library(readr)
seeds_dataset <- read_table("Documents/seeds_dataset.txt", 
    col_names = FALSE)
## 
## ── Column specification ────────────────────────────────────────────────────────
## cols(
##   X1 = col_double(),
##   X2 = col_double(),
##   X3 = col_double(),
##   X4 = col_double(),
##   X5 = col_double(),
##   X6 = col_double(),
##   X7 = col_double(),
##   X8 = col_double()
## )
View(seeds_dataset)
sd <- seeds_dataset
str(seeds_dataset)
## spc_tbl_ [210 × 8] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ X1: num [1:210] 15.3 14.9 14.3 13.8 16.1 ...
##  $ X2: num [1:210] 14.8 14.6 14.1 13.9 15 ...
##  $ X3: num [1:210] 0.871 0.881 0.905 0.895 0.903 ...
##  $ X4: num [1:210] 5.76 5.55 5.29 5.32 5.66 ...
##  $ X5: num [1:210] 3.31 3.33 3.34 3.38 3.56 ...
##  $ X6: num [1:210] 2.22 1.02 2.7 2.26 1.35 ...
##  $ X7: num [1:210] 5.22 4.96 4.83 4.8 5.17 ...
##  $ X8: num [1:210] 1 1 1 1 1 1 1 1 1 1 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   X1 = col_double(),
##   ..   X2 = col_double(),
##   ..   X3 = col_double(),
##   ..   X4 = col_double(),
##   ..   X5 = col_double(),
##   ..   X6 = col_double(),
##   ..   X7 = col_double(),
##   ..   X8 = col_double()
##   .. )
#Rename the columns
feature_name <-c('area','perimeter' ,'compactness', 'length_of_kernel', 'width.of.kernel', 'asymetry coefficient', 'length.of.kernel.groove', 'type of seed')
colnames(sd) <- feature_name
View(sd)
summary((sd))
##       area         perimeter      compactness     length_of_kernel
##  Min.   :10.59   Min.   :12.41   Min.   :0.8081   Min.   :4.899   
##  1st Qu.:12.27   1st Qu.:13.45   1st Qu.:0.8569   1st Qu.:5.262   
##  Median :14.36   Median :14.32   Median :0.8734   Median :5.524   
##  Mean   :14.85   Mean   :14.56   Mean   :0.8710   Mean   :5.629   
##  3rd Qu.:17.30   3rd Qu.:15.71   3rd Qu.:0.8878   3rd Qu.:5.980   
##  Max.   :21.18   Max.   :17.25   Max.   :0.9183   Max.   :6.675   
##  width.of.kernel asymetry coefficient length.of.kernel.groove  type of seed
##  Min.   :2.630   Min.   :0.7651       Min.   :4.519           Min.   :1    
##  1st Qu.:2.944   1st Qu.:2.5615       1st Qu.:5.045           1st Qu.:1    
##  Median :3.237   Median :3.5990       Median :5.223           Median :2    
##  Mean   :3.259   Mean   :3.7002       Mean   :5.408           Mean   :2    
##  3rd Qu.:3.562   3rd Qu.:4.7687       3rd Qu.:5.877           3rd Qu.:3    
##  Max.   :4.033   Max.   :8.4560       Max.   :6.550           Max.   :3
#where do we have N/As in the dataset?
any(is.na(sd))
## [1] FALSE
#remove rows with N/As
sd<-na.omit(sd)
str(sd)
## tibble [210 × 8] (S3: tbl_df/tbl/data.frame)
##  $ area                   : num [1:210] 15.3 14.9 14.3 13.8 16.1 ...
##  $ perimeter              : num [1:210] 14.8 14.6 14.1 13.9 15 ...
##  $ compactness            : num [1:210] 0.871 0.881 0.905 0.895 0.903 ...
##  $ length_of_kernel       : num [1:210] 5.76 5.55 5.29 5.32 5.66 ...
##  $ width.of.kernel        : num [1:210] 3.31 3.33 3.34 3.38 3.56 ...
##  $ asymetry coefficient   : num [1:210] 2.22 1.02 2.7 2.26 1.35 ...
##  $ length.of.kernel.groove: num [1:210] 5.22 4.96 4.83 4.8 5.17 ...
##  $ type of seed           : num [1:210] 1 1 1 1 1 1 1 1 1 1 ...
#remove last column
sd <- sd[,-8]
View(sd)
#Scaling the features
df_sc <- as.data.frame(scale(sd))
str(df_sc)
