IS: Nuevos análisis

GIAPAFED

Inicio

Probamos nuevos análisis en función de las sugerencias de Miquel, donde indica que no le queda claro por qué usamos distintas metodologías para la parte psicométrica y las relaciones entre variables. En los comentarios él se pregunta por qué no usar ESEM (modelo de ecuaciones estructurales exploratorio) para integrar los análisis. Tiene sentido probar las relaciones en un SEM, aunque no sé por qué lo haríamos de forma exploratoria, cuando todos los instrumentos están validados con una estructura particular y que funciona (el único que podría pensarse es el de id. social, pero el único cambio es el idioma). Sería como hacer un factorial confirmatorio o uno exploratorio (con modelos bastante más complejos).

Otro inconveniente que surge al buscar evaluar las moderaciones con SEM es que la inclusión de la interacción de variables reduce ampliamente los grados de libertad de los modelos. En las regresiones tomamos las medias de cada variable y las multiplicamos, generando una única variable nueva. En los modelos SEM, las interacciones se incluyen multiplicando ítem a ítem, haciendo que sean muchas más variables. Por ejemplo, la interacción entre sexo y liderazgo del coach en una regresión lineal implicaría sumar una única variable (sexo*Liderazgo), mientras que en SEM se sumarían 16 variables (sexo*LT01, sexo*LT02, …).

Hasta ahí, no hay tanto problema con los grados de libertad. El problema es que esas nuevas variables (las de la interacción) no son independientes de las variables originales (los ítems), entonces hay que incluir en el modelo esa falta de independencia, incluyendo la estimación de las covarianzas de error. Ahí es donde se disparan los parámetros a estimar y, por lo tanto, el modelo termina con grados de libertad negativos. Es decir, con la estimación de tantos parámetros el modelo no está identificado (no se puede ajustar).

Dada esta problemática, propongo tres soluciones:

  • SEM-MG
  • SEM y Reg. Lineal
  • SEM con moderación

SEM-MG

Una posibilidad es ajustar modelos de ecuaciones estructurales multigrupos (SEM-MG). La aproximación es la misma que la utilizada para estimar la invarianza de un instrumento, solo que en vez de incluir solo el instrumento de identidad social, se incluiría el modelo completo (con las relaciones con liderazgo). A diferencia del estudio de invarianza, en este caso buscaríamos que haya diferencias significativas entre modelos (que no sea lo mismo en varones que en mujeres, por ejemplo).

A partir de este análisis se podrían obtener estimaciones para cada parámetro en en caso de varones/mujeres o early/late adolescents y presentar las figuras en cada caso.

La desventaja de este abordaje es que no se podrían incluir ambas interacciones (sexo y edad) en simultaneo. PENSAR SI PODRÍA CREARSE UNA NUEVA VARIABLE SEXO*EDAD, CON CUATRO GRUPOS (varon-joven, varon-tardio, mujer-joven, mujer-tardia)

Coach

Sexo

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTc =~ tcq02 + tcq05 + tcq12 + tcq16 + tcq01 + tcq09 + tcq11 + tcq14 + tcq03 + tcq07 + tcq10 + tcq13 + tcq04 + tcq06 + tcq08 + tcq15


# REGRESIONES
SIQS ~ LTc + edad
'


# Configural model
sem.config <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "sexo")

#sem.config %>% 
#  summary(fit.measures = TRUE, standardized = TRUE)


# Metric model
sem.metric <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "sexo", 
      group.equal = "loadings")

# Scalar model
sem.scalar <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "sexo", 
      group.equal = c("loadings",
                      "intercepts"))

# Strict model
sem.strict <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "sexo", 
      group.equal = c("loadings",
                      "intercepts", 
                      "residuals"))


# Model comparison
semTools::compareFit(sem.config, 
                     sem.metric,
                     sem.scalar,
                     sem.strict) %>% 
  summary()
## ################### Nested Model Comparison #########################
## 
## Chi-Squared Difference Test
## 
##             Df AIC BIC  Chisq Chisq diff    RMSEA Df diff Pr(>Chisq)    
## sem.config 590         2347.6                                           
## sem.metric 613         2729.4     381.81 0.218088      23    < 2e-16 ***
## sem.scalar 633         2763.3      33.90 0.046039      20    0.02678 *  
## sem.strict 658         2925.0     161.62 0.129077      25    < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ####################### Model Fit Indices ###########################
##                chisq  df pvalue rmsea   cfi   tli  srmr
## sem.config 2347.627† 590     NA .095† .975† .972† .057†
## sem.metric 2729.438  613     NA .103  .969  .968  .063 
## sem.scalar 2763.342  633     NA .101  .969  .968  .064 
## sem.strict 2924.960  658     NA .103  .967  .968  .067 
## 
## ################## Differences in Fit Indices #######################
##                         df  rmsea    cfi    tli  srmr
## sem.metric - sem.config 23  0.007 -0.005 -0.004 0.006
## sem.scalar - sem.metric 20 -0.001  0.000  0.001 0.001
## sem.strict - sem.scalar 25  0.001 -0.002 -0.001 0.003

El modelo métrico ya difiere significativamente del modelo configural, por lo que no se verifica la invariaza en el modelo completo para el entrenador.

Estimaciones para el modelo configural (el que asume menos igualdades entre los grupos)

semPaths(# Argumentos globales
  sem.config, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Nota. 1=Varones; 2=Mujeres.

# [Grupo 0] SIQS = 0 + .358 * LTc
# [Grupo 1] SIQS = 0 + .567 * LTc

graf <- data.frame(sexo=rep(0:1,2),
                   "LTc (std)"=c(rep(min(scale(datos$tcq_LT),na.rm = T),2),rep(max(scale(datos$tcq_LT),na.rm = T),2)),
                   "siqs (std)"=rep(NA,4),
                   check.names = F)
for(i in 1:4){
  graf$`siqs (std)`[i] <- ifelse(graf$sexo[i]==0,
                                 .358*graf$`LTc (std)`[i],
                                 .567*graf$`LTc (std)`[i])
}

graf %>% 
  ggplot(aes(x=`LTc (std)`, y=`siqs (std)`, color=as.factor(sexo), group=as.factor(sexo)))+
  geom_line()+
  scale_color_manual(name="Sex",
                     values = 2:3,
                     labels = c("females",
                                "males"))

Edad

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTc =~ tcq02 + tcq05 + tcq12 + tcq16 + tcq01 + tcq09 + tcq11 + tcq14 + tcq03 + tcq07 + tcq10 + tcq13 + tcq04 + tcq06 + tcq08 + tcq15


# REGRESIONES
SIQS ~ LTc + sexo
'


# Configural model
sem.config <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "edaddicot")

#sem.config %>% 
#  summary(fit.measures = TRUE, standardized = TRUE)


# Metric model
sem.metric <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "edaddicot", 
      group.equal = "loadings")

# Scalar model
sem.scalar <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "edaddicot", 
      group.equal = c("loadings",
                      "intercepts"))

# Strict model
sem.strict <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "edaddicot", 
      group.equal = c("loadings",
                      "intercepts", 
                      "residuals"))


# Model comparison
semTools::compareFit(sem.config, 
                     sem.metric,
                     sem.scalar,
                     sem.strict) %>% 
  summary()
## ################### Nested Model Comparison #########################
## 
## Chi-Squared Difference Test
## 
##             Df AIC BIC  Chisq Chisq diff    RMSEA Df diff Pr(>Chisq)    
## sem.config 590         1428.5                                           
## sem.metric 613         1794.4     365.98 0.213222      23  < 2.2e-16 ***
## sem.scalar 633         1837.4      42.93 0.059124      20   0.002087 ** 
## sem.strict 658         2031.1     193.75 0.143454      25  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ####################### Model Fit Indices ###########################
##                chisq  df pvalue rmsea   cfi   tli  srmr
## sem.config 1428.454† 590     NA .066† .987† .986† .055†
## sem.metric 1794.430  613     NA .077  .982  .981  .061 
## sem.scalar 1837.362  633     NA .076  .982  .981  .061 
## sem.strict 2031.110  658     NA .080  .979  .980  .064 
## 
## ################## Differences in Fit Indices #######################
##                         df rmsea    cfi    tli  srmr
## sem.metric - sem.config 23 0.011 -0.005 -0.005 0.005
## sem.scalar - sem.metric 20 0.000  0.000  0.000 0.001
## sem.strict - sem.scalar 25 0.004 -0.003 -0.002 0.003

El modelo métrico ya difiere significativamente del modelo configural, por lo que no se verifica la invariaza en el modelo completo para el entrenador.

Estimaciones para el modelo configural (el que asume menos igualdades entre los grupos)

semPaths(# Argumentos globales
  sem.config, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Nota. 1=Late; 2=Early.

# [Grupo 1] SIQS = 0 + .481 * LTc
# [Grupo 2] SIQS = 0 + .381 * LTc

graf <- data.frame(edad=rep(1:2,2),
                   "LTc (std)"=c(rep(min(scale(datos$tcq_LT),na.rm = T),2),rep(max(scale(datos$tcq_LT),na.rm = T),2)),
                   "siqs (std)"=rep(NA,4),
                   check.names = F)
for(i in 1:4){
  graf$`siqs (std)`[i] <- ifelse(graf$edad[i]==1,
                                 .481*graf$`LTc (std)`[i],
                                 .381*graf$`LTc (std)`[i])
}

graf %>% 
  ggplot(aes(x=`LTc (std)`, y=`siqs (std)`, color=as.factor(edad), group=as.factor(edad)))+
  geom_line()+
  scale_color_manual(name="Age stage",
                     values = 2:3,
                     labels = c("early",
                                "late"))

Madre

Sexo

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTm =~ tpqm02 + tpqm05 + tpqm12 + tpqm16 + tpqm01 + tpqm09 + tpqm11 + tpqm14 + tpqm03 + tpqm07 + tpqm10 + tpqm13 + tpqm04 + tpqm06 + tpqm08 + tpqm15


# REGRESIONES
SIQS ~ LTm + edad
'


# Configural model
sem.config <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "sexo")

#sem.config %>% 
#  summary(fit.measures = TRUE, standardized = TRUE)


# Metric model
sem.metric <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "sexo", 
      group.equal = "loadings")

# Scalar model
sem.scalar <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "sexo", 
      group.equal = c("loadings",
                      "intercepts"))

# Strict model
sem.strict <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "sexo", 
      group.equal = c("loadings",
                      "intercepts", 
                      "residuals"))


# Model comparison
semTools::compareFit(sem.config, 
                     sem.metric,
                     sem.scalar,
                     sem.strict) %>% 
  summary()
## ################### Nested Model Comparison #########################
## 
## Chi-Squared Difference Test
## 
##             Df AIC BIC   Chisq Chisq diff    RMSEA Df diff Pr(>Chisq)    
## sem.config 590          705.61                                           
## sem.metric 613         1110.81     405.19 0.225082      23     <2e-16 ***
## sem.scalar 633         1131.03      20.22 0.005758      20     0.4444    
## sem.strict 658         1294.55     163.53 0.129976      25     <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ####################### Model Fit Indices ###########################
##                chisq  df pvalue rmsea    cfi    tli  srmr
## sem.config  705.614† 590     NA .024† 0.997† 0.996† .049†
## sem.metric 1110.808  613     NA .050   .986   .985  .066 
## sem.scalar 1131.026  633     NA .049   .986   .986  .066 
## sem.strict 1294.554  658     NA .054   .982   .982  .072 
## 
## ################## Differences in Fit Indices #######################
##                         df  rmsea    cfi    tli  srmr
## sem.metric - sem.config 23  0.025 -0.011 -0.011 0.017
## sem.scalar - sem.metric 20 -0.001  0.000  0.000 0.001
## sem.strict - sem.scalar 25  0.005 -0.004 -0.003 0.006

El modelo métrico ya difiere significativamente del modelo configural, por lo que no se verifica la invariaza en el modelo completo para la madre

Estimaciones para el modelo configural (el que asume menos igualdades entre los grupos)

semPaths(# Argumentos globales
  sem.config, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Nota. 1=Varones; 2=Mujeres.

# [Grupo 0] SIQS = 0 + .4 * LTc
# [Grupo 1] SIQS = 0 + .29 * LTc

graf <- data.frame(sexo=rep(0:1,2),
                   "LTm (std)"=c(rep(min(scale(datos$tpqm_LT),na.rm = T),2),rep(max(scale(datos$tpqm_LT),na.rm = T),2)),
                   "siqs (std)"=rep(NA,4),
                   check.names = F)
for(i in 1:4){
  graf$`siqs (std)`[i] <- ifelse(graf$sexo[i]==0,
                                 .4*graf$`LTm (std)`[i],
                                 .29*graf$`LTm (std)`[i])
}

graf %>% 
  ggplot(aes(x=`LTm (std)`, y=`siqs (std)`, color=as.factor(sexo), group=as.factor(sexo)))+
  geom_line()+
  scale_color_manual(name="Sex",
                     values = 2:3,
                     labels = c("females",
                                "males"))

Edad

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTm =~ tpqm02 + tpqm05 + tpqm12 + tpqm16 + tpqm01 + tpqm09 + tpqm11 + tpqm14 + tpqm03 + tpqm07 + tpqm10 + tpqm13 + tpqm04 + tpqm06 + tpqm08 + tpqm15


# REGRESIONES
SIQS ~ LTm + sexo
'


# Configural model
sem.config <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "edaddicot")

#sem.config %>% 
#  summary(fit.measures = TRUE, standardized = TRUE)


# Metric model
sem.metric <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "edaddicot", 
      group.equal = "loadings")

# Scalar model
sem.scalar <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "edaddicot", 
      group.equal = c("loadings",
                      "intercepts"))

# Strict model
sem.strict <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "edaddicot", 
      group.equal = c("loadings",
                      "intercepts", 
                      "residuals"))


# Model comparison
semTools::compareFit(sem.config, 
                     sem.metric,
                     sem.scalar,
                     sem.strict) %>% 
  summary()
## ################### Nested Model Comparison #########################
## 
## Chi-Squared Difference Test
## 
##             Df AIC BIC  Chisq Chisq diff    RMSEA Df diff Pr(>Chisq)    
## sem.config 590         551.16                                           
## sem.metric 613         849.89    298.730 0.191179      23  < 2.2e-16 ***
## sem.scalar 633         865.98     16.089 0.000000      20     0.7111    
## sem.strict 658         939.58     73.607 0.076991      25  1.106e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ####################### Model Fit Indices ###########################
##               chisq  df pvalue rmsea    cfi    tli  srmr
## sem.config 551.158† 590     NA .000† 1.000† 1.001† .049†
## sem.metric 849.888  613     NA .034   .993   .992  .062 
## sem.scalar 865.977  633     NA .034   .993   .993  .063 
## sem.strict 939.584  658     NA .036   .991   .991  .066 
## 
## ################## Differences in Fit Indices #######################
##                         df  rmsea    cfi    tli  srmr
## sem.metric - sem.config 23  0.034 -0.007 -0.009 0.013
## sem.scalar - sem.metric 20 -0.001  0.000  0.000 0.001
## sem.strict - sem.scalar 25  0.003 -0.001 -0.001 0.003

El modelo métrico ya difiere significativamente del modelo configural, por lo que no se verifica la invariaza en el modelo completo para la madre.

Estimaciones para el modelo configural (el que asume menos igualdades entre los grupos)

semPaths(# Argumentos globales
  sem.config, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Nota. 1=Late; 2=Early.

sem.config %>% summary(standardized=T)
## lavaan 0.6.16 ended normally after 76 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       164
## 
##   Number of observations per group:                   
##     2                                              302
##     1                                              354
## 
## Model Test User Model:
##                                                       
##   Test statistic                               551.158
##   Degrees of freedom                               590
##   P-value (Unknown)                                 NA
##   Test statistic for each group:
##     2                                          322.487
##     1                                          228.671
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   it =~                                                                 
##     siqs01            1.000                               0.906    0.844
##     siqs02            0.852    0.043   19.866    0.000    0.772    0.664
##     siqs03            1.126    0.052   21.487    0.000    1.021    0.863
##   cc =~                                                                 
##     siqs04            1.000                               1.054    0.769
##     siqs05            1.002    0.059   16.922    0.000    1.056    0.760
##     siqs06            0.717    0.044   16.278    0.000    0.756    0.639
##   ia =~                                                                 
##     siqs07            1.000                               0.850    0.852
##     siqs08            1.011    0.051   19.819    0.000    0.860    0.892
##     siqs09            0.969    0.050   19.561    0.000    0.824    0.744
##   SIQS =~                                                               
##     it                1.000                               0.893    0.893
##     cc                0.640    0.040   15.875    0.000    0.491    0.491
##     ia                0.925    0.056   16.440    0.000    0.880    0.880
##   LTm =~                                                                
##     tpqm02            1.000                               0.705    0.674
##     tpqm05            0.825    0.038   21.793    0.000    0.582    0.695
##     tpqm12            1.143    0.045   25.243    0.000    0.806    0.720
##     tpqm16            0.854    0.038   22.193    0.000    0.602    0.789
##     tpqm01            0.826    0.038   21.805    0.000    0.582    0.692
##     tpqm09            1.001    0.042   23.937    0.000    0.706    0.758
##     tpqm11            1.125    0.045   25.094    0.000    0.793    0.752
##     tpqm14            1.075    0.044   24.656    0.000    0.758    0.852
##     tpqm03            0.755    0.036   20.735    0.000    0.532    0.523
##     tpqm07            1.001    0.042   23.940    0.000    0.706    0.662
##     tpqm10            1.031    0.043   24.244    0.000    0.727    0.844
##     tpqm13            1.208    0.047   25.735    0.000    0.851    0.741
##     tpqm04            0.936    0.040   23.221    0.000    0.660    0.761
##     tpqm06            1.111    0.044   24.979    0.000    0.783    0.820
##     tpqm08            0.851    0.038   22.148    0.000    0.600    0.704
##     tpqm15            1.218    0.047   25.808    0.000    0.859    0.787
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SIQS ~                                                                
##     LTm               0.422    0.023   18.553    0.000    0.368    0.368
##     sexo              0.286    0.112    2.562    0.010    0.354    0.177
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .siqs01            4.739    0.082   57.485    0.000    4.739    4.414
##    .siqs02            4.847    0.076   63.378    0.000    4.847    4.169
##    .siqs03            4.568    0.088   51.977    0.000    4.568    3.862
##    .siqs04            4.208    0.069   61.042    0.000    4.208    3.070
##    .siqs05            4.165    0.069   60.380    0.000    4.165    2.996
##    .siqs06            4.771    0.064   74.869    0.000    4.771    4.034
##    .siqs07            5.124    0.079   64.551    0.000    5.124    5.134
##    .siqs08            5.109    0.080   64.034    0.000    5.109    5.299
##    .siqs09            4.853    0.078   62.049    0.000    4.853    4.384
##    .tpqm02            5.411    0.058   93.883    0.000    5.411    5.175
##    .tpqm05            5.672    0.058   98.422    0.000    5.672    6.782
##    .tpqm12            5.328    0.058   92.446    0.000    5.328    4.763
##    .tpqm16            5.666    0.058   98.307    0.000    5.666    7.426
##    .tpqm01            5.546    0.058   96.238    0.000    5.546    6.596
##    .tpqm09            5.626    0.058   97.617    0.000    5.626    6.045
##    .tpqm11            5.371    0.058   93.193    0.000    5.371    5.095
##    .tpqm14            5.606    0.058   97.273    0.000    5.606    6.303
##    .tpqm03            5.268    0.058   91.412    0.000    5.268    5.181
##    .tpqm07            5.278    0.058   91.584    0.000    5.278    4.947
##    .tpqm10            5.586    0.058   96.928    0.000    5.586    6.486
##    .tpqm13            5.301    0.058   91.987    0.000    5.301    4.613
##    .tpqm04            5.566    0.058   96.583    0.000    5.566    6.421
##    .tpqm06            5.560    0.058   96.468    0.000    5.560    5.823
##    .tpqm08            5.566    0.058   96.583    0.000    5.566    6.538
##    .tpqm15            5.325    0.058   92.389    0.000    5.325    4.881
##     sexo              0.507    0.058    8.791    0.000    0.507    1.012
##    .it                0.000                               0.000    0.000
##    .cc                0.000                               0.000    0.000
##    .ia                0.000                               0.000    0.000
##    .SIQS              0.000                               0.000    0.000
##     LTm               0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .siqs01            0.332    0.080    4.122    0.000    0.332    0.288
##    .siqs02            0.756    0.073   10.346    0.000    0.756    0.559
##    .siqs03            0.358    0.089    4.013    0.000    0.358    0.256
##    .siqs04            0.768    0.101    7.607    0.000    0.768    0.409
##    .siqs05            0.818    0.101    8.081    0.000    0.818    0.423
##    .siqs06            0.828    0.077   10.808    0.000    0.828    0.592
##    .siqs07            0.273    0.079    3.457    0.001    0.273    0.274
##    .siqs08            0.191    0.080    2.395    0.017    0.191    0.205
##    .siqs09            0.547    0.077    7.078    0.000    0.547    0.446
##    .tpqm02            0.596    0.064    9.248    0.000    0.596    0.545
##    .tpqm05            0.361    0.062    5.805    0.000    0.361    0.517
##    .tpqm12            0.602    0.067    9.022    0.000    0.602    0.481
##    .tpqm16            0.220    0.063    3.512    0.000    0.220    0.378
##    .tpqm01            0.368    0.062    5.916    0.000    0.368    0.521
##    .tpqm09            0.368    0.064    5.711    0.000    0.368    0.425
##    .tpqm11            0.482    0.066    7.265    0.000    0.482    0.434
##    .tpqm14            0.217    0.066    3.309    0.001    0.217    0.274
##    .tpqm03            0.751    0.061   12.220    0.000    0.751    0.726
##    .tpqm07            0.640    0.064    9.925    0.000    0.640    0.562
##    .tpqm10            0.213    0.065    3.283    0.001    0.213    0.287
##    .tpqm13            0.596    0.068    8.791    0.000    0.596    0.451
##    .tpqm04            0.316    0.064    4.970    0.000    0.316    0.421
##    .tpqm06            0.298    0.066    4.504    0.000    0.298    0.327
##    .tpqm08            0.365    0.063    5.841    0.000    0.365    0.504
##    .tpqm15            0.453    0.068    6.661    0.000    0.453    0.381
##    .it                0.167    0.050    3.354    0.001    0.203    0.203
##    .cc                0.843    0.071   11.869    0.000    0.759    0.759
##    .ia                0.163    0.047    3.495    0.000    0.225    0.225
##    .SIQS              0.545    0.046   11.905    0.000    0.833    0.833
##     LTm               0.497    0.029   17.182    0.000    1.000    1.000
##     sexo              0.251    0.058    4.352    0.000    0.251    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   it =~                                                                 
##     siqs01            1.000                               0.979    0.871
##     siqs02            0.957    0.036   26.874    0.000    0.936    0.708
##     siqs03            1.176    0.042   28.178    0.000    1.151    0.932
##   cc =~                                                                 
##     siqs04            1.000                               0.854    0.696
##     siqs05            1.112    0.049   22.708    0.000    0.949    0.725
##     siqs06            1.073    0.048   22.513    0.000    0.916    0.778
##   ia =~                                                                 
##     siqs07            1.000                               0.813    0.877
##     siqs08            1.075    0.044   24.249    0.000    0.874    0.890
##     siqs09            0.920    0.040   22.902    0.000    0.748    0.683
##   SIQS =~                                                               
##     it                1.000                               0.856    0.856
##     cc                0.737    0.036   20.702    0.000    0.723    0.723
##     ia                0.887    0.041   21.391    0.000    0.914    0.914
##   LTm =~                                                                
##     tpqm02            1.000                               0.607    0.639
##     tpqm05            1.249    0.050   25.151    0.000    0.758    0.816
##     tpqm12            1.447    0.055   26.321    0.000    0.878    0.789
##     tpqm16            0.667    0.036   18.370    0.000    0.405    0.662
##     tpqm01            1.012    0.044   23.145    0.000    0.614    0.643
##     tpqm09            1.398    0.054   26.066    0.000    0.848    0.843
##     tpqm11            1.287    0.051   25.407    0.000    0.781    0.760
##     tpqm14            1.115    0.046   24.113    0.000    0.676    0.835
##     tpqm03            0.824    0.039   20.879    0.000    0.500    0.502
##     tpqm07            1.005    0.044   23.073    0.000    0.610    0.589
##     tpqm10            1.081    0.045   23.811    0.000    0.656    0.819
##     tpqm13            1.530    0.057   26.707    0.000    0.928    0.800
##     tpqm04            0.890    0.041   21.755    0.000    0.540    0.685
##     tpqm06            1.222    0.049   24.961    0.000    0.741    0.826
##     tpqm08            1.259    0.050   25.222    0.000    0.764    0.797
##     tpqm15            1.326    0.052   25.654    0.000    0.805    0.733
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SIQS ~                                                                
##     LTm               0.563    0.026   21.582    0.000    0.407    0.407
##     sexo              0.404    0.120    3.371    0.001    0.482    0.238
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .siqs01            4.817    0.076   63.612    0.000    4.817    4.286
##    .siqs02            4.680    0.074   63.171    0.000    4.680    3.537
##    .siqs03            4.657    0.083   56.330    0.000    4.657    3.771
##    .siqs04            4.524    0.066   68.100    0.000    4.524    3.689
##    .siqs05            4.491    0.069   64.927    0.000    4.491    3.431
##    .siqs06            4.939    0.068   72.434    0.000    4.939    4.195
##    .siqs07            5.259    0.072   73.483    0.000    5.259    5.672
##    .siqs08            5.191    0.074   70.147    0.000    5.191    5.285
##    .siqs09            4.907    0.069   71.030    0.000    4.907    4.486
##    .tpqm02            5.492    0.053  103.165    0.000    5.492    5.782
##    .tpqm05            5.585    0.053  104.916    0.000    5.585    6.018
##    .tpqm12            5.373    0.053  100.936    0.000    5.373    4.830
##    .tpqm16            5.729    0.053  107.623    0.000    5.729    9.370
##    .tpqm01            5.446    0.053  102.316    0.000    5.446    5.707
##    .tpqm09            5.551    0.053  104.279    0.000    5.551    5.515
##    .tpqm11            5.373    0.053  100.936    0.000    5.373    5.228
##    .tpqm14            5.619    0.053  105.553    0.000    5.619    6.938
##    .tpqm03            5.325    0.053  100.034    0.000    5.325    5.350
##    .tpqm07            5.331    0.053  100.140    0.000    5.331    5.149
##    .tpqm10            5.633    0.053  105.818    0.000    5.633    7.036
##    .tpqm13            5.356    0.053  100.618    0.000    5.356    4.616
##    .tpqm04            5.621    0.053  105.606    0.000    5.621    7.132
##    .tpqm06            5.582    0.053  104.863    0.000    5.582    6.222
##    .tpqm08            5.508    0.053  103.483    0.000    5.508    5.746
##    .tpqm15            5.359    0.053  100.671    0.000    5.359    4.881
##     sexo              0.412    0.053    7.748    0.000    0.412    0.837
##    .it                0.000                               0.000    0.000
##    .cc                0.000                               0.000    0.000
##    .ia                0.000                               0.000    0.000
##    .SIQS              0.000                               0.000    0.000
##     LTm               0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .siqs01            0.306    0.073    4.197    0.000    0.306    0.242
##    .siqs02            0.874    0.071   12.346    0.000    0.874    0.499
##    .siqs03            0.201    0.083    2.418    0.016    0.201    0.132
##    .siqs04            0.775    0.071   10.888    0.000    0.775    0.516
##    .siqs05            0.812    0.077   10.573    0.000    0.812    0.474
##    .siqs06            0.548    0.075    7.332    0.000    0.548    0.395
##    .siqs07            0.199    0.069    2.862    0.004    0.199    0.231
##    .siqs08            0.200    0.073    2.744    0.006    0.200    0.208
##    .siqs09            0.638    0.066    9.634    0.000    0.638    0.533
##    .tpqm02            0.534    0.058    9.254    0.000    0.534    0.592
##    .tpqm05            0.287    0.060    4.758    0.000    0.287    0.334
##    .tpqm12            0.467    0.063    7.416    0.000    0.467    0.377
##    .tpqm16            0.210    0.055    3.806    0.000    0.210    0.562
##    .tpqm01            0.534    0.058    9.225    0.000    0.534    0.586
##    .tpqm09            0.294    0.062    4.717    0.000    0.294    0.290
##    .tpqm11            0.446    0.061    7.340    0.000    0.446    0.423
##    .tpqm14            0.198    0.059    3.372    0.001    0.198    0.303
##    .tpqm03            0.741    0.056   13.162    0.000    0.741    0.748
##    .tpqm07            0.700    0.058   12.112    0.000    0.700    0.653
##    .tpqm10            0.211    0.059    3.607    0.000    0.211    0.329
##    .tpqm13            0.485    0.064    7.556    0.000    0.485    0.360
##    .tpqm04            0.330    0.057    5.806    0.000    0.330    0.531
##    .tpqm06            0.255    0.060    4.252    0.000    0.255    0.317
##    .tpqm08            0.336    0.060    5.552    0.000    0.336    0.365
##    .tpqm15            0.558    0.061    9.098    0.000    0.558    0.463
##    .it                0.256    0.041    6.216    0.000    0.267    0.267
##    .cc                0.348    0.037    9.464    0.000    0.477    0.477
##    .ia                0.108    0.039    2.780    0.005    0.164    0.164
##    .SIQS              0.546    0.039   14.169    0.000    0.778    0.778
##     LTm               0.368    0.022   16.448    0.000    1.000    1.000
##     sexo              0.243    0.053    4.565    0.000    0.243    1.000
# [Grupo 1] SIQS = 0 + .407 * LTc
# [Grupo 2] SIQS = 0 + .368 * LTc

