13 2021-06-28 110
Repeat the exercise above for days with a TMIN below zero.
## # A tibble: 12 × 2
## DATE TMIN
## <date> <dbl>
## 1 1979-01-01 -8
## 2 1972-01-27 -7
## 3 1983-12-23 -7
## 4 1978-12-31 -5
## 5 1972-01-28 -4
## 6 1972-12-08 -3
## 7 1983-12-22 -3
## 8 1950-02-01 -1
## 9 1955-11-15 -1
## 10 1972-02-02 -1
## 11 1972-12-10 -1
## 12 1998-12-22 -1
What were the ten heaviest days of rainfall in Olympia. Sort them by date.
## # A tibble: 10 × 2
## DATE PRCP
## <date> <dbl>
## 1 2009-01-07 4.82
## 2 1962-11-19 4.33
## 3 2006-11-06 4.31
## 4 2003-10-20 4.12
## 5 1990-11-24 4.08
## 6 2022-01-06 3.99
## 7 1990-01-09 3.82
## 8 1951-02-09 3.64
## 9 2001-11-14 3.64
## 10 1956-12-09 3.5
How frequently do we see a minimum temperature below 32 combined with rain in January.
## # A tibble: 1 × 1
## `mean(bad)`
## <dbl>
## 1 0.167
## # A tibble: 1 × 1
## `mean(bad)`
## <dbl>
## 1 0.148
## # A tibble: 1 × 1
## `mean(bad)`
## <dbl>
## 1 0.116
Which days of the year have the highest probability of rain? List them in order of probability.
OAW2309 %>%
group_by(mo, dy) %>%
summarize(p_rain = mean(PRCP > 0)) %>%
ungroup() %>%
arrange(p_rain) %>%
tail(10)
## `summarise()` has grouped output by 'mo'. You can override using the `.groups`
## argument.
## # A tibble: 10 × 3
## mo dy p_rain
## <fct> <int> <dbl>
## 1 1 10 0.720
## 2 11 29 0.720
## 3 12 9 0.720
## 4 12 18 0.720
## 5 12 19 0.720
## 6 11 24 0.732
## 7 12 10 0.732
## 8 12 2 0.744
## 9 2 29 0.75
## 10 12 20 0.768