## 'data.frame':    210 obs. of  7 variables:
##  $ area                   : num  0.1418 0.0112 -0.1916 -0.3463 0.4442 ...
##  $ perimeter              : num  0.2149 0.0082 -0.3593 -0.4742 0.3298 ...
##  $ compactness            : num  6.05e-05 4.27e-01 1.44 1.04 1.37 ...
##  $ length_of_kernel       : num  0.3035 -0.1682 -0.7618 -0.6873 0.0665 ...
##  $ width.of.kernel        : num  0.141 0.197 0.208 0.319 0.803 ...
##  $ asymetry coefficient   : num  -0.984 -1.784 -0.666 -0.959 -1.56 ...
##  $ length.of.kernel.groove: num  -0.383 -0.92 -1.186 -1.227 -0.474 ...
#Build distance matrix 
dist_mat <- dist(df_sc, method = 'euclidean')
#plotting the cluster
hclust_avg <- hclust(dist_mat, method = 'average')
plot(hclust_avg)
#Visualizing all branches
library(dendextend)
## 
## ---------------------
## Welcome to dendextend version 1.17.1
## Type citation('dendextend') for how to cite the package.
## 
## Type browseVignettes(package = 'dendextend') for the package vignette.
## The github page is: https://github.com/talgalili/dendextend/
## 
## Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues
## You may ask questions at stackoverflow, use the r and dendextend tags: 
##   https://stackoverflow.com/questions/tagged/dendextend
## 
##  To suppress this message use:  suppressPackageStartupMessages(library(dendextend))
## ---------------------
## 
## Attaching package: 'dendextend'
## The following object is masked from 'package:stats':
## 
##     cutree

avg_dend_obj <- as.dendrogram(hclust_avg)
avg_col_dend <- color_branches(avg_dend_obj, h = 3)
plot(avg_col_dend)

cut_avg <- cutree(hclust_avg, k = 3)
#Evaluating the clustering
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
seeds_df_cl <- mutate(df_sc, cluster = cut_avg)
seeds_df_cl
##             area     perimeter   compactness length_of_kernel width.of.kernel
## 1    0.141759037  0.2149488188  6.045733e-05      0.303493006     0.141364035
## 2    0.011161356  0.0082041534  4.274938e-01     -0.168222697     0.196961591
## 3   -0.191608729 -0.3593419185  1.438945e+00     -0.761817099     0.207551602
## 4   -0.346263878 -0.4742000660  1.036904e+00     -0.687335672     0.318746714
## 5    0.444195774  0.3298069663  1.371233e+00      0.066506648     0.803239702
## 6   -0.160677699 -0.2674554005  1.019976e+00     -0.547400870     0.141364035
## 7   -0.054137485 -0.0530535253  3.767096e-01     -0.147909581     0.001046394
## 8   -0.253470789 -0.3516847087  8.506951e-01     -0.470662431     0.114889009
## 9    0.612598048  0.6896958284  1.566449e-01      0.958026757     0.546431943
## 10   0.547299207  0.5288944219  7.195027e-01      0.576591571     0.652332050
## 11   0.141759037  0.2226060287 -5.918773e-02      0.192899372    -0.043961151
## 12  -0.280965037 -0.3057414497  3.640136e-01     -0.430036198    -0.152508761
## 13  -0.329079973 -0.4129423873  7.195027e-01     -0.427779185    -0.157803766
## 14  -0.366884565 -0.3823135480  2.074291e-01     -0.337498667    -0.271646381
## 15  -0.380631689 -0.3899707578  1.439489e-01     -0.330727629    -0.382841493
## 16  -0.088505296 -0.2138549317  1.197720e+00     -0.626396323     0.196961591
## 17  -0.294712162 -0.5584293741  2.001803e+00     -1.150023324     0.329336725
## 18   0.289540625  0.1460339303  1.472801e+00     -0.229162047     0.676159574
## 19  -0.050700704 -0.2674554005  1.874842e+00     -0.955920211     0.549079446
## 20  -0.731183361 -0.7575168297 -1.015079e-01     -0.908522940    -0.554929166
## 21  -0.236286883 -0.1219684137 -5.331732e-01      0.066506648    -0.343128953
## 22  -0.253470789 -0.2291693514  5.084461e-02     -0.244961137    -0.239876349
## 23   0.354839465  0.2608920778  1.176560e+00     -0.023773870     0.657627055
## 24  -0.951137351 -1.0178619640 -1.946121e-01     -1.195163583    -0.854096967
## 25   0.055839510  0.1536911402 -2.242362e-01      0.362175342    -0.036018643
## 26   0.461379679  0.4599795334  5.883103e-01      0.461483911     0.429941826
## 27  -0.628079928 -0.6120298429 -2.919484e-01     -0.527087754    -0.615821727
## 28  -0.724309799 -0.6809447314 -6.178135e-01     -0.527087754    -0.801146914
## 29  -0.253470789 -0.2904270300  4.655819e-01     -0.197563866    -0.099558707
## 30  -0.480298341 -0.4129423873 -4.485329e-01     -0.253989189    -0.512569123
## 31  -0.579964993 -0.5660865839 -2.030762e-01     -0.393923991    -0.750844363
## 32   0.220805003  0.2915209171  5.930864e-02      0.289950928     0.297566693
## 33  -0.260344351 -0.1143112039 -7.659339e-01      0.199670411    -0.192221301
## 34  -0.311896067 -0.2980842399  7.623669e-02     -0.098255296    -0.287531397
## 35   0.069586634  0.0924334615  2.920694e-01      0.188385346     0.183724078
## 36   0.437322212  0.3374641761  1.227344e+00      0.181614307     0.599381997
## 37   0.464816460  0.5442088416  1.016288e-01      0.445684821     0.543784441
## 38   0.767253197  0.6284381497  1.561673e+00      0.459226898     1.123587524
## 39  -0.016332893 -0.0300818958  4.782779e-01      0.061992622     0.077823971
## 40  -0.195045510 -0.2980842399  9.903515e-01     -0.522573728     0.104298998
## 41  -0.449367311 -0.5431149544  6.814146e-01     -0.633167362    -0.271646381
## 42  -0.463114436 -0.5431149544  6.010063e-01     -0.626396323    -0.266351375
## 43  -0.579964993 -0.7728312494  1.265432e+00     -1.107140078    -0.152508761
## 44   0.224241784  0.2302632385  4.655819e-01      0.560792480     0.363754259
## 45   0.090207321 -0.0147674761  1.168096e+00     -0.111797374     0.538489435
## 46  -0.360011003 -0.3976279677  3.555496e-01     -0.569971000    -0.274293883
## 47   0.176126848  0.1536911402  6.390944e-01      0.163558204     0.355811751
## 48   0.048965948  0.0005469436  7.321987e-01     -0.132110490     0.313451709
## 49  -0.019769674 -0.0300818958  4.613499e-01     -0.188535814     0.085766479
## 50   0.004287794  0.0847762517 -1.438280e-01      0.111646906    -0.001601109
## 51  -0.143493794 -0.1219684137  1.735730e-01     -0.098255296     0.035463929
## 52   0.320471654  0.2685492876  9.014792e-01      0.102618855     0.464359361
## 53  -0.122873107  0.0388329927 -7.278458e-01      0.195156385    -0.385488995
## 54  -0.177861605 -0.2138549317  5.121340e-01     -0.281073344    -0.157803766
## 55  -0.112562764  0.0311757829 -6.474375e-01      0.253838721    -0.385488995
## 56   0.062713072  0.1613483500 -2.200042e-01      0.165815217    -0.123386231
## 57  -0.133183450 -0.1602544629  4.571179e-01     -0.542886844     0.313451709
## 58   0.024908480 -0.0989967842  1.252736e+00     -0.551914896     0.406114302
## 59   0.183000411  0.1613483500  6.221664e-01      0.075534700     0.424646821
## 60  -0.940827008 -0.8340889280 -1.345720e+00     -1.059742806    -0.599936711
## 61  -1.177964904 -1.3011787277 -1.142039e-01     -1.400551760    -1.081782197
## 62  -1.243263744 -1.4772945538  5.502222e-01     -1.639795131    -1.005004619
## 63  -0.854907481 -1.0484908033  9.014792e-01     -1.247074880    -0.573461685
## 64  -0.559344306 -0.5507721643 -1.268999e-01     -0.527087754    -0.499331610
## 65  -0.710562675 -0.7575168297  2.545254e-02     -0.827270474    -0.615821727
## 66  -0.676194864 -0.8111172985  7.152707e-01     -1.104883065    -0.369603979
## 67  -0.174424823 -0.1449400432  6.777267e-02      0.003310286    -0.181631290
## 68  -0.287838600 -0.2061977219 -3.596607e-01     -0.044086986    -0.266351375
## 69  -0.164114480 -0.1296256236  6.777267e-02     -0.134367503    -0.279588889
## 70  -0.727746580 -0.6196870528 -1.066407e+00     -0.488718534    -0.997062111
## 71   0.956276157  1.0878707396 -1.565240e-01      1.269494542     0.800592199
## 72   0.684770451  0.8504972348 -3.681247e-01      0.833891046     0.596734494
## 73   0.829115257  0.8964404938  2.243572e-01      0.788750787     0.887959787
## 74   1.464919760  1.3022726148  1.570137e+00      1.185985063     1.777520683
## 75   0.677896888  0.7279818775  3.216935e-01      0.876774291     0.602029499
## 76   0.660712983  0.8122111857 -3.046445e-01      0.673643127     0.474949371
## 77   0.849735943  1.0342702708 -4.696930e-01      0.982853899     0.382286778
## 78   2.014804735  2.0450219685  2.243572e-01      2.145215560     1.470410374
## 79   1.406494481  1.4783884410  1.693410e-01      1.842775827     1.007097407
## 80   0.781000321  0.7586107168  7.702868e-01      0.499853131     0.813829712
## 81   0.578230237  0.5978093104  4.782779e-01      0.556278455     0.551726949
## 82   1.330885297  1.2486721460  1.130008e+00      0.851947149     1.584252988
## 83   1.839528899  1.7846768342  7.787509e-01      1.481653758     1.602785507
## 84   1.623011690  1.6698186867  2.920694e-01      1.705098038     1.359215262
## 85   1.602391003  1.6468470572  2.963014e-01      1.664471805     1.435992839
## 86   1.176230147  1.1721000477  6.771825e-01      1.228868309     1.038867439
## 87   1.385873794  1.3022726148  1.096152e+00      1.027994158     1.338035240
## 88   1.420241605  1.6085610081 -5.077811e-01      2.077505172     1.089169990
## 89   2.176333447  2.0297075488  1.180792e+00      2.131673483     2.050213458
## 90   2.073230014  1.9071921915  1.358537e+00      1.854060892     2.047565955
## 91   1.805161088  1.8612489325  1.524129e-01      2.149729586     1.393632796
## 92   1.344632421  1.2563293559  1.159632e+00      1.226611296     1.422755326
## 93   1.361816327  1.3252442443  8.295350e-01      1.452312590     1.150062551
## 94   1.286207143  1.1414712084  1.506657e+00      0.921914550     1.592195496
## 95   1.207161177  1.5013600704 -1.091799e+00      2.341575686     0.599381997
## 96   0.695080794  0.8351828151 -2.623244e-01      1.152129869     0.541136938
## 97   1.533655382  1.5549605393  4.444218e-01      1.608046482     1.459820363
## 98   1.420241605  1.5396461196 -9.727584e-02      1.851803879     0.776764675
## 99   1.141862337  1.3022726148 -3.088765e-01      1.450055577     0.670864568
## 100  1.330885297  1.3635302935  4.232618e-01      1.332690904     1.126235027
## 101  0.536988864  0.5288944219  6.602545e-01      0.201927424     0.705282103
## 102  1.080000277  0.9959842216  1.193488e+00      0.590133649     1.152710054
## 103  1.585207098  1.4860456508  1.163864e+00      1.093447533     1.676915582
## 104  1.488977227  1.5855893786  2.968455e-02      1.671242844     1.118292519
## 105  1.409931262  1.4247879721  5.036700e-01      1.398144279     1.314207716
## 106  1.368689889  1.3252442443  8.760872e-01      0.921914550     1.396280299
## 107  1.375563451  1.2333577264  1.464337e+00      1.181471037     1.449230352
## 108  0.956276157  0.9959842216  3.809416e-01      0.912886498     0.832362231
## 109  1.750172591  1.8076484637  1.778050e-01      2.361888802     1.335387738
## 110  1.272460018  1.2716437755  6.560225e-01      1.183728050     1.099760000
## 111  1.238092207  1.1950716772  8.930152e-01      1.079905455     1.351272754
## 112  1.557712849  1.6545042671  2.545254e-02      1.522279991     1.409517812
## 113  1.471793322  1.3405586640  1.375465e+00      1.251438438     1.703390608
## 114  1.475230103  1.5702749589  5.084461e-02      1.422971421     1.266552668
## 115  2.104161044  2.0603363881  6.306304e-01      2.109103353     1.939018346
## 116  1.447735854  1.4477596016  6.094703e-01      