graf <- data.frame(edad=rep(1:2,2),
                   "LTm (std)"=c(rep(min(scale(datos$tpqm_LT),na.rm = T),2),rep(max(scale(datos$tpqm_LT),na.rm = T),2)),
                   "siqs (std)"=rep(NA,4),
                   check.names = F)
for(i in 1:4){
  graf$`siqs (std)`[i] <- ifelse(graf$edad[i]==1,
                                 .481*graf$`LTm (std)`[i],
                                 .381*graf$`LTm (std)`[i])
}

graf %>% 
  ggplot(aes(x=`LTm (std)`, y=`siqs (std)`, color=as.factor(edad), group=as.factor(edad)))+
  geom_line()+
  scale_color_manual(name="Age stage",
                     values = 2:3,
                     labels = c("early",
                                "late"))

Padre

Sexo

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTp =~ tpqp02 + tpqp05 + tpqp12 + tpqp16 + tpqp01 + tpqp09 + tpqp11 + tpqp14 + tpqp03 + tpqp07 + tpqp10 + tpqp13 + tpqp04 + tpqp06 + tpqp08 + tpqp15


# REGRESIONES
SIQS ~ LTp + edad
'


# Configural model
sem.config <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "sexo")

#sem.config %>% 
#  summary(fit.measures = TRUE, standardized = TRUE)


# Metric model
sem.metric <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "sexo", 
      group.equal = "loadings")

# Scalar model
sem.scalar <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "sexo", 
      group.equal = c("loadings",
                      "intercepts"))

# Strict model
sem.strict <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "sexo", 
      group.equal = c("loadings",
                      "intercepts", 
                      "residuals"))


# Model comparison
semTools::compareFit(sem.config, 
                     sem.metric,
                     sem.scalar,
                     sem.strict) %>% 
  summary()
## ################### Nested Model Comparison #########################
## 
## Chi-Squared Difference Test
## 
##             Df AIC BIC   Chisq Chisq diff    RMSEA Df diff Pr(>Chisq)    
## sem.config 590          925.72                                           
## sem.metric 613         1210.66     284.94 0.186336      23     <2e-16 ***
## sem.scalar 633         1234.98      24.32 0.025661      20     0.2287    
## sem.strict 658         1383.73     148.75 0.122849      25     <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ####################### Model Fit Indices ###########################
##                chisq  df pvalue rmsea   cfi   tli  srmr
## sem.config  925.724† 590     NA .042† .994† .994† .045†
## sem.metric 1210.659  613     NA .055  .990  .989  .053 
## sem.scalar 1234.978  633     NA .054  .990  .990  .054 
## sem.strict 1383.731  658     NA .058  .988  .988  .058 
## 
## ################## Differences in Fit Indices #######################
##                         df  rmsea    cfi    tli  srmr
## sem.metric - sem.config 23  0.013 -0.004 -0.004 0.008
## sem.scalar - sem.metric 20 -0.001  0.000  0.000 0.001
## sem.strict - sem.scalar 25  0.004 -0.002 -0.002 0.005

El modelo métrico ya difiere significativamente del modelo configural, por lo que no se verifica la invariaza en el modelo completo para el padre.

Estimaciones para el modelo configural (el que asume menos igualdades entre los grupos)

# sem.config %>%
#   summary(standardized=T)

semPaths(# Argumentos globales
  sem.config, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Nota. 1=Varones; 2=Mujeres.

# [Grupo 0] SIQS = 0 + .329 * LTc
# [Grupo 1] SIQS = 0 + .175 * LTc

graf <- data.frame(sexo=rep(0:1,2),
                   "LTp (std)"=c(rep(min(scale(datos$tpqp_LT),na.rm = T),2),rep(max(scale(datos$tpqp_LT),na.rm = T),2)),
                   "siqs (std)"=rep(NA,4),
                   check.names = F)
for(i in 1:4){
  graf$`siqs (std)`[i] <- ifelse(graf$sexo[i]==0,
                                 .329*graf$`LTp (std)`[i],
                                 .175*graf$`LTp (std)`[i])
}

graf %>% 
  ggplot(aes(x=`LTp (std)`, y=`siqs (std)`, color=as.factor(sexo), group=as.factor(sexo)))+
  geom_line()+
  scale_color_manual(name="Sex",
                     values = 2:3,
                     labels = c("females",
                                "males"))

Edad

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTp =~ tpqp02 + tpqp05 + tpqp12 + tpqp16 + tpqp01 + tpqp09 + tpqp11 + tpqp14 + tpqp03 + tpqp07 + tpqp10 + tpqp13 + tpqp04 + tpqp06 + tpqp08 + tpqp15


# REGRESIONES
SIQS ~ LTp + sexo
'


# Configural model
sem.config <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "edaddicot")

#sem.config %>% 
#  summary(fit.measures = TRUE, standardized = TRUE)


# Metric model
sem.metric <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "edaddicot", 
      group.equal = "loadings")

# Scalar model
sem.scalar <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "edaddicot", 
      group.equal = c("loadings",
                      "intercepts"))

# Strict model
sem.strict <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "edaddicot", 
      group.equal = c("loadings",
                      "intercepts", 
                      "residuals"))


# Model comparison
semTools::compareFit(sem.config, 
                     sem.metric,
                     sem.scalar,
                     sem.strict) %>% 
  summary()
## ################### Nested Model Comparison #########################
## 
## Chi-Squared Difference Test
## 
##             Df AIC BIC   Chisq Chisq diff    RMSEA Df diff Pr(>Chisq)    
## sem.config 590          799.73                                           
## sem.metric 613         1135.56     335.83 0.203637      23  < 2.2e-16 ***
## sem.scalar 633         1163.09      27.53 0.033877      20      0.121    
## sem.strict 658         1278.27     115.18 0.104871      25  1.552e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ####################### Model Fit Indices ###########################
##                chisq  df pvalue rmsea    cfi    tli  srmr
## sem.config  799.727† 590     NA .033† 0.996† 0.996† .050†
## sem.metric 1135.561  613     NA .051   .991   .990  .057 
## sem.scalar 1163.089  633     NA .051   .991   .991  .058 
## sem.strict 1278.272  658     NA .054   .989   .989  .060 
## 
## ################## Differences in Fit Indices #######################
##                         df rmsea    cfi    tli  srmr
## sem.metric - sem.config 23 0.018 -0.005 -0.006 0.007
## sem.scalar - sem.metric 20 0.000  0.000  0.000 0.001
## sem.strict - sem.scalar 25 0.003 -0.002 -0.001 0.002

El modelo métrico ya difiere significativamente del modelo configural, por lo que no se verifica la invariaza en el modelo completo para el padre

Estimaciones para el modelo configural (el que asume menos igualdades entre los grupos)

# sem.config %>% 
#   summary(standardized=T)

semPaths(# Argumentos globales
  sem.config, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Nota. 1=Late; 2=Early.

# [Grupo 1] SIQS = 0 + .377 * LTc
# [Grupo 2] SIQS = 0 + .218 * LTc

graf <- data.frame(edad=rep(1:2,2),
                   "LTp (std)"=c(rep(min(scale(datos$tpqp_LT),na.rm = T),2),rep(max(scale(datos$tpqp_LT),na.rm = T),2)),
                   "siqs (std)"=rep(NA,4),
                   check.names = F)
for(i in 1:4){
  graf$`siqs (std)`[i] <- ifelse(graf$edad[i]==1,
                                 .377*graf$`LTp (std)`[i],
                                 .218*graf$`LTp (std)`[i])
}

graf %>% 
  ggplot(aes(x=`LTp (std)`, y=`siqs (std)`, color=as.factor(edad), group=as.factor(edad)))+
  geom_line()+
  scale_color_manual(name="Age stage",
                     values = 2:3,
                     labels = c("early",
                                "late"))

Madre y Padre

Probé también el modelo de contexto familiar (i.e., cada LT por separado aporta a un LT “del hogar” y eso como predictor de la identidad social).

Sexo

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTp =~ tpqp02 + tpqp05 + tpqp12 + tpqp16 + tpqp01 + tpqp09 + tpqp11 + tpqp14 + tpqp03 + tpqp07 + tpqp10 + tpqp13 + tpqp04 + tpqp06 + tpqp08 + tpqp15
LTm =~ tpqm02 + tpqm05 + tpqm12 + tpqm16 + tpqm01 + tpqm09 + tpqm11 + tpqm14 + tpqm03 + tpqm07 + tpqm10 + tpqm13 + tpqm04 + tpqm06 + tpqm08 + tpqm15
LT =~ LTm + LTp

# REGRESIONES
SIQS ~ LT + edad
'


# Configural model
sem.config <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "sexo")

#sem.config %>% 
#  summary(fit.measures = TRUE, standardized = TRUE)


# Metric model
sem.metric <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "sexo", 
      group.equal = "loadings")

# Scalar model
sem.scalar <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "sexo", 
      group.equal = c("loadings",
                      "intercepts"))

# Strict model
sem.strict <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "sexo", 
      group.equal = c("loadings",
                      "intercepts", 
                      "residuals"))


# Model comparison
semTools::compareFit(sem.config, 
                     sem.metric,
                     sem.scalar,
                     sem.strict) %>% 
  summary()
## ################### Nested Model Comparison #########################
## 
## Chi-Squared Difference Test
## 
##              Df AIC BIC  Chisq Chisq diff    RMSEA Df diff Pr(>Chisq)    
## sem.config 1626         2623.5                                           
## sem.metric 1665         3329.9     706.38 0.228411      39     <2e-16 ***
## sem.scalar 1699         3371.0      41.09 0.025219      34     0.1877    
## sem.strict 1740         3650.7     279.72 0.133235      41     <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ####################### Model Fit Indices ###########################
##                chisq   df pvalue rmsea   cfi   tli  srmr
## sem.config 2623.548† 1626     NA .043† .991† .991† .057†
## sem.metric 3329.927  1665     NA .055  .985  .985  .067 
## sem.scalar 3371.019  1699     NA .055  .985  .985  .068 
## sem.strict 3650.741  1740     NA .058  .983  .983  .072 
## 
## ################## Differences in Fit Indices #######################
##                         df rmsea    cfi    tli  srmr
## sem.metric - sem.config 39 0.012 -0.006 -0.006 0.010
## sem.scalar - sem.metric 34 0.000  0.000  0.000 0.000
## sem.strict - sem.scalar 41 0.003 -0.002 -0.002 0.004

El modelo métrico ya difiere significativamente del modelo configural, por lo que no se verifica la invariaza en el modelo completo para la parentalidad transformacional

Estimaciones para el modelo configural (el que asume menos igualdades entre los grupos)

# sem.config %>%
#   summary(standardized=T)

semPaths(# Argumentos globales
  sem.config, what="diagram", whatLabels="std",layout="tree2", residuals = F,
  rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Nota. 1=Varones; 2=Mujeres.

# [Grupo 0] SIQS = 0 + .44 * LTc
# [Grupo 1] SIQS = 0 + .312 * LTc

graf <- data.frame(sexo=rep(0:1,2),
                   "LT (std)"=c(rep(min(c(scale(datos$tpqm_LT),scale(datos$tpqp_LT)),na.rm = T),2),rep(max(c(scale(datos$tpqm_LT),scale(datos$tpqp_LT)),na.rm = T),2)),
                   "siqs (std)"=rep(NA,4),
                   check.names = F)
for(i in 1:4){
  graf$`siqs (std)`[i] <- ifelse(graf$sexo[i]==0,
                                 .44*graf$`LT (std)`[i],
                                 .312*graf$`LT (std)`[i])
}

graf %>% 
  ggplot(aes(x=`LT (std)`, y=`siqs (std)`, color=as.factor(sexo), group=as.factor(sexo)))+
  geom_line()+
  scale_color_manual(name="Sex",
                     values = 2:3,
                     labels = c("females",
                                "males"))

Edad

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTp =~ tpqp02 + tpqp05 + tpqp12 + tpqp16 + tpqp01 + tpqp09 + tpqp11 + tpqp14 + tpqp03 + tpqp07 + tpqp10 + tpqp13 + tpqp04 + tpqp06 + tpqp08 + tpqp15
LTm =~ tpqm02 + tpqm05 + tpqm12 + tpqm16 + tpqm01 + tpqm09 + tpqm11 + tpqm14 + tpqm03 + tpqm07 + tpqm10 + tpqm13 + tpqm04 + tpqm06 + tpqm08 + tpqm15
LT =~ LTm + LTp

# REGRESIONES
SIQS ~ LT + sexo
'


# Configural model
sem.config <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "edaddicot")

#sem.config %>% 
#  summary(fit.measures = TRUE, standardized = TRUE)


# Metric model
sem.metric <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "edaddicot", 
      group.equal = "loadings")

# Scalar model
sem.scalar <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "edaddicot", 
      group.equal = c("loadings",
                      "intercepts"))

# Strict model
sem.strict <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "edaddicot", 
      group.equal = c("loadings",
                      "intercepts", 
                      "residuals"))


# Model comparison
semTools::compareFit(sem.config, 
                     sem.metric,
                     sem.scalar,
                     sem.strict) %>% 
  summary()
## ################### Nested Model Comparison #########################
## 
## Chi-Squared Difference Test
## 
##              Df AIC BIC  Chisq Chisq diff    RMSEA Df diff Pr(>Chisq)    
## sem.config 1626         2363.4                                           
## sem.metric 1665         3260.2     896.81 0.258956      39  < 2.2e-16 ***
## sem.scalar 1699         3296.2      36.06 0.013606      34     0.3722    
## sem.strict 1740         3454.8     158.52 0.093480      41  9.943e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ####################### Model Fit Indices ###########################
##                chisq   df pvalue rmsea   cfi   tli  srmr
## sem.config 2363.374† 1626     NA .037† .993† .993† .058†
## sem.metric 3260.181  1665     NA .054  .985  .985  .068 
## sem.scalar 3296.245  1699     NA .054  .985  .985  .068 
## sem.strict 3454.761  1740     NA .055  .984  .984  .070 
## 
## ################## Differences in Fit Indices #######################
##                         df  rmsea    cfi    tli  srmr
## sem.metric - sem.config 39  0.017 -0.008 -0.008 0.010
## sem.scalar - sem.metric 34 -0.001  0.000  0.000 0.000
## sem.strict - sem.scalar 41  0.001 -0.001 -0.001 0.002

El modelo métrico ya difiere significativamente del modelo configural, por lo que no se verifica la invariaza en el modelo completo para el padre

Estimaciones para el modelo configural (el que asume menos igualdades entre los grupos)

# sem.config %>%
#   summary(standardized=T)

semPaths(# Argumentos globales
  sem.config, what="diagram", whatLabels="std",layout="tree2", residuals = F,
  rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Nota. 1=Late; 2=Early.

# [Grupo 1] SIQS = 0 + .487 * LTc
# [Grupo 2] SIQS = 0 + .359 * LTc

graf <- data.frame(edad=rep(1:2,2),
                   "LT (std)"=c(rep(min(c(scale(datos$tpqm_LT),scale(datos$tpqp_LT)),na.rm = T),2),rep(max(c(scale(datos$tpqm_LT),scale(datos$tpqp_LT)),na.rm = T),2)),
                   "siqs (std)"=rep(NA,4),
                   check.names = F)
for(i in 1:4){
  graf$`siqs (std)`[i] <- ifelse(graf$edad[i]==1,
                                 .487*graf$`LT (std)`[i],
                                 .359*graf$`LT (std)`[i])
}

graf %>% 
  ggplot(aes(x=`LT (std)`, y=`siqs (std)`, color=as.factor(edad), group=as.factor(edad)))+
  geom_line()+
  scale_color_manual(name="Age stage",
                     values = 2:3,
                     labels = c("early",
                                "late"))

Contexto Total

Probé también el modelo de contexto familiar y entrenador en simultaneo.

Sexo

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTp =~ tpqp02 + tpqp05 + tpqp12 + tpqp16 + tpqp01 + tpqp09 + tpqp11 + tpqp14 + tpqp03 + tpqp07 + tpqp10 + tpqp13 + tpqp04 + tpqp06 + tpqp08 + tpqp15
LTm =~ tpqm02 + tpqm05 + tpqm12 + tpqm16 + tpqm01 + tpqm09 + tpqm11 + tpqm14 + tpqm03 + tpqm07 + tpqm10 + tpqm13 + tpqm04 + tpqm06 + tpqm08 + tpqm15
LT =~ LTm + LTp
LTc =~ tcq02 + tcq05 + tcq12 + tcq16 + tcq01 + tcq09 + tcq11 + tcq14 + tcq03 + tcq07 + tcq10 + tcq13 + tcq04 + tcq06 + tcq08 + tcq15


# REGRESIONES
SIQS ~ LT + LTc + edad
'


# Configural model
sem.config.sexo <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "sexo")

#sem.config %>% 
#  summary(fit.measures = TRUE, standardized = TRUE)


# Metric model
sem.metric <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "sexo", 
      group.equal = "loadings")

# Scalar model
sem.scalar <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "sexo", 
      group.equal = c("loadings",
                      "intercepts"))

# Strict model
sem.strict <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "sexo", 
      group.equal = c("loadings",
                      "intercepts", 
                      "residuals"))


# Model comparison
semTools::compareFit(sem.config.sexo, 
                     sem.metric,
                     sem.scalar,
                     sem.strict) %>% 
  summary()
## ################### Nested Model Comparison #########################
## 
## Chi-Squared Difference Test
## 
##                   Df AIC BIC  Chisq Chisq diff   RMSEA Df diff Pr(>Chisq)    
## sem.config.sexo 3174         6591.7                                          
## sem.metric      3228         7629.8    1038.08 0.23571      54    < 2e-16 ***
## sem.scalar      3277         7701.0      71.13 0.03711      49    0.02106 *  
## sem.strict      3334         8095.0     394.04 0.13427      57    < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ####################### Model Fit Indices ###########################
##                     chisq   df pvalue rmsea   cfi   tli  srmr
## sem.config.sexo 6591.747† 3174     NA .057† .981† .980† .057†
## sem.metric      7629.830  3228     NA .065  .975  .975  .064 
## sem.scalar      7700.964  3277     NA .064  .975  .975  .064 
## sem.strict      8095.001  3334     NA .066  .973  .973  .067 
## 
## ################## Differences in Fit Indices #######################
##                              df rmsea    cfi    tli  srmr
## sem.metric - sem.config.sexo 54 0.007 -0.006 -0.005 0.007
## sem.scalar - sem.metric      49 0.000  0.000  0.000 0.000
## sem.strict - sem.scalar      57 0.002 -0.002 -0.001 0.003

El modelo métrico ya difiere significativamente del modelo configural, por lo que no se verifica la invariaza en el modelo completo para ambos contextos sociales

Estimaciones para el modelo configural (el que asume menos igualdades entre los grupos)

# sem.config %>%
#   summary(standardized=T)

semPaths(# Argumentos globales
  sem.config.sexo, what="diagram", whatLabels="std",layout="tree2", residuals = F,
  rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Nota. 1=Varones; 2=Mujeres.

# [Grupo 0] SIQS = 0 + .390 * LT
# [Grupo 1] SIQS = 0 + .201 * LT

graf <- data.frame(sexo=rep(0:1,2),
                   "LT (std)"=c(rep(min(c(scale(datos$tpqm_LT),scale(datos$tpqp_LT)),na.rm = T),2),rep(max(c(scale(datos$tpqm_LT),scale(datos$tpqp_LT)),na.rm = T),2)),
                   "siqs (std)"=rep(NA,4),
                   check.names = F)
for(i in 1:4){
  graf$`siqs (std)`[i] <- ifelse(graf$sexo[i]==0,
                                 .390*graf$`LT (std)`[i],
                                 .201*graf$`LT (std)`[i])
}

p1 <- graf %>% 
  ggplot(aes(x=`LT (std)`, y=`siqs (std)`, color=as.factor(sexo), group=as.factor(sexo)))+
  geom_line()+
  scale_color_manual(name="Sex",
                     values = 2:3,
                     labels = c("females",
                                "males"))+
  ylim(c(min(scale(datos$total_IS)),max(scale(datos$total_IS))))




# [Grupo 0] SIQS = 0 + .284 * LTc
# [Grupo 1] SIQS = 0 + .525 * LTc

graf <- data.frame(sexo=rep(0:1,2),
                   "LTc (std)"=c(rep(min(scale(datos$tcq_LT),na.rm = T),2),rep(max(scale(datos$tcq_LT),na.rm = T),2)),
                   "siqs (std)"=rep(NA,4),
                   check.names = F)
for(i in 1:4){
  graf$`siqs (std)`[i] <- ifelse(graf$sexo[i]==0,
                                 .284*graf$`LTc (std)`[i],
                                 .525*graf$`LTc (std)`[i])
}

p2 <- graf %>% 
  ggplot(aes(x=`LTc (std)`, y=`siqs (std)`, color=as.factor(sexo), group=as.factor(sexo)))+
  geom_line()+
  scale_color_manual(name="Sex",
                     values = 2:3,
                     labels = c("females",
                                "males"))+
  ylim(c(min(scale(datos$total_IS)),max(scale(datos$total_IS))))

grid.arrange(p1,p2, nrow=1)

Edad

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTp =~ tpqp02 + tpqp05 + tpqp12 + tpqp16 + tpqp01 + tpqp09 + tpqp11 + tpqp14 + tpqp03 + tpqp07 + tpqp10 + tpqp13 + tpqp04 + tpqp06 + tpqp08 + tpqp15
LTm =~ tpqm02 + tpqm05 + tpqm12 + tpqm16 + tpqm01 + tpqm09 + tpqm11 + tpqm14 + tpqm03 + tpqm07 + tpqm10 + tpqm13 + tpqm04 + tpqm06 + tpqm08 + tpqm15
LT =~ LTm + LTp
LTc =~ tcq02 + tcq05 + tcq12 + tcq16 + tcq01 + tcq09 + tcq11 + tcq14 + tcq03 + tcq07 + tcq10 + tcq13 + tcq04 + tcq06 + tcq08 + tcq15


# REGRESIONES
SIQS ~ LT + LTc + sexo
'


# Configural model
sem.config.edad <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "edaddicot")

#sem.config %>% 
#  summary(fit.measures = TRUE, standardized = TRUE)


# Metric model
sem.metric <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "edaddicot", 
      group.equal = "loadings")

# Scalar model
sem.scalar <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "edaddicot", 
      group.equal = c("loadings",
                      "intercepts"))

# Strict model
sem.strict <- datos %>%
  sem(modelo, ., 
      estimator="ULS", 
      group = "edaddicot", 
      group.equal = c("loadings",
                      "intercepts", 
                      "residuals"))


# Model comparison
semTools::compareFit(sem.config.edad, 
                     sem.metric,
                     sem.scalar,
                     sem.strict) %>% 
  summary()
## ################### Nested Model Comparison #########################
## 
## Chi-Squared Difference Test
## 
##                   Df AIC BIC  Chisq Chisq diff    RMSEA Df diff Pr(>Chisq)    
## sem.config.edad 3174         5373.0                                           
## sem.metric      3228         6720.6    1347.57 0.270248      54    < 2e-16 ***
## sem.scalar      3277         6793.4      72.75 0.038442      49    0.01542 *  
## sem.strict      3334         7115.7     322.32 0.119127      57    < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## ####################### Model Fit Indices ###########################
##                     chisq   df pvalue rmsea   cfi   tli  srmr
## sem.config.edad 5373.037† 3174     NA .046† .987† .987† .057†
## sem.metric      6720.611  3228     NA .058  .980  .979  .064 
## sem.scalar      6793.361  3277     NA .057  .980  .979  .064 
## sem.strict      7115.682  3334     NA .059  .978  .978  .066 
## 
## ################## Differences in Fit Indices #######################
##                              df rmsea    cfi    tli  srmr
## sem.metric - sem.config.edad 54 0.011 -0.008 -0.007 0.007
## sem.scalar - sem.metric      49 0.000  0.000  0.000 0.000
## sem.strict - sem.scalar      57 0.002 -0.002 -0.001 0.001

El modelo métrico ya difiere significativamente del modelo configural, por lo que no se verifica la invariaza en el modelo completo para ambos contextos

Estimaciones para el modelo configural (el que asume menos igualdades entre los grupos)

# sem.config %>%
#   summary(standardized=T)

semPaths(# Argumentos globales
  sem.config.edad, what="diagram", whatLabels="std",layout="tree2", residuals = F,
  rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Nota. 1=Late; 2=Early.

sem.config.edad %>% summary(standardized=T)
## lavaan 0.6.16 ended normally after 116 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       364
## 
##   Number of observations per group:                   
##     2                                              302
##     1                                              354
## 
## Model Test User Model:
##                                                       
##   Test statistic                              5373.037
##   Degrees of freedom                              3174
##   P-value (Unknown)                                 NA
##   Test statistic for each group:
##     2                                         2700.585
##     1                                         2672.453
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   it =~                                                                 
##     siqs01            1.000                               0.907    0.845
##     siqs02            0.858    0.034   24.869    0.000    0.778    0.669
##     siqs03            1.117    0.041   27.395    0.000    1.013    0.856
##   cc =~                                                                 
##     siqs04            1.000                               1.068    0.779
##     siqs05            0.931    0.047   19.896    0.000    0.995    0.715
##     siqs06            0.745    0.039   18.874    0.000    0.796    0.673
##   ia =~                                                                 
##     siqs07            1.000                               0.857    0.858
##     siqs08            1.014    0.042   23.961    0.000    0.869    0.901
##     siqs09            0.945    0.040   23.340    0.000    0.809    0.731
##   SIQS =~                                                               
##     it                1.000                               0.916    0.916
##     cc                0.655    0.031   20.822    0.000    0.509    0.509
##     ia                0.868    0.038   22.679    0.000    0.842    0.842
##   LTp =~                                                                
##     tpqp02            1.000                               0.724    0.685
##     tpqp05            1.107    0.031   35.800    0.000    0.801    0.760
##     tpqp12            1.601    0.040   40.367    0.000    1.158    0.812
##     tpqp16            1.120    0.031   35.966    0.000    0.810    0.749
##     tpqp01            1.063    0.030   35.177    0.000    0.769    0.723
##     tpqp09            1.244    0.033   37.437    0.000    0.900    0.794
##     tpqp11            1.200    0.032   36.949    0.000    0.868    0.738
##     tpqp14            1.180    0.032   36.712    0.000    0.854    0.868
##     tpqp03            0.863    0.027   31.784    0.000    0.624    0.580
##     tpqp07            1.352    0.035   38.503    0.000    0.978    0.764
##     tpqp10            1.139    0.031   36.213    0.000    0.824    0.850
##     tpqp13            1.405    0.036   38.964    0.000    1.017    0.792
##     tpqp04            1.160    0.032   36.470    0.000    0.839    0.742
##     tpqp06            1.193    0.032   36.871    0.000    0.864    0.826
##     tpqp08            1.209    0.033   37.056    0.000    0.875    0.821
##     tpqp15            1.418    0.036   39.067    0.000    1.026    0.840
##   LTm =~                                                                
##     tpqm02            1.000                               0.674    0.645
##     tpqm05            0.750    0.029   25.421    0.000    0.505    0.604
##     tpqm12            1.329    0.040   33.199    0.000    0.896    0.801
##     tpqm16            0.842    0.031   27.199    0.000    0.568    0.744
##     tpqm01            0.813    0.030   26.667    0.000    0.548    0.652
##     tpqm09            0.975    0.033   29.332    0.000    0.658    0.707
##     tpqm11            1.162    0.037   31.649    0.000    0.784    0.744
##     tpqm14            1.136    0.036   31.367    0.000    0.766    0.861
##     tpqm03            0.832    0.031   27.018    0.000    0.561    0.552
##     tpqm07            1.028    0.034   30.056    0.000    0.693    0.650
##     tpqm10            1.090    0.035   30.841    0.000    0.735    0.854
##     tpqm13            1.310    0.040   33.045    0.000    0.884    0.769
##     tpqm04            0.901    0.032   28.193    0.000    0.607    0.701
##     tpqm06            1.162    0.037   31.647    0.000    0.784    0.821
##     tpqm08            0.892    0.032   28.050    0.000    0.601    0.706
##     tpqm15            1.349    0.040   33.359    0.000    0.910    0.834
##   LT =~                                                                 
##     LTm               1.000                               0.987    0.987
##     LTp               0.694    0.033   21.153    0.000    0.638    0.638
##   LTc =~                                                                
##     tcq02             1.000                               1.012    0.734
##     tcq05             0.982    0.023   42.347    0.000    0.994    0.777
##     tcq12             0.717    0.020   36.109    0.000    0.726    0.487
##     tcq16             1.064    0.024   43.729    0.000    1.077    0.776
##     tcq01             1.036    0.024   43.282    0.000    1.048    0.827
##     tcq09             0.926    0.022   41.264    0.000    0.937    0.694
##     tcq11             0.915    0.022   41.035    0.000    0.926    0.713
##     tcq14             0.849    0.021   39.583    0.000    0.859    0.724
##     tcq03             0.720    0.020   36.179    0.000    0.728    0.603
##     tcq07             0.706    0.020   35.778    0.000    0.715    0.632
##     tcq10             0.579    0.018   31.493    0.000    0.586    0.439
##     tcq13             0.823    0.021   38.967    0.000    0.833    0.709
##     tcq04             1.022    0.024   43.053    0.000    1.034    0.800
##     tcq06             0.993    0.023   42.544    0.000    1.005    0.801
##     tcq08             0.858    0.022   39.802    0.000    0.868    0.757
##     tcq15             0.876    0.022   40.211    0.000    0.887    0.746
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SIQS ~                                                                
##     LT                0.390    0.019   20.166    0.000    0.312    0.312
##     LTc               0.272    0.011   25.280    0.000    0.332    0.332
##     sexo              0.292    0.114    2.557    0.011    0.352    0.176
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   LT ~~                                                                 
##     LTc               0.099    0.004   22.917    0.000    0.147    0.147
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .siqs01            4.736    0.083   56.783    0.000    4.736    4.411
##    .siqs02            4.843    0.077   62.535    0.000    4.843    4.166
##    .siqs03            4.566    0.089   51.533    0.000    4.566    3.860
##    .siqs04            4.204    0.070   60.152    0.000    4.204    3.067
##    .siqs05            4.168    0.068   60.940    0.000    4.168    2.998
##    .siqs06            4.766    0.065   73.602    0.000    4.766    4.029
##    .siqs07            5.130    0.078   65.890    0.000    5.130    5.140
##    .siqs08            5.115    0.078   65.285    0.000    5.115    5.304
##    .siqs09            4.862    0.076   64.017    0.000    4.862    4.392
##    .tpqp02            5.308    0.058   92.102    0.000    5.308    5.021
##    .tpqp05            5.464    0.058   94.802    0.000    5.464    5.178
##    .tpqp12            4.851    0.058   84.173    0.000    4.851    3.401
##    .tpqp16            5.440    0.058   94.400    0.000    5.440    5.028
##    .tpqp01            5.371    0.058   93.193    0.000    5.371    5.050
##    .tpqp09            5.411    0.058   93.883    0.000    5.411    4.771
##    .tpqp11            5.192    0.058   90.091    0.000    5.192    4.412
##    .tpqp14            5.523    0.058   95.836    0.000    5.523    5.614
##    .tpqp03            5.275    0.058   91.527    0.000    5.275    4.904
##    .tpqp07            5.053    0.058   87.677    0.000    5.053    3.948
##    .tpqp10            5.520    0.058   95.779    0.000    5.520    5.689
##    .tpqp13            5.132    0.058   89.056    0.000    5.132    3.995
##    .tpqp04            5.285    0.058   91.699    0.000    5.285    4.670
##    .tpqp06            5.447    0.058   94.515    0.000    5.447    5.213
##    .tpqp08            5.424    0.058   94.113    0.000    5.424    5.090
##    .tpqp15            5.126    0.058   88.941    0.000    5.126    4.196
##    .tpqm02            5.411    0.058   93.883    0.000    5.411    5.175
##    .tpqm05            5.672    0.058   98.422    0.000    5.672    6.782
##    .tpqm12            5.328    0.058   92.446    0.000    5.328    4.763
##    .tpqm16            5.666    0.058   98.307    0.000    5.666    7.426
##    .tpqm01            5.546    0.058   96.238    0.000    5.546    6.596
##    .tpqm09            5.626    0.058   97.617    0.000    5.626    6.045
##    .tpqm11            5.371    0.058   93.193    0.000    5.371    5.095
##    .tpqm14            5.606    0.058   97.273    0.000    5.606    6.303
##    .tpqm03            5.268    0.058   91.412    0.000    5.268    5.181
##    .tpqm07            5.278    0.058   91.584    0.000    5.278    4.947
##    .tpqm10            5.586    0.058   96.928    0.000    5.586    6.486
##    .tpqm13            5.301    0.058   91.987    0.000    5.301    4.613
##    .tpqm04            5.566    0.058   96.583    0.000    5.566    6.421
##    .tpqm06            5.560    0.058   96.468    0.000    5.560    5.823
##    .tpqm08            5.566    0.058   96.583    0.000    5.566    6.538
##    .tpqm15            5.325    0.058   92.389    0.000    5.325    4.881
##    .tcq02             3.977    0.058   69.004    0.000    3.977    2.883
##    .tcq05             4.788    0.058   83.081    0.000    4.788    3.743
##    .tcq12             3.854    0.058   66.878    0.000    3.854    2.588
##    .tcq16             4.682    0.058   81.242    0.000    4.682    3.374
##    .tcq01             4.603    0.058   79.863    0.000    4.603    3.628
##    .tcq09             4.897    0.058   84.977    0.000    4.897    3.630
##    .tcq11             4.589    0.058   79.634    0.000    4.589    3.536
##    .tcq14             4.772    0.058   82.794    0.000    4.772    4.024
##    .tcq03             4.646    0.058   80.610    0.000    4.646    3.846
##    .tcq07             4.818    0.058   83.598    0.000    4.818    4.260
##    .tcq10             4.384    0.058   76.071    0.000    4.384    3.281
##    .tcq13             4.517    0.058   78.370    0.000    4.517    3.845
##    .tcq04             4.795    0.058   83.196    0.000    4.795    3.708
##    .tcq06             4.712    0.058   81.760    0.000    4.712    3.755
##    .tcq08             5.073    0.058   88.022    0.000    5.073    4.420
##    .tcq15             4.844    0.058   84.058    0.000    4.844    4.074
##     sexo              0.507    0.058    8.791    0.000    0.507    1.012
##    .it                0.000                               0.000    0.000
##    .cc                0.000                               0.000    0.000
##    .ia                0.000                               0.000    0.000
##    .SIQS              0.000                               0.000    0.000
##    .LTp               0.000                               0.000    0.000
##    .LTm               0.000                               0.000    0.000
##     LT                0.000                               0.000    0.000
##     LTc               0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .siqs01            0.330    0.076    4.350    0.000    0.330    0.286
##    .siqs02            0.746    0.070   10.693    0.000    0.746    0.552
##    .siqs03            0.373    0.082    4.525    0.000    0.373    0.266
##    .siqs04            0.737    0.095    7.750    0.000    0.737    0.392
##    .siqs05            0.944    0.089   10.649    0.000    0.944    0.488
##    .siqs06            0.766    0.076   10.122    0.000    0.766    0.547
##    .siqs07            0.262    0.076    3.460    0.001    0.262    0.263
##    .siqs08            0.175    0.077    2.290    0.022    0.175    0.189
##    .siqs09            0.571    0.073    7.793    0.000    0.571    0.466
##    .tpqp02            0.594    0.061    9.657    0.000    0.594    0.531
##    .tpqp05            0.471    0.062    7.550    0.000    0.471    0.423
##    .tpqp12            0.692    0.068   10.195    0.000    0.692    0.340
##    .tpqp16            0.514    0.063    8.223    0.000    0.514    0.439
##    .tpqp01            0.540    0.062    8.708    0.000    0.540    0.477
##    .tpqp09            0.476    0.064    7.470    0.000    0.476    0.370
##    .tpqp11            0.631    0.063    9.974    0.000    0.631    0.456
##    .tpqp14            0.239    0.063    3.791    0.000    0.239    0.247
##    .tpqp03            0.767    0.060   12.680    0.000    0.767    0.663
##    .tpqp07            0.681    0.065   10.506    0.000    0.681    0.416
##    .tpqp10            0.262    0.063    4.180    0.000    0.262    0.278
##    .tpqp13            0.616    0.065    9.417    0.000    0.616    0.373
##    .tpqp04            0.576    0.063    9.169    0.000    0.576    0.450
##    .tpqp06            0.346    0.063    5.479    0.000    0.346    0.317
##    .tpqp08            0.370    0.063    5.833    0.000    0.370    0.325
##    .tpqp15            0.440    0.066    6.708    0.000    0.440    0.295
##    .tpqm02            0.639    0.062   10.379    0.000    0.639    0.584
##    .tpqm05            0.444    0.060    7.426    0.000    0.444    0.635
##    .tpqm12            0.448    0.065    6.926    0.000    0.448    0.358
##    .tpqm16            0.260    0.060    4.301    0.000    0.260    0.446
##    .tpqm01            0.407    0.060    6.757    0.000    0.407    0.575
##    .tpqm09            0.434    0.061    7.073    0.000    0.434    0.501
##    .tpqm11            0.497    0.063    7.892    0.000    0.497    0.447
##    .tpqm14            0.204    0.063    3.253    0.001    0.204    0.258
##    .tpqm03            0.719    0.060   11.928    0.000    0.719    0.696
##    .tpqm07            0.658    0.062   10.654    0.000    0.658    0.578
##    .tpqm10            0.201    0.062    3.228    0.001    0.201    0.271
##    .tpqm13            0.540    0.064    8.380    0.000    0.540    0.409
##    .tpqm04            0.383    0.061    6.296    0.000    0.383    0.509
##    .tpqm06            0.298    0.063    4.729    0.000    0.298    0.327
##    .tpqm08            0.363    0.061    5.982    0.000    0.363    0.501
##    .tpqm15            0.363    0.065    5.588    0.000    0.363    0.305
##    .tcq02             0.879    0.067   13.214    0.000    0.879    0.462
##    .tcq05             0.648    0.066    9.794    0.000    0.648    0.396
##    .tcq12             1.691    0.062   27.228    0.000    1.691    0.762
##    .tcq16             0.766    0.068   11.305    0.000    0.766    0.398
##    .tcq01             0.510    0.067    7.585    0.000    0.510    0.317
##    .tcq09             0.942    0.065   14.449    0.000    0.942    0.518
##    .tcq11             0.828    0.065   12.735    0.000    0.828    0.492
##    .tcq14             0.668    0.064   10.451    0.000    0.668    0.475
##    .tcq03             0.928    0.062   14.942    0.000    0.928    0.636
##    .tcq07             0.768    0.062   12.399    0.000    0.768    0.601
##    .tcq10             1.442    0.061   23.821    0.000    1.442    0.808
##    .tcq13             0.687    0.064   10.800    0.000    0.687    0.497
##    .tcq04             0.602    0.067    8.989    0.000    0.602    0.360
##    .tcq06             0.565    0.066    8.506    0.000    0.565    0.359
##    .tcq08             0.563    0.064    8.779    0.000    0.563    0.427
##    .tcq15             0.628    0.064    9.753    0.000    0.628    0.444
##    .it                0.132    0.044    3.008    0.003    0.161    0.161
##    .cc                0.846    0.065   12.924    0.000    0.741    0.741
##    .ia                0.214    0.042    5.114    0.000    0.292    0.292
##    .SIQS              0.505    0.036   14.116    0.000    0.731    0.731
##    .LTp               0.311    0.015   20.370    0.000    0.593    0.593
##    .LTm               0.012    0.017    0.696    0.487    0.026    0.026
##     LT                0.443    0.026   16.860    0.000    1.000    1.000
##     LTc               1.024    0.033   30.799    0.000    1.000    1.000
##     sexo              0.251    0.058    4.352    0.000    0.251    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   it =~                                                                 
##     siqs01            1.000                               1.021    0.908
##     siqs02            0.892    0.026   33.852    0.000    0.910    0.688
##     siqs03            1.109    0.030   36.529    0.000    1.133    0.917
##   cc =~                                                                 
##     siqs04            1.000                               0.817    0.666
##     siqs05            1.204    0.038   31.386    0.000    0.984    0.752
##     siqs06            1.123    0.037   30.691    0.000    0.917    0.779
##   ia =~                                                                 
##     siqs07            1.000                               0.812    0.876
##     siqs08            1.057    0.033   31.891    0.000    0.858    0.873
##     siqs09            0.942    0.031   30.377    0.000    0.765    0.699
##   SIQS =~                                                               
##     it                1.000                               0.791    0.791
##     cc                0.815    0.027   29.835    0.000    0.807    0.807
##     ia                0.903    0.029   31.068    0.000    0.899    0.899
##   LTp =~                                                                
##     tpqp02            1.000                               0.631    0.647
##     tpqp05            1.480    0.038   38.774    0.000    0.934    0.824
##     tpqp12            1.662    0.042   39.985    0.000    1.049    0.806
##     tpqp16            1.162    0.033   35.678    0.000    0.733    0.742
##     tpqp01            1.193    0.033   36.054    0.000    0.753    0.676
##     tpqp09            1.611    0.041   39.676    0.000    1.016    0.830
##     tpqp11            1.584    0.040   39.506    0.000    1.000    0.792
##     tpqp14            1.256    0.034   36.763    0.000    0.793    0.825
##     tpqp03            0.956    0.029   32.693    0.000    0.603    0.545
##     tpqp07            1.176    0.033   35.852    0.000    0.742    0.666
##     tpqp10            1.324    0.035   37.441    0.000    0.835    0.824
##     tpqp13            1.672    0.042   40.038    0.000    1.055    0.835
##     tpqp04            1.354    0.036   37.725    0.000    0.854    0.785
##     tpqp06            1.260    0.034   36.806    0.000    0.795    0.786
##     tpqp08            1.441    0.037   38.471    0.000    0.909    0.794
##     tpqp15            1.544    0.039   39.239    0.000    0.974    0.795
##   LTm =~                                                                
##     tpqm02            1.000                               0.581    0.612
##     tpqm05            1.258    0.040   31.598    0.000    0.731    0.788
##     tpqm12            1.480    0.044   33.317    0.000    0.860    0.773
##     tpqm16            0.702    0.030   23.506    0.000    0.408    0.667
##     tpqm01            1.023    0.035   29.009    0.000    0.594    0.623
##     tpqm09            1.456    0.044   33.153    0.000    0.846    0.841
##     tpqm11            1.443    0.044   33.067    0.000    0.839    0.816
##     tpqm14            1.172    0.038   30.763    0.000    0.681    0.841
##     tpqm03            0.888    0.033   27.025    0.000    0.516    0.518
##     tpqm07            1.074    0.036   29.662    0.000    0.624    0.603
##     tpqm10            1.124    0.037   30.239    0.000    0.653    0.816
##     tpqm13            1.577    0.047   33.902    0.000    0.916    0.790
##     tpqm04            0.937    0.034   27.793    0.000    0.544    0.691
##     tpqm06            1.216    0.039   31.199    0.000    0.706    0.787
##     tpqm08            1.303    0.041   31.999    0.000    0.758    0.790
##     tpqm15            1.450    0.044   33.119    0.000    0.843    0.768
##   LT =~                                                                 
##     LTm               1.000                               0.821    0.821
##     LTp               1.043    0.040   26.381    0.000    0.789    0.789
##   LTc =~                                                                
##     tcq02             1.000                               0.931    0.634
##     tcq05             0.930    0.022   42.958    0.000    0.866    0.727
##     tcq12             0.873    0.021   41.648    0.000    0.813    0.501
##     tcq16             1.081    0.024   45.833    0.000    1.006    0.805
##     tcq01             0.924    0.022   42.834    0.000    0.861    0.692
##     tcq09             0.851    0.021   41.126    0.000    0.793    0.710
##     tcq11             1.013    0.023   44.644    0.000    0.943    0.754
##     tcq14             0.994    0.022   44.269    0.000    0.925    0.805
##     tcq03             0.831    0.020   40.611    0.000    0.774    0.626
##     tcq07             0.898    0.021   42.234    0.000    0.836    0.676
##     tcq10             0.772    0.020   39.005    0.000    0.719    0.540
##     tcq13             1.037    0.023   45.074    0.000    0.965    0.750
##     tcq04             0.938    0.022   43.132    0.000    0.873    0.744
##     tcq06             1.020    0.023   44.774    0.000    0.950    0.768
##     tcq08             0.916    0.021   42.653    0.000    0.853    0.784
##     tcq15             1.031    0.023   44.979    0.000    0.960    0.775
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SIQS ~                                                                
##     LT                0.650    0.025   25.834    0.000    0.384    0.384
##     LTc               0.327    0.011   30.500    0.000    0.377    0.377
##     sexo              0.390    0.116    3.368    0.001    0.482    0.238
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   LT ~~                                                                 
##     LTc               0.121    0.004   28.884    0.000    0.272    0.272
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .siqs01            4.822    0.074   64.785    0.000    4.822    4.291
##    .siqs02            4.696    0.071   66.487    0.000    4.696    3.549
##    .siqs03            4.675    0.079   59.549    0.000    4.675    3.785
##    .siqs04            4.516    0.068   66.317    0.000    4.516    3.682
##    .siqs05            4.469    0.074   60.570    0.000    4.469    3.414
##    .siqs06            4.923    0.071   68.918    0.000    4.923    4.182
##    .siqs07            5.262    0.071   74.080    0.000    5.262    5.675
##    .siqs08            5.197    0.073   71.383    0.000    5.197    5.291
##    .siqs09            4.906    0.069   70.844    0.000    4.906    4.485
##    .tpqp02            5.455    0.053  102.475    0.000    5.455    5.593
##    .tpqp05            5.342    0.053  100.352    0.000    5.342    4.712
##    .tpqp12            5.008    0.053   94.090    0.000    5.008    3.851
##    .tpqp16            5.506    0.053  103.430    0.000    5.506    5.573
##    .tpqp01            5.325    0.053  100.034    0.000    5.325    4.782
##    .tpqp09            5.325    0.053  100.034    0.000    5.325    4.347
##    .tpqp11            5.178    0.053   97.274    0.000    5.178    4.105
##    .tpqp14            5.537    0.053  104.014    0.000    5.537    5.761
##    .tpqp03            5.232    0.053   98.283    0.000    5.232    4.724
##    .tpqp07            5.229    0.053   98.229    0.000    5.229    4.692
##    .tpqp10            5.486    0.053  103.059    0.000    5.486    5.414
##    .tpqp13            5.192    0.053   97.540    0.000    5.192    4.111
##    .tpqp04            5.311    0.053   99.768    0.000    5.311    4.881
##    .tpqp06            5.449    0.053  102.369    0.000    5.449    5.384
##    .tpqp08            5.331    0.053  100.140    0.000    5.331    4.658
##    .tpqp15            5.189    0.053   97.487    0.000    5.189    4.234
##    .tpqm02            5.492    0.053  103.165    0.000    5.492    5.782
##    .tpqm05            5.585    0.053  104.916    0.000    5.585    6.018
##    .tpqm12            5.373    0.053  100.936    0.000    5.373    4.830
##    .tpqm16            5.729    0.053  107.623    0.000    5.729    9.370
##    .tpqm01            5.446    0.053  102.316    0.000    5.446    5.707
##    .tpqm09            5.551    0.053  104.279    0.000    5.551    5.515
##    .tpqm11            5.373    0.053  100.936    0.000    5.373    5.228
##    .tpqm14            5.619    0.053  105.553    0.000    5.619    6.938
##    .tpqm03            5.325    0.053  100.034    0.000    5.325    5.350
##    .tpqm07            5.331    0.053  100.140    0.000    5.331    5.149
##    .tpqm10            5.633    0.053  105.818    0.000    5.633    7.036
##    .tpqm13            5.356    0.053  100.618    0.000    5.356    4.616
##    .tpqm04            5.621    0.053  105.606    0.000    5.621    7.132
##    .tpqm06            5.582    0.053  104.863    0.000    5.582    6.222
##    .tpqm08            5.508    0.053  103.483    0.000    5.508    5.746
##    .tpqm15            5.359    0.053  100.671    0.000    5.359    4.881
##    .tcq02             4.280    0.053   80.399    0.000    4.280    2.914
##    .tcq05             5.124    0.053   96.266    0.000    5.124    4.303
##    .tcq12             3.698    0.053   69.466    0.000    3.698    2.282
##    .tcq16             5.040    0.053   94.674    0.000    5.040    4.032
##    .tcq01             4.833    0.053   90.800    0.000    4.833    3.889
##    .tcq09             5.257    0.053   98.760    0.000    5.257    4.711
##    .tcq11             5.020    0.053   94.302    0.000    5.020    4.011
##    .tcq14             5.073    0.053   95.311    0.000    5.073    4.415
##    .tcq03             4.938    0.053   92.763    0.000    4.938    3.997
##    .tcq07             4.915    0.053   92.339    0.000    4.915    3.976
##    .tcq10             4.562    0.053   85.705    0.000    4.562    3.428
##    .tcq13             4.749    0.053   89.208    0.000    4.749    3.690
##    .tcq04             5.017    0.053   94.249    0.000    5.017    4.276
##    .tcq06             4.952    0.053   93.029    0.000    4.952    4.003
##    .tcq08             5.311    0.053   99.768    0.000    5.311    4.881
##    .tcq15             5.040    0.053   94.674    0.000    5.040    4.069
##     sexo              0.412    0.053    7.748    0.000    0.412    0.837
##    .it                0.000                               0.000    0.000
##    .cc                0.000                               0.000    0.000
##    .ia                0.000                               0.000    0.000
##    .SIQS              0.000                               0.000    0.000
##    .LTp               0.000                               0.000    0.000
##    .LTm               0.000                               0.000    0.000
##     LT                0.000                               0.000    0.000
##     LTc               0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .siqs01            0.221    0.070    3.144    0.002    0.221    0.175
##    .siqs02            0.921    0.066   13.997    0.000    0.921    0.526
##    .siqs03            0.242    0.076    3.191    0.001    0.242    0.159
##    .siqs04            0.836    0.065   12.959    0.000    0.836    0.556
##    .siqs05            0.745    0.072   10.321    0.000    0.745    0.435
##    .siqs06            0.545    0.069    7.927    0.000    0.545    0.393
##    .siqs07            0.200    0.066    3.029    0.002    0.200    0.233
##    .siqs08            0.229    0.068    3.344    0.001    0.229    0.237
##    .siqs09            0.612    0.064    9.555    0.000    0.612    0.512
##    .tpqp02            0.553    0.056    9.913    0.000    0.553    0.582
##    .tpqp05            0.413    0.059    7.008    0.000    0.413    0.322
##    .tpqp12            0.591    0.061    9.764    0.000    0.591    0.350
##    .tpqp16            0.439    0.057    7.738    0.000    0.439    0.450
##    .tpqp01            0.673    0.057   11.832    0.000    0.673    0.543
##    .tpqp09            0.467    0.060    7.779    0.000    0.467    0.312
##    .tpqp11            0.592    0.060    9.898    0.000    0.592    0.372
##    .tpqp14            0.295    0.057    5.152    0.000    0.295    0.320
##    .tpqp03            0.863    0.056   15.524    0.000    0.863    0.703
##    .tpqp07            0.692    0.057   12.179    0.000    0.692    0.557
##    .tpqp10            0.329    0.058    5.699    0.000    0.329    0.321
##    .tpqp13            0.483    0.061    7.959    0.000    0.483    0.303
##    .tpqp04            0.454    0.058    7.826    0.000    0.454    0.384
##    .tpqp06            0.392    0.057    6.835    0.000    0.392    0.383
##    .tpqp08            0.483    0.059    8.236    0.000    0.483    0.369
##    .tpqp15            0.553    0.060    9.292    0.000    0.553    0.368
##    .tpqm02            0.564    0.056   10.121    0.000    0.564    0.626
##    .tpqm05            0.327    0.057    5.700    0.000    0.327    0.379
##    .tpqm12            0.497    0.059    8.437    0.000    0.497    0.402
##    .tpqm16            0.208    0.054    3.811    0.000    0.208    0.555
##    .tpqm01            0.557    0.056    9.974    0.000    0.557    0.612
##    .tpqm09            0.297    0.059    5.062    0.000    0.297    0.293
##    .tpqm11            0.353    0.059    6.015    0.000    0.353    0.334
##    .tpqm14            0.192    0.057    3.378    0.001    0.192    0.292
##    .tpqm03            0.724    0.055   13.118    0.000    0.724    0.731
##    .tpqm07            0.682    0.056   12.140    0.000    0.682    0.636
##    .tpqm10            0.214    0.056    3.798    0.000    0.214    0.334
##    .tpqm13            0.506    0.060    8.476    0.000    0.506    0.376
##    .tpqm04            0.325    0.055    5.859    0.000    0.325    0.523
##    .tpqm06            0.306    0.057    5.363    0.000    0.306    0.380
##    .tpqm08            0.345    0.058    5.994    0.000    0.345    0.376
##    .tpqm15            0.494    0.059    8.426    0.000    0.494    0.410
##    .tcq02             1.290    0.060   21.580    0.000    1.290    0.598
##    .tcq05             0.668    0.059   11.356    0.000    0.668    0.471
##    .tcq12             1.965    0.058   33.780    0.000    1.965    0.749
##    .tcq16             0.550    0.061    9.029    0.000    0.550    0.352
##    .tcq01             0.804    0.059   13.675    0.000    0.804    0.521
##    .tcq09             0.617    0.058   10.652    0.000    0.617    0.495
##    .tcq11             0.676    0.060   11.279    0.000    0.676    0.432
##    .tcq14             0.464    0.060    7.782    0.000    0.464    0.352
##    .tcq03             0.927    0.058   16.068    0.000    0.927    0.608
##    .tcq07             0.830    0.058   14.195    0.000    0.830    0.543
##    .tcq10             1.254    0.057   21.973    0.000    1.254    0.708
##    .tcq13             0.724    0.060   12.019    0.000    0.724    0.437
##    .tcq04             0.614    0.059   10.412    0.000    0.614    0.446
##    .tcq06             0.628    0.060   10.457    0.000    0.628    0.410
##    .tcq08             0.456    0.059    7.773    0.000    0.456    0.385
##    .tcq15             0.612    0.060   10.160    0.000    0.612    0.399
##    .it                0.389    0.038   10.205    0.000    0.374    0.374
##    .cc                0.233    0.030    7.898    0.000    0.349    0.349
##    .ia                0.126    0.035    3.603    0.000    0.192    0.192
##    .SIQS              0.376    0.026   14.522    0.000    0.576    0.576
##    .LTp               0.150    0.009   17.255    0.000    0.377    0.377
##    .LTm               0.110    0.008   13.742    0.000    0.326    0.326
##     LT                0.228    0.012   18.832    0.000    1.000    1.000
##     LTc               0.867    0.027   31.889    0.000    1.000    1.000
##     sexo              0.243    0.053    4.565    0.000    0.243    1.000
# [Grupo 1] SIQS = 0 + .384 * LT
# [Grupo 2] SIQS = 0 + .312 * LT

graf <- data.frame(edad=rep(1:2,2),
                   "LT (std)"=c(rep(min(c(scale(datos$tpqm_LT),scale(datos$tpqp_LT)),na.rm = T),2),rep(max(c(scale(datos$tpqm_LT),scale(datos$tpqp_LT)),na.rm = T),2)),
                   "siqs (std)"=rep(NA,4),
                   check.names = F)
for(i in 1:4){
  graf$`siqs (std)`[i] <- ifelse(graf$edad[i]==1,
                                 .384*graf$`LT (std)`[i],
                                 .312*graf$`LT (std)`[i])
}

p3 <- graf %>% 
  ggplot(aes(x=`LT (std)`, y=`siqs (std)`, color=as.factor(edad), group=as.factor(edad)))+
  geom_line()+
  scale_color_manual(name="Age stage",
                     values = 2:3,
                     labels = c("early",
                                "late"))+
  ylim(c(min(scale(datos$total_IS)),max(scale(datos$total_IS))))





# [Grupo 1] SIQS = 0 + .377 * LTc
# [Grupo 2] SIQS = 0 + .332 * LTc

graf <- data.frame(edad=rep(1:2,2),
                   "LTc (std)"=c(rep(min(scale(datos$tcq_LT),na.rm = T),2),rep(max(scale(datos$tcq_LT),na.rm = T),2)),
                   "siqs (std)"=rep(NA,4),
                   check.names = F)
for(i in 1:4){
  graf$`siqs (std)`[i] <- ifelse(graf$edad[i]==1,
                                 .377*graf$`LTc (std)`[i],
                                 .332*graf$`LTc (std)`[i])
}

p4 <- graf %>% 
  ggplot(aes(x=`LTc (std)`, y=`siqs (std)`, color=as.factor(edad), group=as.factor(edad)))+
  geom_line()+
  scale_color_manual(name="Age stage",
                     values = 2:3,
                     labels = c("early",
                                "late"))+
  ylim(c(min(scale(datos$total_IS)),max(scale(datos$total_IS))))



grid.arrange(p3, p4, nrow=1)

Conclusión

El mejor modelo en esta línea de análisis es el más complejo, que incluye el estilo de liderazgo del coach y el estilo de parentalidad en el hogar (compuesto por cada estilo de parentalidad por separado) en la predicción de la identidad social. La utilización de este modelo permite interpretar el funcionamiendo de cada una de las escalas, el peso de cada figura paterna en la concepción de parentalidad transformacional y el peso de cada contexto social en la predicción de la identidad social.

indicadores <- bind_rows(sem.config.sexo %>%
                           fitmeasures(c("chisq","df", "cfi","tli","rmsea","srmr")),
                         sem.config.edad %>%
                           fitmeasures(c("chisq","df", "cfi","tli","rmsea","srmr")))
indicadores <- cbind("modelo"=c("sexo","edad"), indicadores)
indicadores[,4:7] <- round(indicadores[,4:7],3)

kable(indicadores,
      "html",
      booktabs = T,
      caption = "Indicadores para cada modelo") %>%
  kable_styling(full_width = F,
                position = "center", font_size = 12)
Indicadores para cada modelo
modelo chisq df cfi tli rmsea srmr
sexo 6591.747 3174 0.981 0.980 0.057 0.057
edad 5373.037 3174 0.987 0.987 0.046 0.057
semPaths(# Argumentos globales
  sem.config.sexo, what="diagram", whatLabels="std",layout="tree2", residuals = F,
  rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Nota. 1=Varones; 2=Mujeres.

Tanto en varones como en mujeres, el peso del estilo transformacional de la madre (0.91 y 0.87) es mayor que el peso del estilo transformacional del padre (0.59 y 0.77) a la hora de evaluar el liderazgo en el contexto familiar.

semPaths(# Argumentos globales
  sem.config.edad, what="diagram", whatLabels="std",layout="tree2", residuals = F,
  rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Nota. 1=Late; 2=Early.

A su vez, ambas etapas vitales también ponderan más el liderazgo de la madre (0.99 y 0.82) que el del padre (0.64 y 0.79).

grid.arrange(p1, p2, nrow=1)

Respecto al sexo, en las mujeres la figura de los padres tiene mayor influencia sobre su identidad social, mientras que la figura del entrenador se relaciona más intensamente con la identidad social en varones.

grid.arrange(p3, p4, nrow=1)

El efecto del estilo de liderazgo del coach resulta significativo pero bastante constante entre las distintas etapas de la adolescencia, mientras que el estilo de parentalidad de las familias tiene una relación más intensa con la identidad social cuando los adolescentes son más jóvenes.


SEM y Reg. Lineal

Otra opción es armar el modelo completo en SEM, sacar conclusiones de las relaciones controlando por sexo y edad, pero sin la interacción. Y finalmente, justificado en la imposibilidad de identificar el modelo SEM con la interacción, hacer una regresión lineal múltiple para evaluar la interacción.

Coach

modelo <- '
# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTc =~ tcq02 + tcq05 + tcq12 + tcq16 + tcq01 + tcq09 + tcq11 + tcq14 + tcq03 + tcq07 + tcq10 + tcq13 + tcq04 + tcq06 + tcq08 + tcq15


# REGRESIONES
SIQS ~ LTc + sexo + edad
'


# Configural model
sem.coach <- datos %>%
  sem(modelo, ., 
      estimator="ULS")

# sem.coach %>% 
#   summary(fit.measures=T, standardized=T)




semPaths(# Argumentos globales
  sem.coach, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

mod <- datos %>% 
  lm(total_IS~tcq_LT*(sexo+edaddicot),.)

mod %>% 
  summary()
## 
## Call:
## lm(formula = total_IS ~ tcq_LT * (sexo + edaddicot), data = .)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.81294 -0.48916  0.09818  0.53117  1.95378 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       2.65285    0.49321   5.379 1.05e-07 ***
## tcq_LT            0.48089    0.10101   4.761 2.38e-06 ***
## sexo             -0.42005    0.33909  -1.239   0.2159    
## edaddicot         0.58013    0.32104   1.807   0.0712 .  
## tcq_LT:sexo       0.12685    0.06935   1.829   0.0678 .  
## tcq_LT:edaddicot -0.14046    0.06644  -2.114   0.0349 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7559 on 650 degrees of freedom
## Multiple R-squared:  0.1679, Adjusted R-squared:  0.1615 
## F-statistic: 26.23 on 5 and 650 DF,  p-value: < 2.2e-16
graf <- data.frame(sexo = rep(1, 4),
                   edaddicot = rep(1:2, 2),
                   tcq_LT = c(rep(min(datos$tcq_LT, na.rm = TRUE), 2), rep(max(datos$tcq_LT, na.rm = TRUE), 2)),
                   total_IS = rep(NA, 4),
                   check.names = FALSE)



graf$total_IS <- predict(mod, newdata = graf)



p5 <- graf %>% 
  ggplot(aes(x=tcq_LT, y=total_IS, color=as.factor(edaddicot), group=as.factor(edaddicot)))+
  geom_line()+
  scale_color_manual(name="Age stage",
                     values = 2:3,
                     labels = c("early",
                                "late"))+
  ylim(c(min(datos$total_IS), max(datos$total_IS)))

p5

El entrenador tiene más peso en los early que en los late.

Madre

modelo <- '
# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTm =~ tpqm02 + tpqm05 + tpqm12 + tpqm16 + tpqm01 + tpqm09 + tpqm11 + tpqm14 + tpqm03 + tpqm07 + tpqm10 + tpqm13 + tpqm04 + tpqm06 + tpqm08 + tpqm15


# REGRESIONES
SIQS ~ LTm + sexo + edad
'


# Configural model
sem.mom <- datos %>%
  sem(modelo, ., 
      estimator="ULS")

# sem.coach %>% 
#   summary(fit.measures=T, standardized=T)




semPaths(# Argumentos globales
  sem.mom, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

mod <- datos %>% 
  lm(total_IS~tpqm_LT*(sexo+edaddicot),.)

mod %>% 
  summary()
## 
## Call:
## lm(formula = total_IS ~ tpqm_LT * (sexo + edaddicot), data = .)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.6623 -0.5137  0.1154  0.5871  1.8389 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        2.12015    0.73566   2.882  0.00408 ** 
## tpqm_LT            0.53433    0.13294   4.019 6.52e-05 ***
## sexo               0.63647    0.52745   1.207  0.22799    
## edaddicot          0.41303    0.46589   0.887  0.37565    
## tpqm_LT:sexo      -0.07462    0.09466  -0.788  0.43082    
## tpqm_LT:edaddicot -0.10540    0.08424  -1.251  0.21131    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.77 on 650 degrees of freedom
## Multiple R-squared:  0.1367, Adjusted R-squared:  0.1301 
## F-statistic: 20.59 on 5 and 650 DF,  p-value: < 2.2e-16
graf <- data.frame(sexo = rep(1, 4),
                   edaddicot = rep(1:2, 2),
                   tpqm_LT = c(rep(min(datos$tpqm_LT, na.rm = TRUE), 2), rep(max(datos$tpqm_LT, na.rm = TRUE), 2)),
                   total_IS = rep(NA, 4),
                   check.names = FALSE)



graf$total_IS <- predict(mod, newdata = graf)



# graf %>% 
#   ggplot(aes(x=tpqm_LT, y=total_IS, color=as.factor(edaddicot), group=as.factor(edaddicot)))+
#   geom_line()+
#   scale_color_manual(name="Age stage",
#                      values = 2:3,
#                      labels = c("early",
#                                 "late"))

El efecto de la madre es constante, más allá de la edad y del sexo.

Padre

modelo <- '
# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTp =~ tpqp02 + tpqp05 + tpqp12 + tpqp16 + tpqp01 + tpqp09 + tpqp11 + tpqp14 + tpqp03 + tpqp07 + tpqp10 + tpqp13 + tpqp04 + tpqp06 + tpqp08 + tpqp15


# REGRESIONES
SIQS ~ LTp + sexo + edad
'


# Configural model
sem.dad <- datos %>%
  sem(modelo, ., 
      estimator="ULS")

# sem.coach %>% 
#   summary(fit.measures=T, standardized=T)




semPaths(# Argumentos globales
  sem.dad, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

mod <- datos %>% 
  lm(total_IS~tpqp_LT*(sexo+edaddicot),.)

mod %>% 
  summary()
## 
## Call:
## lm(formula = total_IS ~ tpqp_LT * (sexo + edaddicot), data = .)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8162 -0.5043  0.1139  0.6073  1.6018 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        2.15053    0.60338   3.564 0.000392 ***
## tpqp_LT            0.54498    0.11196   4.868 1.42e-06 ***
## sexo               0.95358    0.40412   2.360 0.018586 *  
## edaddicot          0.83389    0.37523   2.222 0.026605 *  
## tpqp_LT:sexo      -0.13339    0.07445  -1.792 0.073673 .  
## tpqp_LT:edaddicot -0.18766    0.06975  -2.690 0.007318 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7825 on 650 degrees of freedom
## Multiple R-squared:  0.1084, Adjusted R-squared:  0.1016 
## F-statistic: 15.81 on 5 and 650 DF,  p-value: 1.037e-14
graf <- data.frame(sexo = rep(1, 4),
                   edaddicot = rep(1:2, 2),
                   tpqp_LT = c(rep(min(datos$tpqp_LT, na.rm = TRUE), 2), rep(max(datos$tpqp_LT, na.rm = TRUE), 2)),
                   total_IS = rep(NA, 4),
                   check.names = FALSE)



graf$total_IS <- predict(mod, newdata = graf)



p6 <- graf %>%
  ggplot(aes(x=tpqp_LT, y=total_IS, color=as.factor(edaddicot), group=as.factor(edaddicot)))+
  geom_line()+
  scale_color_manual(name="Age stage",
                     values = 2:3,
                     labels = c("early",
                                "late"))+
  ylim(c(min(datos$total_IS), max(datos$total_IS)))

p6

El efecto del padre (como el del coach) es mucho más marcado en early que en late.

Madre y Padre

modelo <- '
# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTp =~ tpqp02 + tpqp05 + tpqp12 + tpqp16 + tpqp01 + tpqp09 + tpqp11 + tpqp14 + tpqp03 + tpqp07 + tpqp10 + tpqp13 + tpqp04 + tpqp06 + tpqp08 + tpqp15
LTm =~ tpqm02 + tpqm05 + tpqm12 + tpqm16 + tpqm01 + tpqm09 + tpqm11 + tpqm14 + tpqm03 + tpqm07 + tpqm10 + tpqm13 + tpqm04 + tpqm06 + tpqm08 + tpqm15
LT =~ LTm+LTp

# REGRESIONES
SIQS ~ LT + sexo + edad
'


# Configural model
sem.parents <- datos %>%
  sem(modelo, ., 
      estimator="ULS")

# sem.coach %>% 
#   summary(fit.measures=T, standardized=T)




semPaths(# Argumentos globales
  sem.parents, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

mod <- datos %>% 
  lm(total_IS~(tpqp_LT+tpqm_LT)*(sexo+edaddicot),.)

mod %>% 
  summary()
## 
## Call:
## lm(formula = total_IS ~ (tpqp_LT + tpqm_LT) * (sexo + edaddicot), 
##     data = .)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7226 -0.4897  0.1163  0.5919  1.8810 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)   
## (Intercept)        1.697499   0.748524   2.268   0.0237 * 
## tpqp_LT            0.410799   0.144470   2.843   0.0046 **
## tpqm_LT            0.213313   0.173772   1.228   0.2201   
## sexo               0.661874   0.541299   1.223   0.2219   
## edaddicot          0.631328   0.476135   1.326   0.1853   
## tpqp_LT:sexo      -0.087224   0.088968  -0.980   0.3273   
## tpqp_LT:edaddicot -0.202599   0.086557  -2.341   0.0196 * 
## tpqm_LT:sexo       0.004825   0.113694   0.042   0.9662   
## tpqm_LT:edaddicot  0.051532   0.105971   0.486   0.6269   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7664 on 647 degrees of freedom
## Multiple R-squared:  0.1487, Adjusted R-squared:  0.1381 
## F-statistic: 14.12 on 8 and 647 DF,  p-value: < 2.2e-16
graf <- data.frame(sexo = rep(1, 4),
                   edaddicot = rep(1:2, 2),
                   tpqm_LT = rep(mean(datos$tpqm_LT),4),
                   tpqp_LT = c(rep(min(datos$tpqp_LT, na.rm = TRUE), 2), rep(max(datos$tpqp_LT, na.rm = TRUE), 2)),
                   total_IS = rep(NA, 4),
                   check.names = FALSE)



graf$total_IS <- predict(mod, newdata = graf)



graf %>%
  ggplot(aes(x=tpqp_LT, y=total_IS, color=as.factor(edaddicot), group=as.factor(edaddicot)))+
  geom_line()+
  scale_color_manual(name="Age stage",
                     values = 2:3,
                     labels = c("early",
                                "late"))+
  ylim(c(min(datos$total_IS), max(datos$total_IS)))

Cuando se incluyen madre, padre, edad y sexo (con sus interacciones) sólo resulta significativo el padre y su interacción con la edad. Dejando las variables sexo y madre fijas, da este resultado medio contraintuitivo para los lates.

Contexto Total

modelo <- '
# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTp =~ tpqp02 + tpqp05 + tpqp12 + tpqp16 + tpqp01 + tpqp09 + tpqp11 + tpqp14 + tpqp03 + tpqp07 + tpqp10 + tpqp13 + tpqp04 + tpqp06 + tpqp08 + tpqp15
LTm =~ tpqm02 + tpqm05 + tpqm12 + tpqm16 + tpqm01 + tpqm09 + tpqm11 + tpqm14 + tpqm03 + tpqm07 + tpqm10 + tpqm13 + tpqm04 + tpqm06 + tpqm08 + tpqm15
LT =~ LTm+LTp
LTc =~ tcq02 + tcq05 + tcq12 + tcq16 + tcq01 + tcq09 + tcq11 + tcq14 + tcq03 + tcq07 + tcq10 + tcq13 + tcq04 + tcq06 + tcq08 + tcq15


# REGRESIONES
SIQS ~ LTc + LT + sexo + edad
'


# Configural model
sem.todes <- datos %>%
  sem(modelo, ., 
      estimator="ULS")

# sem.coach %>% 
#   summary(fit.measures=T, standardized=T)




semPaths(# Argumentos globales
  sem.todes, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

mod <- datos %>% 
  lm(total_IS~(tcq_LT+tpqp_LT+tpqm_LT)*(sexo+edaddicot),.)

mod %>% 
  summary()
## 
## Call:
## lm(formula = total_IS ~ (tcq_LT + tpqp_LT + tpqm_LT) * (sexo + 
##     edaddicot), data = .)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.78482 -0.48365  0.07396  0.52589  1.99956 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.53189    0.78004   0.682 0.495567    
## tcq_LT             0.37917    0.09913   3.825 0.000143 ***
## tpqp_LT            0.32115    0.13735   2.338 0.019681 *  
## tpqm_LT            0.16750    0.16470   1.017 0.309553    
## sexo               0.25546    0.56309   0.454 0.650212    
## edaddicot          0.86484    0.50464   1.714 0.087050 .  
## tcq_LT:sexo        0.13890    0.06749   2.058 0.039994 *  
## tcq_LT:edaddicot  -0.10208    0.06481  -1.575 0.115698    
## tpqp_LT:sexo      -0.08101    0.08425  -0.962 0.336638    
## tpqp_LT:edaddicot -0.15893    0.08212  -1.935 0.053376 .  
## tpqm_LT:sexo      -0.06202    0.10820  -0.573 0.566738    
## tpqm_LT:edaddicot  0.06947    0.10052   0.691 0.489755    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7241 on 644 degrees of freedom
## Multiple R-squared:  0.2435, Adjusted R-squared:  0.2306 
## F-statistic: 18.85 on 11 and 644 DF,  p-value: < 2.2e-16
graf <- data.frame(edaddicot = rep(1, 4),
                   sexo = rep(0:1, 2),
                   tpqm_LT = rep(mean(datos$tpqm_LT),4),
                   tpqp_LT = rep(mean(datos$tpqp_LT),4),
                   tcq_LT = c(rep(min(datos$tcq_LT, na.rm = TRUE), 2), rep(max(datos$tcq_LT, na.rm = TRUE), 2)),
                   total_IS = rep(NA, 4),
                   check.names = FALSE)



graf$total_IS <- predict(mod, newdata = graf)



graf %>%
  ggplot(aes(x=tcq_LT, y=total_IS, color=as.factor(sexo), group=as.factor(sexo)))+
  geom_line()+
  scale_color_manual(name="sex",
                     values = 2:3,
                     labels = c("female",
                                "male"))+
  ylim(c(min(datos$total_IS), max(datos$total_IS)))

Cuando se incluyen coach, madre, padre, edad y sexo (con sus interacciones) sólo resulta significativo el padre, el coach y la interacción de coach con sexo.

Conclusión

Creo que se podría reportar el sem completo para interpretarlo, pero los modelos que evaluan interacción los haría por separado.

indicadores <- sem.todes %>%
                           fitmeasures(c("chisq","df", "cfi","tli","rmsea","srmr"))
indicadores[3:6] <- round(indicadores[3:6],3)

kable(indicadores,
      "html",
      booktabs = T,
      caption = "Indicadores para el modelo completo") %>%
  kable_styling(full_width = F,
                position = "center", font_size = 12)
Indicadores para el modelo completo
x
chisq 4679.133
df 1643.000
cfi 0.982
tli 0.982
rmsea 0.053
srmr 0.050
semPaths(# Argumentos globales
  sem.todes, what="diagram", whatLabels="std",layout="tree2", residuals = F,
  rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

El peso del estilo transformacional de la madre (0.87) es mayor que el peso del estilo transformacional del padre (0.73) a la hora de evaluar el liderazgo en el contexto familiar. En la predicción de la identidad social, ambos contextos tienen importancia similar (coach: 0.37, familia: 0.35).

grid.arrange(p5, p6, nrow=1)

Nota. tcq_LT = Liderazgo Coach, tpqp_LT = Liderazgo Padre.

La etapa vital resultó un moderador significativo en el modelo del padre y del coach. El liderazgo de ambas figuras presenta una relación más fuerte con la identidad social entre los early que entre los late. En el caso del padre, esa relación en lates parece casi nula.


SEM con moderación

La última opción no la recomiendo realmente, pero es también una opción. Se podrían ajustar los modelos sin incluir la covarianza de los errores. En las limitaciones se podría indicar que debido a problemas con la identificación del modelo no fue posible ajustarlo con la covarianza de los errores entre los términos de la interacción y las variables originales y que, por lo tanto, la estimación de los parámentros de la interacción podrían estar sesgados.

Coach

Sexo

datos_mod <- semTools::indProd(datos, var1 = 24:39, var2 = c(2,4), match = FALSE,
                         meanC = TRUE, residualC = FALSE, doubleMC = TRUE)

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTc =~ tcq02 + tcq05 + tcq12 + tcq16 + tcq01 + tcq09 + tcq11 + tcq14 + tcq03 + tcq07 + tcq10 + tcq13 + tcq04 + tcq06 + tcq08 + tcq15

# MODERADORES

int.sex_LTc =~ tcq01.sexo + tcq02.sexo + tcq03.sexo + tcq04.sexo + tcq05.sexo + tcq06.sexo + tcq07.sexo + tcq08.sexo + tcq09.sexo + tcq10.sexo + tcq11.sexo + tcq12.sexo + tcq13.sexo + tcq14.sexo + tcq15.sexo + tcq16.sexo



# REGRESIONES
SIQS ~ LTc + sexo + edaddicot + int.sex_LTc

'



ajuste_LTc <- datos_mod %>%
    sem(modelo, ., estimator="ULS")

# ajuste_LTc %>%
#   summary(fit.measures = TRUE, standardized = TRUE)





semPaths(# Argumentos globales
  ajuste_LTc, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Edad

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTc =~ tcq02 + tcq05 + tcq12 + tcq16 + tcq01 + tcq09 + tcq11 + tcq14 + tcq03 + tcq07 + tcq10 + tcq13 + tcq04 + tcq06 + tcq08 + tcq15

# MODERADORES

int.age_LTc =~ tcq01.edaddicot + tcq02.edaddicot + tcq03.edaddicot + tcq04.edaddicot + tcq05.edaddicot + tcq06.edaddicot + tcq07.edaddicot + tcq08.edaddicot + tcq09.edaddicot + tcq10.edaddicot + tcq11.edaddicot + tcq12.edaddicot + tcq13.edaddicot + tcq14.edaddicot + tcq15.edaddicot + tcq16.edaddicot


# REGRESIONES
SIQS ~ LTc + sexo + edaddicot + int.age_LTc

'



ajuste_LTc <- datos_mod %>%
    sem(modelo, ., estimator="ULS")

# ajuste_LTc %>%
#   summary(fit.measures = TRUE, standardized = TRUE)





semPaths(# Argumentos globales
  ajuste_LTc, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Sexo y edad

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTc =~ tcq02 + tcq05 + tcq12 + tcq16 + tcq01 + tcq09 + tcq11 + tcq14 + tcq03 + tcq07 + tcq10 + tcq13 + tcq04 + tcq06 + tcq08 + tcq15

# MODERADORES

int.sex_LTc =~ tcq01.sexo + tcq02.sexo + tcq03.sexo + tcq04.sexo + tcq05.sexo + tcq06.sexo + tcq07.sexo + tcq08.sexo + tcq09.sexo + tcq10.sexo + tcq11.sexo + tcq12.sexo + tcq13.sexo + tcq14.sexo + tcq15.sexo + tcq16.sexo
int.age_LTc =~ tcq01.edaddicot + tcq02.edaddicot + tcq03.edaddicot + tcq04.edaddicot + tcq05.edaddicot + tcq06.edaddicot + tcq07.edaddicot + tcq08.edaddicot + tcq09.edaddicot + tcq10.edaddicot + tcq11.edaddicot + tcq12.edaddicot + tcq13.edaddicot + tcq14.edaddicot + tcq15.edaddicot + tcq16.edaddicot


# REGRESIONES
SIQS ~ LTc + sexo + edaddicot + int.sex_LTc + int.age_LTc

'



ajuste_LTc <- datos_mod %>%
    sem(modelo, ., estimator="ULS")

ajuste_LTc %>%
  summary(fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6.16 ended normally after 100 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       128
## 
##   Number of observations                           656
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1818.133
##   Degrees of freedom                              1642
##   P-value (Unknown)                                 NA
## 
## Model Test Baseline Model:
## 
##   Test statistic                             76859.422
##   Degrees of freedom                              1710
##   P-value                                           NA
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.998
##   Tucker-Lewis Index (TLI)                       0.998
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.013
##   90 Percent confidence interval - lower         0.008
##   90 Percent confidence interval - upper         0.016
##   P-value H_0: RMSEA <= 0.050                    1.000
##   P-value H_0: RMSEA >= 0.080                    0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.045
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   it =~                                                                 
##     siqs01            1.000                               0.989    0.898
##     siqs02            0.792    0.023   34.447    0.000    0.783    0.625
##     siqs03            1.131    0.029   38.524    0.000    1.119    0.923
##   cc =~                                                                 
##     siqs04            1.000                               0.931    0.713
##     siqs05            1.095    0.032   34.611    0.000    1.019    0.750
##     siqs06            0.935    0.028   33.141    0.000    0.870    0.734
##   ia =~                                                                 
##     siqs07            1.000                               0.830    0.863
##     siqs08            1.053    0.031   34.088    0.000    0.874    0.897
##     siqs09            0.939    0.029   32.688    0.000    0.779    0.709
##   SIQS =~                                                               
##     it                1.000                               0.797    0.797
##     cc                0.856    0.027   31.567    0.000    0.725    0.725
##     ia                0.906    0.029   31.676    0.000    0.860    0.860
##   LTc =~                                                                
##     tcq02             1.000                               0.992    0.691
##     tcq05             0.965    0.016   61.239    0.000    0.958    0.771
##     tcq12             0.743    0.014   53.623    0.000    0.737    0.472
##     tcq16             1.072    0.017   63.938    0.000    1.064    0.803
##     tcq01             0.961    0.016   61.124    0.000    0.954    0.757
##     tcq09             0.879    0.015   58.665    0.000    0.873    0.703
##     tcq11             0.965    0.016   61.248    0.000    0.958    0.743
##     tcq14             0.905    0.015   59.479    0.000    0.898    0.764
##     tcq03             0.797    0.014   55.763    0.000    0.790    0.642
##     tcq07             0.774    0.014   54.877    0.000    0.768    0.646
##     tcq10             0.632    0.013   48.565    0.000    0.627    0.470
##     tcq13             0.915    0.015   59.780    0.000    0.908    0.731
##     tcq04             0.966    0.016   61.256    0.000    0.958    0.777
##     tcq06             0.990    0.016   61.921    0.000    0.983    0.786
##     tcq08             0.873    0.015   58.445    0.000    0.866    0.772
##     tcq15             0.931    0.015   60.263    0.000    0.924    0.758
##   int.sex_LTc =~                                                        
##     tcq01.sexo        1.000                               0.447    0.732
##     tcq02.sexo        1.052    0.070   15.016    0.000    0.470    0.663
##     tcq03.sexo        0.878    0.064   13.816    0.000    0.393    0.654
##     tcq04.sexo        1.034    0.069   14.909    0.000    0.462    0.763
##     tcq05.sexo        1.034    0.069   14.909    0.000    0.462    0.758
##     tcq06.sexo        1.038    0.070   14.931    0.000    0.464    0.751
##     tcq07.sexo        0.813    0.061   13.268    0.000    0.364    0.625
##     tcq08.sexo        0.965    0.067   14.463    0.000    0.432    0.795
##     tcq09.sexo        0.925    0.065   14.175    0.000    0.414    0.682
##     tcq10.sexo        0.598    0.055   10.967    0.000    0.268    0.405
##     tcq11.sexo        1.024    0.069   14.847    0.000    0.458    0.722
##     tcq12.sexo        0.813    0.061   13.271    0.000    0.364    0.470
##     tcq13.sexo        0.992    0.068   14.646    0.000    0.444    0.736
##     tcq14.sexo        1.003    0.068   14.717    0.000    0.449    0.796
##     tcq15.sexo        1.043    0.070   14.962    0.000    0.466    0.779
##     tcq16.sexo        1.170    0.075   15.645    0.000    0.523    0.822
##   int.age_LTc =~                                                        
##     tcq01.edaddict    1.000                               0.465    0.743
##     tcq02.edaddict    1.056    0.072   14.625    0.000    0.491    0.694
##     tcq03.edaddict    0.839    0.064   13.161    0.000    0.390    0.642
##     tcq04.edaddict    1.047    0.072   14.575    0.000    0.487    0.789
##     tcq05.edaddict    1.055    0.072   14.620    0.000    0.491    0.795
##     tcq06.edaddict    1.054    0.072   14.614    0.000    0.490    0.790
##     tcq07.edaddict    0.823    0.063   13.035    0.000    0.383    0.651
##     tcq08.edaddict    0.934    0.067   13.872    0.000    0.434    0.778
##     tcq09.edaddict    0.920    0.067   13.777    0.000    0.428    0.689
##     tcq10.edaddict    0.644    0.057   11.275    0.000    0.299    0.451
##     tcq11.edaddict    1.018    0.071   14.406    0.000    0.473    0.744
##     tcq12.edaddict    0.778    0.062   12.642    0.000    0.362    0.469
##     tcq13.edaddict    0.920    0.067   13.777    0.000    0.428    0.700
##     tcq14.edaddict    0.931    0.067   13.852    0.000    0.433    0.744
##     tcq15.edaddict    0.982    0.069   14.188    0.000    0.457    0.756
##     tcq16.edaddict    1.143    0.076   15.064    0.000    0.532    0.805
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SIQS ~                                                                
##     LTc               0.372    0.010   38.409    0.000    0.468    0.468
##     sexo              0.323    0.085    3.783    0.000    0.409    0.204
##     edaddicot        -0.194    0.085   -2.282    0.023   -0.246   -0.123
##     int.sex_LTc       0.179    0.024    7.508    0.000    0.101    0.101
##     int.age_LTc      -0.164    0.022   -7.625    0.000   -0.097   -0.097
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   LTc ~~                                                                
##     int.sex_LTc      -0.091    0.005  -17.624    0.000   -0.205   -0.205
##     int.age_LTc       0.010    0.003    3.595    0.000    0.022    0.022
##   int.sex_LTc ~~                                                        
##     int.age_LTc       0.045    0.004   11.227    0.000    0.214    0.214
##   sexo ~~                                                               
##     edaddicot         0.023    0.039    0.600    0.549    0.023    0.094
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .siqs01            0.234    0.055    4.296    0.000    0.234    0.193
##    .siqs02            0.955    0.048   19.994    0.000    0.955    0.609
##    .siqs03            0.217    0.061    3.575    0.000    0.217    0.148
##    .siqs04            0.838    0.054   15.583    0.000    0.838    0.492
##    .siqs05            0.808    0.058   13.986    0.000    0.808    0.438
##    .siqs06            0.647    0.051   12.562    0.000    0.647    0.461
##    .siqs07            0.237    0.051    4.645    0.000    0.237    0.256
##    .siqs08            0.186    0.053    3.509    0.000    0.186    0.195
##    .siqs09            0.602    0.049   12.239    0.000    0.602    0.498
##    .tcq02             1.075    0.045   23.983    0.000    1.075    0.522
##    .tcq05             0.627    0.044   14.120    0.000    0.627    0.406
##    .tcq12             1.897    0.042   44.977    0.000    1.897    0.778
##    .tcq16             0.626    0.046   13.684    0.000    0.626    0.356
##    .tcq01             0.676    0.044   15.232    0.000    0.676    0.426
##    .tcq09             0.778    0.043   17.901    0.000    0.778    0.505
##    .tcq11             0.747    0.044   16.812    0.000    0.747    0.449
##    .tcq14             0.574    0.044   13.119    0.000    0.574    0.416
##    .tcq03             0.889    0.043   20.841    0.000    0.889    0.587
##    .tcq07             0.824    0.042   19.421    0.000    0.824    0.583
##    .tcq10             1.389    0.041   33.635    0.000    1.389    0.779
##    .tcq13             0.716    0.044   16.330    0.000    0.716    0.465
##    .tcq04             0.604    0.044   13.604    0.000    0.604    0.397
##    .tcq06             0.597    0.045   13.356    0.000    0.597    0.382
##    .tcq08             0.507    0.043   11.688    0.000    0.507    0.404
##    .tcq15             0.633    0.044   14.369    0.000    0.633    0.426
##    .tcq01.sexo        0.174    0.043    3.999    0.000    0.174    0.465
##    .tcq02.sexo        0.282    0.044    6.424    0.000    0.282    0.560
##    .tcq03.sexo        0.206    0.042    4.864    0.000    0.206    0.572
##    .tcq04.sexo        0.154    0.044    3.513    0.000    0.154    0.418
##    .tcq05.sexo        0.158    0.044    3.610    0.000    0.158    0.425
##    .tcq06.sexo        0.167    0.044    3.809    0.000    0.167    0.436
##    .tcq07.sexo        0.206    0.042    4.913    0.000    0.206    0.609
##    .tcq08.sexo        0.108    0.043    2.509    0.012    0.108    0.367
##    .tcq09.sexo        0.197    0.043    4.603    0.000    0.197    0.535
##    .tcq10.sexo        0.365    0.041    8.999    0.000    0.365    0.836
##    .tcq11.sexo        0.192    0.044    4.408    0.000    0.192    0.479
##    .tcq12.sexo        0.465    0.042   11.101    0.000    0.465    0.779
##    .tcq13.sexo        0.167    0.043    3.845    0.000    0.167    0.458
##    .tcq14.sexo        0.116    0.043    2.671    0.008    0.116    0.366
##    .tcq15.sexo        0.141    0.044    3.207    0.001    0.141    0.393
##    .tcq16.sexo        0.132    0.045    2.919    0.004    0.132    0.325
##    .tcq01.edaddict    0.175    0.044    3.954    0.000    0.175    0.448
##    .tcq02.edaddict    0.260    0.045    5.771    0.000    0.260    0.518
##    .tcq03.edaddict    0.217    0.043    5.086    0.000    0.217    0.588
##    .tcq04.edaddict    0.144    0.045    3.202    0.001    0.144    0.377
##    .tcq05.edaddict    0.140    0.045    3.113    0.002    0.140    0.368
##    .tcq06.edaddict    0.145    0.045    3.225    0.001    0.145    0.376
##    .tcq07.edaddict    0.199    0.043    4.670    0.000    0.199    0.576
##    .tcq08.edaddict    0.123    0.044    2.814    0.005    0.123    0.394
##    .tcq09.edaddict    0.203    0.044    4.661    0.000    0.203    0.526
##    .tcq10.edaddict    0.352    0.041    8.530    0.000    0.352    0.797
##    .tcq11.edaddict    0.181    0.045    4.051    0.000    0.181    0.446
##    .tcq12.edaddict    0.466    0.042   11.027    0.000    0.466    0.780
##    .tcq13.edaddict    0.191    0.044    4.383    0.000    0.191    0.510
##    .tcq14.edaddict    0.152    0.044    3.475    0.001    0.152    0.447
##    .tcq15.edaddict    0.156    0.044    3.530    0.000    0.156    0.428
##    .tcq16.edaddict    0.154    0.046    3.333    0.001    0.154    0.352
##    .it                0.357    0.031   11.389    0.000    0.365    0.365
##    .cc                0.411    0.029   13.975    0.000    0.474    0.474
##    .ia                0.179    0.028    6.452    0.000    0.260    0.260
##    .SIQS              0.457    0.024   19.136    0.000    0.735    0.735
##     LTc               0.985    0.022   44.834    0.000    1.000    1.000
##     int.sex_LTc       0.200    0.019   10.536    0.000    1.000    1.000
##     int.age_LTc       0.216    0.021   10.293    0.000    1.000    1.000
##     sexo              0.248    0.039    6.358    0.000    0.248    1.000
##     edaddicot         0.249    0.039    6.368    0.000    0.249    1.000
semPaths(# Argumentos globales
  ajuste_LTc, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Madre

Sexo

datos_mod <- semTools::indProd(datos, var1 = 40:55, var2 = c(2,4), match = FALSE,
                         meanC = TRUE, residualC = FALSE, doubleMC = TRUE)

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTm =~ tpqm02 + tpqm05 + tpqm12 + tpqm16 + tpqm01 + tpqm09 + tpqm11 + tpqm14 + tpqm03 + tpqm07 + tpqm10 + tpqm13 + tpqm04 + tpqm06 + tpqm08 + tpqm15



# MODERADORES

int.sex_LTm =~ tpqm01.sexo + tpqm02.sexo + tpqm03.sexo + tpqm04.sexo + tpqm05.sexo + tpqm06.sexo + tpqm07.sexo + tpqm08.sexo + tpqm09.sexo + tpqm10.sexo + tpqm11.sexo + tpqm12.sexo + tpqm13.sexo + tpqm14.sexo + tpqm15.sexo + tpqm16.sexo



# REGRESIONES
SIQS ~ LTm + sexo + edaddicot + int.sex_LTm

'



ajuste_LTm <- datos_mod %>%
    sem(modelo, ., estimator="ULS")

# ajuste_LTc %>%
#   summary(fit.measures = TRUE, standardized = TRUE)





semPaths(# Argumentos globales
  ajuste_LTm, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Edad

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTm =~ tpqm02 + tpqm05 + tpqm12 + tpqm16 + tpqm01 + tpqm09 + tpqm11 + tpqm14 + tpqm03 + tpqm07 + tpqm10 + tpqm13 + tpqm04 + tpqm06 + tpqm08 + tpqm15



# MODERADORES

int.age_LTm =~ tpqm01.edaddicot + tpqm02.edaddicot + tpqm03.edaddicot + tpqm04.edaddicot + tpqm05.edaddicot + tpqm06.edaddicot + tpqm07.edaddicot + tpqm08.edaddicot + tpqm09.edaddicot + tpqm10.edaddicot + tpqm11.edaddicot + tpqm12.edaddicot + tpqm13.edaddicot + tpqm14.edaddicot + tpqm15.edaddicot + tpqm16.edaddicot


# REGRESIONES
SIQS ~ LTm + sexo + edaddicot + int.age_LTm

'



ajuste_LTm <- datos_mod %>%
    sem(modelo, ., estimator="ULS")

# ajuste_LTc %>%
#   summary(fit.measures = TRUE, standardized = TRUE)





semPaths(# Argumentos globales
  ajuste_LTm, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Sexo y edad

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTm =~ tpqm02 + tpqm05 + tpqm12 + tpqm16 + tpqm01 + tpqm09 + tpqm11 + tpqm14 + tpqm03 + tpqm07 + tpqm10 + tpqm13 + tpqm04 + tpqm06 + tpqm08 + tpqm15



# MODERADORES

int.sex_LTm =~ tpqm01.sexo + tpqm02.sexo + tpqm03.sexo + tpqm04.sexo + tpqm05.sexo + tpqm06.sexo + tpqm07.sexo + tpqm08.sexo + tpqm09.sexo + tpqm10.sexo + tpqm11.sexo + tpqm12.sexo + tpqm13.sexo + tpqm14.sexo + tpqm15.sexo + tpqm16.sexo
int.age_LTm =~ tpqm01.edaddicot + tpqm02.edaddicot + tpqm03.edaddicot + tpqm04.edaddicot + tpqm05.edaddicot + tpqm06.edaddicot + tpqm07.edaddicot + tpqm08.edaddicot + tpqm09.edaddicot + tpqm10.edaddicot + tpqm11.edaddicot + tpqm12.edaddicot + tpqm13.edaddicot + tpqm14.edaddicot + tpqm15.edaddicot + tpqm16.edaddicot


# REGRESIONES
SIQS ~ LTm + sexo + edaddicot + int.sex_LTm + int.age_LTm

'



ajuste_LTm <- datos_mod %>%
    sem(modelo, ., estimator="ULS")

ajuste_LTm %>%
  summary(fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6.16 ended normally after 98 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       128
## 
##   Number of observations                           656
## 
## Model Test User Model:
##                                                       
##   Test statistic                               778.784
##   Degrees of freedom                              1642
##   P-value (Unknown)                                 NA
## 
## Model Test Baseline Model:
## 
##   Test statistic                             36954.497
##   Degrees of freedom                              1710
##   P-value                                           NA
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.026
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                    1.000
##   P-value H_0: RMSEA >= 0.080                    0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.054
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   it =~                                                                 
##     siqs01            1.000                               0.947    0.860
##     siqs02            0.897    0.027   33.194    0.000    0.849    0.678
##     siqs03            1.163    0.033   35.465    0.000    1.101    0.909
##   cc =~                                                                 
##     siqs04            1.000                               0.950    0.728
##     siqs05            1.057    0.037   28.816    0.000    1.004    0.739
##     siqs06            0.912    0.033   28.014    0.000    0.866    0.731
##   ia =~                                                                 
##     siqs07            1.000                               0.834    0.866
##     siqs08            1.040    0.033   31.622    0.000    0.867    0.890
##     siqs09            0.939    0.031   30.523    0.000    0.783    0.712
##   SIQS =~                                                               
##     it                1.000                               0.868    0.868
##     cc                0.708    0.027   26.480    0.000    0.613    0.613
##     ia                0.919    0.034   27.241    0.000    0.906    0.906
##   LTm =~                                                                
##     tpqm02            1.000                               0.651    0.654
##     tpqm05            1.049    0.031   34.333    0.000    0.683    0.770
##     tpqm12            1.298    0.035   37.146    0.000    0.845    0.758
##     tpqm16            0.765    0.026   29.277    0.000    0.498    0.726
##     tpqm01            0.913    0.028   32.207    0.000    0.594    0.657
##     tpqm09            1.209    0.033   36.275    0.000    0.787    0.809
##     tpqm11            1.219    0.034   36.375    0.000    0.793    0.763
##     tpqm14            1.091    0.031   34.900    0.000    0.710    0.839
##     tpqm03            0.778    0.026   29.555    0.000    0.506    0.504
##     tpqm07            0.988    0.030   33.434    0.000    0.643    0.612
##     tpqm10            1.059    0.031   34.466    0.000    0.689    0.832
##     tpqm13            1.376    0.036   37.807    0.000    0.896    0.776
##     tpqm04            0.918    0.028   32.305    0.000    0.598    0.724
##     tpqm06            1.163    0.033   35.771    0.000    0.757    0.820
##     tpqm08            1.046    0.031   34.295    0.000    0.681    0.748
##     tpqm15            1.274    0.035   36.920    0.000    0.829    0.758
##   int.sex_LTm =~                                                        
##     tpqm01.sexo       1.000                               0.270    0.613
##     tpqm02.sexo       1.114    0.124    8.995    0.000    0.301    0.624
##     tpqm03.sexo       0.711    0.100    7.079    0.000    0.192    0.385
##     tpqm04.sexo       1.096    0.123    8.934    0.000    0.296    0.745
##     tpqm05.sexo       1.380    0.142    9.739    0.000    0.373    0.885
##     tpqm06.sexo       1.296    0.136    9.537    0.000    0.350    0.783
##     tpqm07.sexo       0.956    0.114    8.382    0.000    0.258    0.492
##     tpqm08.sexo       1.091    0.122    8.915    0.000    0.295    0.655
##     tpqm09.sexo       1.536    0.153   10.054    0.000    0.415    0.904
##     tpqm10.sexo       1.239    0.132    9.382    0.000    0.335    0.834
##     tpqm11.sexo       1.447    0.146    9.884    0.000    0.391    0.787
##     tpqm12.sexo       1.452    0.147    9.894    0.000    0.392    0.730
##     tpqm13.sexo       1.636    0.160   10.222    0.000    0.442    0.808
##     tpqm14.sexo       1.196    0.129    9.257    0.000    0.323    0.784
##     tpqm15.sexo       1.412    0.144    9.809    0.000    0.381    0.722
##     tpqm16.sexo       0.909    0.111    8.170    0.000    0.246    0.739
##   int.age_LTm =~                                                        
##     tpqm01.edaddct    1.000                               0.296    0.663
##     tpqm02.edaddct    1.104    0.147    7.526    0.000    0.326    0.654
##     tpqm03.edaddct    0.856    0.128    6.684    0.000    0.253    0.505
##     tpqm04.edaddct    1.023    0.140    7.287    0.000    0.302    0.730
##     tpqm05.edaddct    1.108    0.147    7.536    0.000    0.328    0.748
##     tpqm06.edaddct    1.296    0.162    7.974    0.000    0.383    0.828
##     tpqm07.edaddct    1.124    0.148    7.580    0.000    0.332    0.634
##     tpqm08.edaddct    1.140    0.150    7.621    0.000    0.337    0.750
##     tpqm09.edaddct    1.291    0.162    7.964    0.000    0.382    0.793
##     tpqm10.edaddct    1.166    0.152    7.688    0.000    0.345    0.830
##     tpqm11.edaddct    1.318    0.164    8.018    0.000    0.390    0.751
##     tpqm12.edaddct    1.442    0.175    8.231    0.000    0.426    0.767
##     tpqm13.edaddct    1.515    0.182    8.338    0.000    0.448    0.779
##     tpqm14.edaddct    1.220    0.156    7.814    0.000    0.361    0.848
##     tpqm15.edaddct    1.376    0.169    8.124    0.000    0.407    0.747
##     tpqm16.edaddct    0.851    0.128    6.662    0.000    0.252    0.724
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SIQS ~                                                                
##     LTm               0.476    0.019   24.609    0.000    0.377    0.377
##     sexo              0.343    0.088    3.893    0.000    0.417    0.208
##     edaddicot        -0.184    0.088   -2.095    0.036   -0.224   -0.112
##     int.sex_LTm      -0.083    0.052   -1.607    0.108   -0.027   -0.027
##     int.age_LTm      -0.115    0.038   -2.980    0.003   -0.041   -0.041
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   LTm ~~                                                                
##     int.sex_LTm      -0.070    0.006  -11.447    0.000   -0.398   -0.398
##     int.age_LTm       0.001    0.002    0.383    0.702    0.004    0.004
##   int.sex_LTm ~~                                                        
##     int.age_LTm       0.000    0.002    0.221    0.825    0.005    0.005
##   sexo ~~                                                               
##     edaddicot         0.023    0.039    0.600    0.549    0.023    0.094
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .siqs01            0.316    0.054    5.872    0.000    0.316    0.261
##    .siqs02            0.847    0.050   16.797    0.000    0.847    0.540
##    .siqs03            0.256    0.061    4.177    0.000    0.256    0.174
##    .siqs04            0.802    0.058   13.809    0.000    0.802    0.471
##    .siqs05            0.838    0.061   13.739    0.000    0.838    0.454
##    .siqs06            0.653    0.054   12.059    0.000    0.653    0.466
##    .siqs07            0.232    0.052    4.452    0.000    0.232    0.250
##    .siqs08            0.198    0.054    3.697    0.000    0.198    0.208
##    .siqs09            0.596    0.050   11.910    0.000    0.596    0.493
##    .tpqm02            0.567    0.043   13.222    0.000    0.567    0.572
##    .tpqm05            0.321    0.043    7.426    0.000    0.321    0.408
##    .tpqm12            0.528    0.046   11.588    0.000    0.528    0.425
##    .tpqm16            0.222    0.041    5.382    0.000    0.222    0.472
##    .tpqm01            0.465    0.042   11.024    0.000    0.465    0.569
##    .tpqm09            0.326    0.045    7.296    0.000    0.326    0.345
##    .tpqm11            0.450    0.045   10.061    0.000    0.450    0.417
##    .tpqm14            0.212    0.044    4.870    0.000    0.212    0.296
##    .tpqm03            0.754    0.041   18.234    0.000    0.754    0.746
##    .tpqm07            0.688    0.043   16.097    0.000    0.688    0.625
##    .tpqm10            0.212    0.043    4.892    0.000    0.212    0.309
##    .tpqm13            0.531    0.046   11.436    0.000    0.531    0.398
##    .tpqm04            0.324    0.042    7.657    0.000    0.324    0.475
##    .tpqm06            0.280    0.044    6.320    0.000    0.280    0.328
##    .tpqm08            0.366    0.043    8.457    0.000    0.366    0.441
##    .tpqm15            0.509    0.045   11.236    0.000    0.509    0.426
##    .tpqm01.sexo       0.121    0.041    2.967    0.003    0.121    0.624
##    .tpqm02.sexo       0.142    0.041    3.445    0.001    0.142    0.611
##    .tpqm03.sexo       0.212    0.040    5.292    0.000    0.212    0.851
##    .tpqm04.sexo       0.070    0.041    1.701    0.089    0.070    0.444
##    .tpqm05.sexo       0.039    0.043    0.907    0.364    0.039    0.218
##    .tpqm06.sexo       0.078    0.042    1.841    0.066    0.078    0.388
##    .tpqm07.sexo       0.209    0.041    5.128    0.000    0.209    0.758
##    .tpqm08.sexo       0.116    0.041    2.803    0.005    0.116    0.571
##    .tpqm09.sexo       0.039    0.043    0.889    0.374    0.039    0.183
##    .tpqm10.sexo       0.049    0.042    1.166    0.243    0.049    0.304
##    .tpqm11.sexo       0.094    0.043    2.183    0.029    0.094    0.380
##    .tpqm12.sexo       0.135    0.043    3.139    0.002    0.135    0.467
##    .tpqm13.sexo       0.104    0.044    2.361    0.018    0.104    0.347
##    .tpqm14.sexo       0.065    0.042    1.569    0.117    0.065    0.385
##    .tpqm15.sexo       0.133    0.043    3.118    0.002    0.133    0.478
##    .tpqm16.sexo       0.050    0.041    1.233    0.218    0.050    0.453
##    .tpqm01.edaddct    0.111    0.043    2.612    0.009    0.111    0.560
##    .tpqm02.edaddct    0.143    0.043    3.292    0.001    0.143    0.573
##    .tpqm03.edaddct    0.187    0.042    4.503    0.000    0.187    0.745
##    .tpqm04.edaddct    0.080    0.043    1.874    0.061    0.080    0.467
##    .tpqm05.edaddct    0.085    0.043    1.951    0.051    0.085    0.441
##    .tpqm06.edaddct    0.067    0.045    1.490    0.136    0.067    0.314
##    .tpqm07.edaddct    0.164    0.044    3.773    0.000    0.164    0.598
##    .tpqm08.edaddct    0.088    0.044    2.024    0.043    0.088    0.438
##    .tpqm09.edaddct    0.086    0.045    1.910    0.056    0.086    0.371
##    .tpqm10.edaddct    0.054    0.044    1.219    0.223    0.054    0.310
##    .tpqm11.edaddct    0.117    0.045    2.592    0.010    0.117    0.436
##    .tpqm12.edaddct    0.127    0.047    2.725    0.006    0.127    0.411
##    .tpqm13.edaddct    0.130    0.047    2.738    0.006    0.130    0.393
##    .tpqm14.edaddct    0.051    0.044    1.142    0.254    0.051    0.280
##    .tpqm15.edaddct    0.131    0.046    2.860    0.004    0.131    0.442
##    .tpqm16.edaddct    0.057    0.042    1.378    0.168    0.057    0.475
##    .it                0.221    0.031    7.016    0.000    0.246    0.246
##    .cc                0.563    0.035   16.236    0.000    0.625    0.625
##    .ia                0.125    0.030    4.160    0.000    0.179    0.179
##    .SIQS              0.538    0.030   18.185    0.000    0.796    0.796
##     LTm               0.424    0.018   24.068    0.000    1.000    1.000
##     int.sex_LTm       0.073    0.012    6.073    0.000    1.000    1.000
##     int.age_LTm       0.087    0.017    5.159    0.000    1.000    1.000
##     sexo              0.248    0.039    6.358    0.000    0.248    1.000
##     edaddicot         0.249    0.039    6.368    0.000    0.249    1.000
semPaths(# Argumentos globales
  ajuste_LTm, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Padre

Sexo

datos_mod <- semTools::indProd(datos, var1 = 56:71, var2 = c(2,4), match = FALSE,
                         meanC = TRUE, residualC = FALSE, doubleMC = TRUE)

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTp =~ tpqp02 + tpqp05 + tpqp12 + tpqp16 + tpqp01 + tpqp09 + tpqp11 + tpqp14 + tpqp03 + tpqp07 + tpqp10 + tpqp13 + tpqp04 + tpqp06 + tpqp08 + tpqp15



# MODERADORES

int.sex_LTp =~ tpqp01.sexo + tpqp02.sexo + tpqp03.sexo + tpqp04.sexo + tpqp05.sexo + tpqp06.sexo + tpqp07.sexo + tpqp08.sexo + tpqp09.sexo + tpqp10.sexo + tpqp11.sexo + tpqp12.sexo + tpqp13.sexo + tpqp14.sexo + tpqp15.sexo + tpqp16.sexo



# REGRESIONES
SIQS ~ LTp + sexo + edaddicot + int.sex_LTp

'



ajuste_LTp <- datos_mod %>%
    sem(modelo, ., estimator="ULS")

# ajuste_LTc %>%
#   summary(fit.measures = TRUE, standardized = TRUE)





semPaths(# Argumentos globales
  ajuste_LTp, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Edad

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTp =~ tpqp02 + tpqp05 + tpqp12 + tpqp16 + tpqp01 + tpqp09 + tpqp11 + tpqp14 + tpqp03 + tpqp07 + tpqp10 + tpqp13 + tpqp04 + tpqp06 + tpqp08 + tpqp15



# MODERADORES

int.age_LTp =~ tpqp01.edaddicot + tpqp02.edaddicot + tpqp03.edaddicot + tpqp04.edaddicot + tpqp05.edaddicot + tpqp06.edaddicot + tpqp07.edaddicot + tpqp08.edaddicot + tpqp09.edaddicot + tpqp10.edaddicot + tpqp11.edaddicot + tpqp12.edaddicot + tpqp13.edaddicot + tpqp14.edaddicot + tpqp15.edaddicot + tpqp16.edaddicot


# REGRESIONES
SIQS ~ LTp + sexo + edaddicot + int.age_LTp

'



ajuste_LTp <- datos_mod %>%
    sem(modelo, ., estimator="ULS")

# ajuste_LTc %>%
#   summary(fit.measures = TRUE, standardized = TRUE)





semPaths(# Argumentos globales
  ajuste_LTp, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Sexo y edad

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTp =~ tpqp02 + tpqp05 + tpqp12 + tpqp16 + tpqp01 + tpqp09 + tpqp11 + tpqp14 + tpqp03 + tpqp07 + tpqp10 + tpqp13 + tpqp04 + tpqp06 + tpqp08 + tpqp15



# MODERADORES

int.sex_LTp =~ tpqp01.sexo + tpqp02.sexo + tpqp03.sexo + tpqp04.sexo + tpqp05.sexo + tpqp06.sexo + tpqp07.sexo + tpqp08.sexo + tpqp09.sexo + tpqp10.sexo + tpqp11.sexo + tpqp12.sexo + tpqp13.sexo + tpqp14.sexo + tpqp15.sexo + tpqp16.sexo
int.age_LTp =~ tpqp01.edaddicot + tpqp02.edaddicot + tpqp03.edaddicot + tpqp04.edaddicot + tpqp05.edaddicot + tpqp06.edaddicot + tpqp07.edaddicot + tpqp08.edaddicot + tpqp09.edaddicot + tpqp10.edaddicot + tpqp11.edaddicot + tpqp12.edaddicot + tpqp13.edaddicot + tpqp14.edaddicot + tpqp15.edaddicot + tpqp16.edaddicot


# REGRESIONES
SIQS ~ LTp + sexo + edaddicot + int.sex_LTp + int.age_LTp

'



ajuste_LTp <- datos_mod %>%
    sem(modelo, ., estimator="ULS")

ajuste_LTp %>%
  summary(fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6.16 ended normally after 93 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       128
## 
##   Number of observations                           656
## 
## Model Test User Model:
##                                                       
##   Test statistic                               959.745
##   Degrees of freedom                              1642
##   P-value (Unknown)                                 NA
## 
## Model Test Baseline Model:
## 
##   Test statistic                             65269.344
##   Degrees of freedom                              1710
##   P-value                                           NA
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.011
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                    1.000
##   P-value H_0: RMSEA >= 0.080                    0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.043
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   it =~                                                                 
##     siqs01            1.000                               0.955    0.867
##     siqs02            0.903    0.028   32.701    0.000    0.863    0.689
##     siqs03            1.131    0.033   34.573    0.000    1.080    0.891
##   cc =~                                                                 
##     siqs04            1.000                               0.928    0.711
##     siqs05            1.074    0.036   29.733    0.000    0.997    0.734
##     siqs06            0.960    0.033   29.067    0.000    0.891    0.752
##   ia =~                                                                 
##     siqs07            1.000                               0.836    0.869
##     siqs08            1.041    0.033   31.129    0.000    0.871    0.894
##     siqs09            0.929    0.031   29.935    0.000    0.777    0.706
##   SIQS =~                                                               
##     it                1.000                               0.835    0.835
##     cc                0.772    0.029   26.604    0.000    0.664    0.664
##     ia                0.935    0.035   27.051    0.000    0.891    0.891
##   LTp =~                                                                
##     tpqp02            1.000                               0.664    0.654
##     tpqp05            1.336    0.029   46.334    0.000    0.887    0.807
##     tpqp12            1.627    0.033   48.929    0.000    1.080    0.794
##     tpqp16            1.204    0.027   44.698    0.000    0.799    0.775
##     tpqp01            1.173    0.027   44.268    0.000    0.779    0.715
##     tpqp09            1.431    0.030   47.312    0.000    0.950    0.803
##     tpqp11            1.408    0.030   47.089    0.000    0.935    0.765
##     tpqp14            1.230    0.027   45.051    0.000    0.817    0.841
##     tpqp03            0.877    0.023   38.769    0.000    0.582    0.533
##     tpqp07            1.263    0.028   45.470    0.000    0.839    0.701
##     tpqp10            1.274    0.028   45.608    0.000    0.846    0.852
##     tpqp13            1.564    0.032   48.463    0.000    1.039    0.816
##     tpqp04            1.313    0.028   46.071    0.000    0.872    0.787
##     tpqp06            1.271    0.028   45.571    0.000    0.844    0.822
##     tpqp08            1.352    0.029   46.513    0.000    0.898    0.810
##     tpqp15            1.443    0.030   47.430    0.000    0.958    0.783
##   int.sex_LTp =~                                                        
##     tpqp01.sexo       1.000                               0.396    0.761
##     tpqp02.sexo       0.825    0.069   11.896    0.000    0.327    0.658
##     tpqp03.sexo       0.632    0.063   10.097    0.000    0.250    0.460
##     tpqp04.sexo       1.081    0.080   13.548    0.000    0.428    0.803
##     tpqp05.sexo       1.132    0.082   13.804    0.000    0.448    0.856
##     tpqp06.sexo       1.061    0.079   13.444    0.000    0.420    0.840
##     tpqp07.sexo       1.019    0.077   13.212    0.000    0.403    0.685
##     tpqp08.sexo       1.079    0.080   13.540    0.000    0.427    0.786
##     tpqp09.sexo       1.183    0.084   14.035    0.000    0.468    0.817
##     tpqp10.sexo       1.037    0.078   13.312    0.000    0.410    0.851
##     tpqp11.sexo       1.130    0.082   13.795    0.000    0.447    0.747
##     tpqp12.sexo       1.259    0.088   14.347    0.000    0.498    0.751
##     tpqp13.sexo       1.258    0.088   14.344    0.000    0.498    0.817
##     tpqp14.sexo       0.978    0.075   12.967    0.000    0.387    0.815
##     tpqp15.sexo       1.138    0.082   13.832    0.000    0.450    0.758
##     tpqp16.sexo       0.941    0.074   12.730    0.000    0.372    0.738
##   int.age_LTp =~                                                        
##     tpqp01.edaddct    1.000                               0.395    0.731
##     tpqp02.edaddct    0.839    0.077   10.900    0.000    0.332    0.653
##     tpqp03.edaddct    0.741    0.073   10.161    0.000    0.293    0.540
##     tpqp04.edaddct    1.104    0.089   12.377    0.000    0.437    0.788
##     tpqp05.edaddct    1.113    0.090   12.418    0.000    0.440    0.809
##     tpqp06.edaddct    1.089    0.088   12.311    0.000    0.431    0.840
##     tpqp07.edaddct    1.084    0.088   12.288    0.000    0.429    0.713
##     tpqp08.edaddct    1.130    0.090   12.490    0.000    0.447    0.814
##     tpqp09.edaddct    1.180    0.093   12.689    0.000    0.466    0.796
##     tpqp10.edaddct    1.068    0.087   12.213    0.000    0.422    0.856
##     tpqp11.edaddct    1.132    0.091   12.497    0.000    0.448    0.739
##     tpqp12.edaddct    1.365    0.103   13.300    0.000    0.540    0.791
##     tpqp13.edaddct    1.310    0.100   13.139    0.000    0.518    0.816
##     tpqp14.edaddct    1.038    0.086   12.071    0.000    0.411    0.847
##     tpqp15.edaddct    1.184    0.093   12.706    0.000    0.468    0.768
##     tpqp16.edaddct    1.038    0.086   12.072    0.000    0.411    0.793
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SIQS ~                                                                
##     LTp               0.345    0.012   28.085    0.000    0.287    0.287
##     sexo              0.331    0.086    3.849    0.000    0.414    0.207
##     edaddicot        -0.185    0.086   -2.164    0.030   -0.232   -0.116
##     int.sex_LTp      -0.151    0.025   -5.943    0.000   -0.075   -0.075
##     int.age_LTp      -0.202    0.025   -8.082    0.000   -0.100   -0.100
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   LTp ~~                                                                
##     int.sex_LTp      -0.066    0.004  -16.315    0.000   -0.250   -0.250
##     int.age_LTp       0.004    0.002    2.484    0.013    0.016    0.016
##   int.sex_LTp ~~                                                        
##     int.age_LTp      -0.007    0.002   -3.099    0.002   -0.043   -0.043
##   sexo ~~                                                               
##     edaddicot         0.023    0.039    0.600    0.549    0.023    0.094
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .siqs01            0.301    0.055    5.500    0.000    0.301    0.248
##    .siqs02            0.824    0.051   16.100    0.000    0.824    0.526
##    .siqs03            0.302    0.061    4.971    0.000    0.302    0.205
##    .siqs04            0.843    0.056   14.972    0.000    0.843    0.495
##    .siqs05            0.852    0.060   14.255    0.000    0.852    0.462
##    .siqs06            0.609    0.055   11.157    0.000    0.609    0.434
##    .siqs07            0.227    0.052    4.336    0.000    0.227    0.245
##    .siqs08            0.192    0.054    3.552    0.000    0.192    0.202
##    .siqs09            0.606    0.050   12.109    0.000    0.606    0.501
##    .tpqp02            0.591    0.042   14.119    0.000    0.591    0.573
##    .tpqp05            0.421    0.044    9.545    0.000    0.421    0.348
##    .tpqp12            0.685    0.047   14.688    0.000    0.685    0.370
##    .tpqp16            0.426    0.043    9.880    0.000    0.426    0.400
##    .tpqp01            0.581    0.043   13.552    0.000    0.581    0.489
##    .tpqp09            0.499    0.045   11.120    0.000    0.499    0.356
##    .tpqp11            0.620    0.045   13.885    0.000    0.620    0.415
##    .tpqp14            0.275    0.043    6.360    0.000    0.275    0.292
##    .tpqp03            0.854    0.041   20.734    0.000    0.854    0.716
##    .tpqp07            0.727    0.044   16.698    0.000    0.727    0.508
##    .tpqp10            0.271    0.044    6.206    0.000    0.271    0.274
##    .tpqp13            0.540    0.046   11.727    0.000    0.540    0.334
##    .tpqp04            0.467    0.044   10.629    0.000    0.467    0.380
##    .tpqp06            0.342    0.044    7.836    0.000    0.342    0.324
##    .tpqp08            0.423    0.044    9.577    0.000    0.423    0.344
##    .tpqp15            0.578    0.045   12.858    0.000    0.578    0.386
##    .tpqp01.sexo       0.113    0.043    2.670    0.008    0.113    0.420
##    .tpqp02.sexo       0.139    0.041    3.366    0.001    0.139    0.566
##    .tpqp03.sexo       0.233    0.040    5.771    0.000    0.233    0.788
##    .tpqp04.sexo       0.100    0.043    2.330    0.020    0.100    0.355
##    .tpqp05.sexo       0.073    0.044    1.679    0.093    0.073    0.267
##    .tpqp06.sexo       0.073    0.043    1.705    0.088    0.073    0.294
##    .tpqp07.sexo       0.184    0.043    4.309    0.000    0.184    0.531
##    .tpqp08.sexo       0.113    0.043    2.622    0.009    0.113    0.383
##    .tpqp09.sexo       0.109    0.044    2.485    0.013    0.109    0.333
##    .tpqp10.sexo       0.064    0.043    1.502    0.133    0.064    0.276
##    .tpqp11.sexo       0.158    0.043    3.639    0.000    0.158    0.442
##    .tpqp12.sexo       0.192    0.045    4.308    0.000    0.192    0.436
##    .tpqp13.sexo       0.124    0.045    2.777    0.005    0.124    0.333
##    .tpqp14.sexo       0.076    0.042    1.793    0.073    0.076    0.337
##    .tpqp15.sexo       0.150    0.044    3.453    0.001    0.150    0.426
##    .tpqp16.sexo       0.116    0.042    2.746    0.006    0.116    0.455
##    .tpqp01.edaddct    0.137    0.043    3.163    0.002    0.137    0.466
##    .tpqp02.edaddct    0.148    0.042    3.533    0.000    0.148    0.574
##    .tpqp03.edaddct    0.209    0.041    5.062    0.000    0.209    0.709
##    .tpqp04.edaddct    0.116    0.044    2.630    0.009    0.116    0.378
##    .tpqp05.edaddct    0.102    0.044    2.307    0.021    0.102    0.345
##    .tpqp06.edaddct    0.078    0.044    1.767    0.077    0.078    0.295
##    .tpqp07.edaddct    0.177    0.044    4.039    0.000    0.177    0.491
##    .tpqp08.edaddct    0.102    0.044    2.296    0.022    0.102    0.338
##    .tpqp09.edaddct    0.126    0.045    2.806    0.005    0.126    0.366
##    .tpqp10.edaddct    0.065    0.044    1.485    0.137    0.065    0.267
##    .tpqp11.edaddct    0.167    0.044    3.758    0.000    0.167    0.454
##    .tpqp12.edaddct    0.174    0.047    3.708    0.000    0.174    0.374
##    .tpqp13.edaddct    0.135    0.046    2.909    0.004    0.135    0.334
##    .tpqp14.edaddct    0.066    0.044    1.527    0.127    0.066    0.283
##    .tpqp15.edaddct    0.152    0.045    3.388    0.001    0.152    0.410
##    .tpqp16.edaddct    0.100    0.044    2.288    0.022    0.100    0.371
##    .it                0.276    0.032    8.721    0.000    0.302    0.302
##    .cc                0.481    0.032   15.012    0.000    0.559    0.559
##    .ia                0.144    0.030    4.774    0.000    0.205    0.205
##    .SIQS              0.535    0.029   18.378    0.000    0.841    0.841
##     LTp               0.441    0.015   29.514    0.000    1.000    1.000
##     int.sex_LTp       0.157    0.017    9.359    0.000    1.000    1.000
##     int.age_LTp       0.156    0.018    8.511    0.000    1.000    1.000
##     sexo              0.248    0.039    6.358    0.000    0.248    1.000
##     edaddicot         0.249    0.039    6.368    0.000    0.249    1.000
semPaths(# Argumentos globales
  ajuste_LTp, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Madre y Padre

Sexo

datos_mod <- semTools::indProd(datos, var1 = 40:71, var2 = c(2,4), match = FALSE,
                         meanC = TRUE, residualC = FALSE, doubleMC = TRUE)

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTp =~ tpqp02 + tpqp05 + tpqp12 + tpqp16 + tpqp01 + tpqp09 + tpqp11 + tpqp14 + tpqp03 + tpqp07 + tpqp10 + tpqp13 + tpqp04 + tpqp06 + tpqp08 + tpqp15
LTm =~ tpqm02 + tpqm05 + tpqm12 + tpqm16 + tpqm01 + tpqm09 + tpqm11 + tpqm14 + tpqm03 + tpqm07 + tpqm10 + tpqm13 + tpqm04 + tpqm06 + tpqm08 + tpqm15


# MODERADORES

int.sex_LTp =~ tpqp01.sexo + tpqp02.sexo + tpqp03.sexo + tpqp04.sexo + tpqp05.sexo + tpqp06.sexo + tpqp07.sexo + tpqp08.sexo + tpqp09.sexo + tpqp10.sexo + tpqp11.sexo + tpqp12.sexo + tpqp13.sexo + tpqp14.sexo + tpqp15.sexo + tpqp16.sexo
int.sex_LTm =~ tpqm01.sexo + tpqm02.sexo + tpqm03.sexo + tpqm04.sexo + tpqm05.sexo + tpqm06.sexo + tpqm07.sexo + tpqm08.sexo + tpqm09.sexo + tpqm10.sexo + tpqm11.sexo + tpqm12.sexo + tpqm13.sexo + tpqm14.sexo + tpqm15.sexo + tpqm16.sexo



# REGRESIONES
SIQS ~ LTp + LTm + sexo + edaddicot + int.sex_LTp + int.sex_LTm

'



ajuste_LT <- datos_mod %>%
    sem(modelo, ., estimator="ULS")

# ajuste_LTc %>%
#   summary(fit.measures = TRUE, standardized = TRUE)





semPaths(# Argumentos globales
  ajuste_LT, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Edad

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTp =~ tpqp02 + tpqp05 + tpqp12 + tpqp16 + tpqp01 + tpqp09 + tpqp11 + tpqp14 + tpqp03 + tpqp07 + tpqp10 + tpqp13 + tpqp04 + tpqp06 + tpqp08 + tpqp15
LTm =~ tpqm02 + tpqm05 + tpqm12 + tpqm16 + tpqm01 + tpqm09 + tpqm11 + tpqm14 + tpqm03 + tpqm07 + tpqm10 + tpqm13 + tpqm04 + tpqm06 + tpqm08 + tpqm15



# MODERADORES

int.age_LTp =~ tpqp01.edaddicot + tpqp02.edaddicot + tpqp03.edaddicot + tpqp04.edaddicot + tpqp05.edaddicot + tpqp06.edaddicot + tpqp07.edaddicot + tpqp08.edaddicot + tpqp09.edaddicot + tpqp10.edaddicot + tpqp11.edaddicot + tpqp12.edaddicot + tpqp13.edaddicot + tpqp14.edaddicot + tpqp15.edaddicot + tpqp16.edaddicot
int.age_LTm =~ tpqm01.edaddicot + tpqm02.edaddicot + tpqm03.edaddicot + tpqm04.edaddicot + tpqm05.edaddicot + tpqm06.edaddicot + tpqm07.edaddicot + tpqm08.edaddicot + tpqm09.edaddicot + tpqm10.edaddicot + tpqm11.edaddicot + tpqm12.edaddicot + tpqm13.edaddicot + tpqm14.edaddicot + tpqm15.edaddicot + tpqm16.edaddicot

# REGRESIONES
SIQS ~ LTp + LTm + sexo + edaddicot + int.age_LTp + int.age_LTm

'



ajuste_LT <- datos_mod %>%
    sem(modelo, ., estimator="ULS")

# ajuste_LTc %>%
#   summary(fit.measures = TRUE, standardized = TRUE)





semPaths(# Argumentos globales
  ajuste_LT, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)

Sexo y edad

modelo <- '

# Identidad social
it =~ siqs01 + siqs02 + siqs03
cc =~ siqs04 + siqs05 + siqs06
ia =~ siqs07 + siqs08 + siqs09
SIQS =~ it + cc + ia

# Liderazgo transformacional (coach)
LTp =~ tpqp02 + tpqp05 + tpqp12 + tpqp16 + tpqp01 + tpqp09 + tpqp11 + tpqp14 + tpqp03 + tpqp07 + tpqp10 + tpqp13 + tpqp04 + tpqp06 + tpqp08 + tpqp15
LTm =~ tpqm02 + tpqm05 + tpqm12 + tpqm16 + tpqm01 + tpqm09 + tpqm11 + tpqm14 + tpqm03 + tpqm07 + tpqm10 + tpqm13 + tpqm04 + tpqm06 + tpqm08 + tpqm15



# MODERADORES

int.sex_LTp =~ tpqp01.sexo + tpqp02.sexo + tpqp03.sexo + tpqp04.sexo + tpqp05.sexo + tpqp06.sexo + tpqp07.sexo + tpqp08.sexo + tpqp09.sexo + tpqp10.sexo + tpqp11.sexo + tpqp12.sexo + tpqp13.sexo + tpqp14.sexo + tpqp15.sexo + tpqp16.sexo
int.age_LTp =~ tpqp01.edaddicot + tpqp02.edaddicot + tpqp03.edaddicot + tpqp04.edaddicot + tpqp05.edaddicot + tpqp06.edaddicot + tpqp07.edaddicot + tpqp08.edaddicot + tpqp09.edaddicot + tpqp10.edaddicot + tpqp11.edaddicot + tpqp12.edaddicot + tpqp13.edaddicot + tpqp14.edaddicot + tpqp15.edaddicot + tpqp16.edaddicot
int.sex_LTm =~ tpqm01.sexo + tpqm02.sexo + tpqm03.sexo + tpqm04.sexo + tpqm05.sexo + tpqm06.sexo + tpqm07.sexo + tpqm08.sexo + tpqm09.sexo + tpqm10.sexo + tpqm11.sexo + tpqm12.sexo + tpqm13.sexo + tpqm14.sexo + tpqm15.sexo + tpqm16.sexo
int.age_LTm =~ tpqm01.edaddicot + tpqm02.edaddicot + tpqm03.edaddicot + tpqm04.edaddicot + tpqm05.edaddicot + tpqm06.edaddicot + tpqm07.edaddicot + tpqm08.edaddicot + tpqm09.edaddicot + tpqm10.edaddicot + tpqm11.edaddicot + tpqm12.edaddicot + tpqm13.edaddicot + tpqm14.edaddicot + tpqm15.edaddicot + tpqm16.edaddicot

# REGRESIONES
SIQS ~ LTp + LTm + sexo + edaddicot + int.sex_LTp + int.age_LTp + int.sex_LTm + int.age_LTm

'



ajuste_LT <- datos_mod %>%
    sem(modelo, ., estimator="ULS")

ajuste_LT %>%
  summary(fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6.16 ended normally after 204 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       239
## 
##   Number of observations                           656
## 
## Model Test User Model:
##                                                       
##   Test statistic                              3149.643
##   Degrees of freedom                              5539
##   P-value (Unknown)                                 NA
## 
## Model Test Baseline Model:
## 
##   Test statistic                            125127.995
##   Degrees of freedom                              5670
##   P-value                                           NA
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.020
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                    1.000
##   P-value H_0: RMSEA >= 0.080                    0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.052
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   it =~                                                                 
##     siqs01            1.000                               0.945    0.859
##     siqs02            0.929    0.025   36.905    0.000    0.878    0.701
##     siqs03            1.136    0.029   39.164    0.000    1.074    0.887
##   cc =~                                                                 
##     siqs04            1.000                               0.933    0.714
##     siqs05            1.060    0.034   31.383    0.000    0.989    0.728
##     siqs06            0.958    0.031   30.650    0.000    0.894    0.754
##   ia =~                                                                 
##     siqs07            1.000                               0.840    0.873
##     siqs08            1.025    0.029   34.884    0.000    0.862    0.884
##     siqs09            0.930    0.028   33.620    0.000    0.782    0.711
##   SIQS =~                                                               
##     it                1.000                               0.864    0.864
##     cc                0.718    0.024   30.102    0.000    0.629    0.629
##     ia                0.923    0.029   31.899    0.000    0.897    0.897
##   LTp =~                                                                
##     tpqp02            1.000                               0.677    0.667
##     tpqp05            1.295    0.024   53.053    0.000    0.877    0.798
##     tpqp12            1.621    0.029   56.661    0.000    1.098    0.807
##     tpqp16            1.132    0.022   50.437    0.000    0.766    0.743
##     tpqp01            1.126    0.022   50.335    0.000    0.763    0.699
##     tpqp09            1.427    0.026   54.727    0.000    0.966    0.816
##     tpqp11            1.399    0.026   54.397    0.000    0.947    0.775
##     tpqp14            1.215    0.023   51.849    0.000    0.823    0.847
##     tpqp03            0.885    0.020   44.927    0.000    0.599    0.548
##     tpqp07            1.247    0.024   52.346    0.000    0.844    0.706
##     tpqp10            1.221    0.024   51.956    0.000    0.827    0.833
##     tpqp13            1.529    0.027   55.812    0.000    1.035    0.814
##     tpqp04            1.243    0.024   52.295    0.000    0.842    0.760
##     tpqp06            1.229    0.024   52.074    0.000    0.832    0.811
##     tpqp08            1.313    0.025   53.295    0.000    0.889    0.801
##     tpqp15            1.469    0.027   55.193    0.000    0.995    0.813
##   LTm =~                                                                
##     tpqm02            1.000                               0.633    0.636
##     tpqm05            1.009    0.024   41.954    0.000    0.638    0.719
##     tpqm12            1.398    0.029   47.564    0.000    0.884    0.793
##     tpqm16            0.768    0.021   36.271    0.000    0.486    0.709
##     tpqm01            0.903    0.023   39.709    0.000    0.571    0.631
##     tpqm09            1.211    0.027   45.299    0.000    0.766    0.788
##     tpqm11            1.290    0.028   46.332    0.000    0.816    0.785
##     tpqm14            1.136    0.026   44.170    0.000    0.718    0.848
##     tpqm03            0.822    0.022   37.741    0.000    0.520    0.518
##     tpqm07            1.017    0.024   42.102    0.000    0.643    0.613
##     tpqm10            1.087    0.025   43.378    0.000    0.688    0.830
##     tpqm13            1.433    0.030   47.920    0.000    0.906    0.785
##     tpqm04            0.905    0.023   39.752    0.000    0.572    0.694
##     tpqm06            1.181    0.026   44.861    0.000    0.747    0.809
##     tpqm08            1.069    0.025   43.069    0.000    0.677    0.743
##     tpqm15            1.365    0.029   47.208    0.000    0.863    0.789
##   int.sex_LTp =~                                                        
##     tpqp01.sexo       1.000                               0.380    0.730
##     tpqp02.sexo       0.890    0.064   13.887    0.000    0.338    0.681
##     tpqp03.sexo       0.654    0.057   11.533    0.000    0.248    0.456
##     tpqp04.sexo       1.067    0.070   15.161    0.000    0.405    0.761
##     tpqp05.sexo       1.150    0.074   15.638    0.000    0.436    0.834
##     tpqp06.sexo       1.106    0.072   15.395    0.000    0.420    0.841
##     tpqp07.sexo       1.032    0.069   14.934    0.000    0.392    0.666
##     tpqp08.sexo       1.139    0.073   15.580    0.000    0.432    0.796
##     tpqp09.sexo       1.250    0.077   16.141    0.000    0.474    0.828
##     tpqp10.sexo       1.058    0.070   15.105    0.000    0.402    0.833
##     tpqp11.sexo       1.225    0.076   16.022    0.000    0.465    0.777
##     tpqp12.sexo       1.348    0.081   16.562    0.000    0.512    0.771
##     tpqp13.sexo       1.293    0.079   16.336    0.000    0.491    0.805
##     tpqp14.sexo       1.049    0.070   15.045    0.000    0.398    0.838
##     tpqp15.sexo       1.241    0.077   16.102    0.000    0.471    0.793
##     tpqp16.sexo       0.941    0.066   14.294    0.000    0.357    0.709
##   int.age_LTp =~                                                        
##     tpqp01.edaddct    1.000                               0.385    0.712
##     tpqp02.edaddct    0.878    0.071   12.371    0.000    0.338    0.666
##     tpqp03.edaddct    0.787    0.068   11.647    0.000    0.303    0.559
##     tpqp04.edaddct    1.093    0.080   13.712    0.000    0.421    0.761
##     tpqp05.edaddct    1.128    0.081   13.886    0.000    0.435    0.799
##     tpqp06.edaddct    1.093    0.080   13.709    0.000    0.421    0.821
##     tpqp07.edaddct    1.121    0.081   13.852    0.000    0.432    0.719
##     tpqp08.edaddct    1.146    0.082   13.975    0.000    0.442    0.804
##     tpqp09.edaddct    1.237    0.086   14.376    0.000    0.477    0.813
##     tpqp10.edaddct    1.073    0.079   13.605    0.000    0.414    0.838
##     tpqp11.edaddct    1.185    0.084   14.153    0.000    0.457    0.754
##     tpqp12.edaddct    1.425    0.095   15.038    0.000    0.549    0.805
##     tpqp13.edaddct    1.339    0.091   14.760    0.000    0.516    0.813
##     tpqp14.edaddct    1.071    0.079   13.594    0.000    0.413    0.851
##     tpqp15.edaddct    1.269    0.088   14.505    0.000    0.489    0.803
##     tpqp16.edaddct    1.015    0.076   13.280    0.000    0.391    0.756
##   int.sex_LTm =~                                                        
##     tpqm01.sexo       1.000                               0.260    0.590
##     tpqm02.sexo       1.186    0.105   11.328    0.000    0.309    0.639
##     tpqm03.sexo       0.760    0.084    9.016    0.000    0.198    0.396
##     tpqm04.sexo       1.077    0.099   10.872    0.000    0.280    0.705
##     tpqm05.sexo       1.341    0.113   11.856    0.000    0.349    0.827
##     tpqm06.sexo       1.352    0.114   11.891    0.000    0.352    0.786
##     tpqm07.sexo       1.003    0.095   10.514    0.000    0.261    0.497
##     tpqm08.sexo       1.140    0.102   11.142    0.000    0.296    0.659
##     tpqm09.sexo       1.517    0.123   12.330    0.000    0.395    0.859
##     tpqm10.sexo       1.307    0.111   11.752    0.000    0.340    0.848
##     tpqm11.sexo       1.554    0.125   12.414    0.000    0.404    0.814
##     tpqm12.sexo       1.623    0.129   12.561    0.000    0.422    0.785
##     tpqm13.sexo       1.665    0.132   12.644    0.000    0.433    0.791
##     tpqm14.sexo       1.261    0.109   11.597    0.000    0.328    0.796
##     tpqm15.sexo       1.545    0.125   12.394    0.000    0.402    0.761
##     tpqm16.sexo       0.901    0.091    9.952    0.000    0.234    0.705
##   int.age_LTm =~                                                        
##     tpqm01.edaddct    1.000                               0.284    0.637
##     tpqm02.edaddct    1.114    0.118    9.428    0.000    0.316    0.633
##     tpqm03.edaddct    0.926    0.107    8.648    0.000    0.263    0.524
##     tpqm04.edaddct    1.011    0.112    9.029    0.000    0.287    0.692
##     tpqm05.edaddct    1.077    0.116    9.292    0.000    0.306    0.697
##     tpqm06.edaddct    1.324    0.132   10.063    0.000    0.376    0.812
##     tpqm07.edaddct    1.163    0.121    9.595    0.000    0.330    0.629
##     tpqm08.edaddct    1.188    0.123    9.675    0.000    0.337    0.750
##     tpqm09.edaddct    1.314    0.131   10.037    0.000    0.373    0.774
##     tpqm10.edaddct    1.216    0.125    9.762    0.000    0.345    0.831
##     tpqm11.edaddct    1.413    0.138   10.277    0.000    0.401    0.773
##     tpqm12.edaddct    1.567    0.148   10.583    0.000    0.444    0.800
##     tpqm13.edaddct    1.597    0.150   10.636    0.000    0.453    0.788
##     tpqm14.edaddct    1.281    0.129    9.949    0.000    0.363    0.855
##     tpqm15.edaddct    1.508    0.144   10.475    0.000    0.428    0.785
##     tpqm16.edaddct    0.862    0.104    8.327    0.000    0.245    0.704
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SIQS ~                                                                
##     LTp               0.112    0.015    7.612    0.000    0.093    0.093
##     LTm               0.412    0.023   18.092    0.000    0.319    0.319
##     sexo              0.340    0.088    3.889    0.000    0.417    0.208
##     edaddicot        -0.184    0.087   -2.103    0.035   -0.225   -0.112
##     int.sex_LTp      -0.106    0.052   -2.028    0.043   -0.049   -0.049
##     int.age_LTp      -0.240    0.054   -4.475    0.000   -0.113   -0.113
##     int.sex_LTm       0.036    0.090    0.398    0.691    0.011    0.011
##     int.age_LTm       0.098    0.076    1.287    0.198    0.034    0.034
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   LTp ~~                                                                
##     LTm               0.273    0.006   43.751    0.000    0.638    0.638
##     int.sex_LTp      -0.064    0.004  -17.882    0.000   -0.249   -0.249
##     int.age_LTp       0.004    0.002    2.469    0.014    0.016    0.016
##     int.sex_LTm      -0.046    0.003  -13.377    0.000   -0.263   -0.263
##     int.age_LTm      -0.001    0.002   -0.562    0.574   -0.004   -0.004
##   LTm ~~                                                                
##     int.sex_LTp      -0.062    0.004  -16.947    0.000   -0.259   -0.259
##     int.age_LTp      -0.001    0.002   -0.604    0.546   -0.005   -0.005
##     int.sex_LTm      -0.065    0.005  -13.711    0.000   -0.395   -0.395
##     int.age_LTm       0.001    0.002    0.392    0.695    0.004    0.004
##   int.sex_LTp ~~                                                        
##     int.age_LTp      -0.006    0.002   -3.023    0.003   -0.042   -0.042
##     int.sex_LTm       0.061    0.005   11.659    0.000    0.616    0.616
##     int.age_LTm       0.005    0.002    2.819    0.005    0.048    0.048
##   int.age_LTp ~~                                                        
##     int.sex_LTm       0.005    0.002    2.909    0.004    0.050    0.050
##     int.age_LTm       0.070    0.007   10.358    0.000    0.636    0.636
##   int.sex_LTm ~~                                                        
##     int.age_LTm       0.000    0.002    0.171    0.864    0.004    0.004
##   sexo ~~                                                               
##     edaddicot         0.023    0.039    0.600    0.549    0.023    0.094
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .siqs01            0.319    0.052    6.094    0.000    0.319    0.263
##    .siqs02            0.797    0.050   15.908    0.000    0.797    0.508
##    .siqs03            0.314    0.058    5.440    0.000    0.314    0.214
##    .siqs04            0.834    0.055   15.038    0.000    0.834    0.490
##    .siqs05            0.868    0.058   14.931    0.000    0.868    0.470
##    .siqs06            0.605    0.054   11.238    0.000    0.605    0.431
##    .siqs07            0.220    0.051    4.308    0.000    0.220    0.238
##    .siqs08            0.208    0.052    3.987    0.000    0.208    0.219
##    .siqs09            0.598    0.049   12.199    0.000    0.598    0.495
##    .tpqp02            0.573    0.041   13.863    0.000    0.573    0.556
##    .tpqp05            0.439    0.043   10.227    0.000    0.439    0.363
##    .tpqp12            0.647    0.045   14.310    0.000    0.647    0.349
##    .tpqp16            0.478    0.042   11.379    0.000    0.478    0.449
##    .tpqp01            0.607    0.042   14.467    0.000    0.607    0.511
##    .tpqp09            0.468    0.044   10.692    0.000    0.468    0.334
##    .tpqp11            0.597    0.044   13.706    0.000    0.597    0.400
##    .tpqp14            0.266    0.042    6.270    0.000    0.266    0.282
##    .tpqp03            0.834    0.041   20.431    0.000    0.834    0.699
##    .tpqp07            0.717    0.043   16.831    0.000    0.717    0.502
##    .tpqp10            0.302    0.042    7.115    0.000    0.302    0.306
##    .tpqp13            0.547    0.044   12.289    0.000    0.547    0.338
##    .tpqp04            0.518    0.043   12.157    0.000    0.518    0.422
##    .tpqp06            0.361    0.043    8.497    0.000    0.361    0.343
##    .tpqp08            0.440    0.043   10.224    0.000    0.440    0.358
##    .tpqp15            0.507    0.044   11.515    0.000    0.507    0.339
##    .tpqm02            0.590    0.041   14.272    0.000    0.590    0.596
##    .tpqm05            0.380    0.041    9.179    0.000    0.380    0.482
##    .tpqm12            0.460    0.044   10.555    0.000    0.460    0.371
##    .tpqm16            0.234    0.040    5.786    0.000    0.234    0.497
##    .tpqm01            0.492    0.041   12.029    0.000    0.492    0.601
##    .tpqm09            0.358    0.042    8.435    0.000    0.358    0.379
##    .tpqm11            0.414    0.043    9.647    0.000    0.414    0.383
##    .tpqm14            0.201    0.042    4.782    0.000    0.201    0.280
##    .tpqm03            0.739    0.041   18.209    0.000    0.739    0.732
##    .tpqm07            0.688    0.041   16.602    0.000    0.688    0.624
##    .tpqm10            0.214    0.042    5.115    0.000    0.214    0.311
##    .tpqm13            0.512    0.044   11.668    0.000    0.512    0.384
##    .tpqm04            0.353    0.041    8.636    0.000    0.353    0.519
##    .tpqm06            0.295    0.042    6.973    0.000    0.295    0.346
##    .tpqm08            0.372    0.042    8.914    0.000    0.372    0.448
##    .tpqm15            0.451    0.043   10.402    0.000    0.451    0.377
##    .tpqp01.sexo       0.126    0.041    3.039    0.002    0.126    0.466
##    .tpqp02.sexo       0.132    0.041    3.223    0.001    0.132    0.536
##    .tpqp03.sexo       0.234    0.040    5.848    0.000    0.234    0.792
##    .tpqp04.sexo       0.119    0.042    2.850    0.004    0.119    0.420
##    .tpqp05.sexo       0.083    0.042    1.971    0.049    0.083    0.304
##    .tpqp06.sexo       0.073    0.042    1.739    0.082    0.073    0.293
##    .tpqp07.sexo       0.193    0.042    4.637    0.000    0.193    0.557
##    .tpqp08.sexo       0.108    0.042    2.569    0.010    0.108    0.367
##    .tpqp09.sexo       0.103    0.043    2.407    0.016    0.103    0.314
##    .tpqp10.sexo       0.071    0.042    1.704    0.088    0.071    0.306
##    .tpqp11.sexo       0.142    0.043    3.331    0.001    0.142    0.397
##    .tpqp12.sexo       0.178    0.043    4.103    0.000    0.178    0.405
##    .tpqp13.sexo       0.130    0.043    3.028    0.002    0.130    0.351
##    .tpqp14.sexo       0.067    0.042    1.611    0.107    0.067    0.298
##    .tpqp15.sexo       0.131    0.043    3.065    0.002    0.131    0.371
##    .tpqp16.sexo       0.127    0.041    3.074    0.002    0.127    0.498
##    .tpqp01.edaddct    0.144    0.042    3.427    0.001    0.144    0.493
##    .tpqp02.edaddct    0.144    0.041    3.470    0.001    0.144    0.557
##    .tpqp03.edaddct    0.203    0.041    4.954    0.000    0.203    0.688
##    .tpqp04.edaddct    0.129    0.043    3.018    0.003    0.129    0.421
##    .tpqp05.edaddct    0.107    0.043    2.486    0.013    0.107    0.361
##    .tpqp06.edaddct    0.086    0.043    2.006    0.045    0.086    0.326
##    .tpqp07.edaddct    0.175    0.043    4.065    0.000    0.175    0.483
##    .tpqp08.edaddct    0.106    0.043    2.468    0.014    0.106    0.353
##    .tpqp09.edaddct    0.116    0.044    2.651    0.008    0.116    0.338
##    .tpqp10.edaddct    0.072    0.043    1.695    0.090    0.072    0.297
##    .tpqp11.edaddct    0.159    0.043    3.651    0.000    0.159    0.432
##    .tpqp12.edaddct    0.164    0.045    3.604    0.000    0.164    0.352
##    .tpqp13.edaddct    0.137    0.045    3.061    0.002    0.137    0.339
##    .tpqp14.edaddct    0.065    0.043    1.518    0.129    0.065    0.275
##    .tpqp15.edaddct    0.132    0.044    2.993    0.003    0.132    0.355
##    .tpqp16.edaddct    0.115    0.042    2.725    0.006    0.115    0.429
##    .tpqm01.sexo       0.127    0.040    3.155    0.002    0.127    0.652
##    .tpqm02.sexo       0.138    0.041    3.392    0.001    0.138    0.591
##    .tpqm03.sexo       0.209    0.040    5.279    0.000    0.209    0.843
##    .tpqm04.sexo       0.079    0.040    1.968    0.049    0.079    0.503
##    .tpqm05.sexo       0.056    0.041    1.366    0.172    0.056    0.316
##    .tpqm06.sexo       0.077    0.041    1.864    0.062    0.077    0.382
##    .tpqm07.sexo       0.207    0.040    5.166    0.000    0.207    0.753
##    .tpqm08.sexo       0.115    0.040    2.829    0.005    0.115    0.566
##    .tpqm09.sexo       0.055    0.042    1.325    0.185    0.055    0.262
##    .tpqm10.sexo       0.045    0.041    1.106    0.269    0.045    0.281
##    .tpqm11.sexo       0.083    0.042    1.996    0.046    0.083    0.338
##    .tpqm12.sexo       0.111    0.042    2.635    0.008    0.111    0.383
##    .tpqm13.sexo       0.112    0.042    2.658    0.008    0.112    0.374
##    .tpqm14.sexo       0.062    0.041    1.526    0.127    0.062    0.367
##    .tpqm15.sexo       0.117    0.042    2.811    0.005    0.117    0.421
##    .tpqm16.sexo       0.055    0.040    1.388    0.165    0.055    0.503
##    .tpqm01.edaddct    0.118    0.041    2.878    0.004    0.118    0.595
##    .tpqm02.edaddct    0.149    0.042    3.596    0.000    0.149    0.599
##    .tpqm03.edaddct    0.183    0.041    4.477    0.000    0.183    0.726
##    .tpqm04.edaddct    0.089    0.041    2.172    0.030    0.089    0.521
##    .tpqm05.edaddct    0.099    0.041    2.382    0.017    0.099    0.514
##    .tpqm06.edaddct    0.073    0.043    1.708    0.088    0.073    0.340
##    .tpqm07.edaddct    0.166    0.042    3.970    0.000    0.166    0.604
##    .tpqm08.edaddct    0.088    0.042    2.110    0.035    0.088    0.438
##    .tpqm09.edaddct    0.093    0.043    2.178    0.029    0.093    0.400
##    .tpqm10.edaddct    0.053    0.042    1.271    0.204    0.053    0.310
##    .tpqm11.edaddct    0.108    0.043    2.516    0.012    0.108    0.403
##    .tpqm12.edaddct    0.111    0.044    2.521    0.012    0.111    0.360
##    .tpqm13.edaddct    0.125    0.044    2.827    0.005    0.125    0.379
##    .tpqm14.edaddct    0.049    0.042    1.149    0.251    0.049    0.269
##    .tpqm15.edaddct    0.114    0.044    2.602    0.009    0.114    0.383
##    .tpqm16.edaddct    0.061    0.041    1.499    0.134    0.061    0.504
##    .it                0.227    0.029    7.800    0.000    0.254    0.254
##    .cc                0.526    0.032   16.590    0.000    0.604    0.604
##    .ia                0.138    0.029    4.808    0.000    0.196    0.196
##    .SIQS              0.522    0.026   19.787    0.000    0.783    0.783
##     LTp               0.459    0.013   34.000    0.000    1.000    1.000
##     LTm               0.400    0.014   29.632    0.000    1.000    1.000
##     int.sex_LTp       0.144    0.014   10.446    0.000    1.000    1.000
##     int.age_LTp       0.149    0.016    9.414    0.000    1.000    1.000
##     int.sex_LTm       0.068    0.009    7.364    0.000    1.000    1.000
##     int.age_LTm       0.081    0.013    6.378    0.000    1.000    1.000
##     sexo              0.248    0.039    6.358    0.000    0.248    1.000
##     edaddicot         0.249    0.039    6.368    0.000    0.249    1.000
semPaths(# Argumentos globales
  ajuste_LT, what="diagram", whatLabels="std",layout="tree3", rotation = 2, width=50, height=35,exoVar = F,
  # Etiquetas
  curvePivot=T, curvature = .5
)