1.777322452     1.218897620
## 117  1.413368043  1.2563293559  1.553209e+00      0.953512731     1.690153095
## 118  1.478666884  1.4477596016  7.618228e-01      1.391373240     1.473057876
## 119  1.389310575  1.2793009853  1.261200e+00      1.350747007     1.351272754
## 120  1.781103620  1.7923340440  4.274938e-01      1.951112448     1.584252988
## 121  1.853276023  1.7999912539  7.914469e-01      1.549364146     1.862240768
## 122  1.131551993  1.1950716772  2.624453e-01      0.971568835     0.805887204
## 123  0.454506117  0.6284381497 -5.162451e-01      0.301235993     0.339926735
## 124  1.231218645  1.0802135297  1.553209e+00      0.793264813     1.356567759
## 125  0.392644057  0.2532348680  1.498193e+00     -0.599312168     0.856189755
## 126  1.341195640  1.2410149362  1.223112e+00      1.088933507     1.616023020
## 127  1.306827829  1.4171307623 -5.072370e-02      1.481653758     0.887959787
## 128  1.076563496  0.9883270118  1.197720e+00      0.791007800     1.134177535
## 129  1.825781775  1.8918777718  1.058608e-01      1.996252707     1.361862764
## 130  0.928781909  0.8428400250  1.189256e+00      0.366689368     1.142120043
## 131  1.186540491  1.0189558511  1.684402e+00      0.791007800     1.314207716
## 132  1.406494481  1.3482158738  9.818875e-01      1.163414934     1.499532903
## 133  0.183000411  0.2608920778 -1.686759e-02      0.576591571     0.024873918
## 134  0.451069336  0.5901521006 -2.792524e-01      0.488568067     0.361106757
## 135  0.244862470  0.2532348680  4.782779e-01      0.332834174     0.395524291
## 136  0.183000411  0.0771190419  1.185024e+00     -0.342012693     0.546431943
## 137  0.863483068  0.9194121233  3.174614e-01      1.165671947     0.835009734
## 138  0.248299251  0.4523223236 -7.743979e-01      0.657844037    -0.073083681
## 139  0.258609595  0.4216934843 -5.501012e-01      0.459226898     0.072528966
## 140  0.475126804  0.4752939531  5.925423e-01      0.549507416     0.564964462
## 141 -0.610896023 -0.4895144856 -9.733026e-01     -0.353297758    -0.700541813
## 142 -0.524976495 -0.4742000660 -4.104448e-01     -0.197563866    -0.491389102
## 143 -0.518102933 -0.4665428561 -3.808207e-01     -0.540629832    -0.488741599
## 144 -0.903022416 -0.9489470755 -2.453963e-01     -0.913036966    -0.772024385
## 145 -1.040493660 -0.8876893968 -1.845097e+00     -0.709905802    -1.275049891
## 146 -1.250137307 -1.0944340623 -2.297923e+00     -0.788901254    -1.513325131
## 147 -1.174528123 -1.0944340623 -1.586944e+00     -1.021373587    -1.428605046
## 148 -0.810229326 -0.8417461379 -2.200042e-01     -0.815985410    -0.772024385
## 149 -0.738056923 -0.6503158921 -9.267504e-01     -0.547400870    -0.920284534
## 150 -1.394482113 -1.2475782589 -2.551843e+00     -0.703134763    -1.616577735
## 151 -1.037056879 -1.0178619640 -9.055903e-01     -0.825013461    -1.108257223
## 152 -0.975194819 -0.7958028789 -1.950898e+00     -0.504517625    -1.277697394
## 153 -0.889275292 -0.7345452002 -1.595408e+00     -0.497746586    -1.126789742
## 154 -1.260447650 -1.1633489508 -1.878953e+00     -0.922065017    -1.497440115
## 155 -1.198585590 -1.1556917409 -1.388040e+00     -1.023630600    -1.333294950
## 156 -1.257010869 -1.1556917409 -1.933970e+00     -0.854354629    -1.545095163
## 157 -1.205459152 -1.2935215179 -4.823890e-01     -1.298986178    -1.084429699
## 158 -0.933953446 -0.6350014724 -2.661876e+00     -0.529344767    -1.359769977
## 159 -1.064551127 -0.7958028789 -2.657644e+00     -0.416494120    -1.537152655
## 160 -1.153907436 -1.0255191738 -1.891649e+00     -0.732475931    -1.492145110
## 161 -0.793045421 -0.6809447314 -1.206063e+00     -0.400695030    -1.005004619
## 162 -0.971758038 -0.9412898657 -8.759662e-01     -0.628653336    -1.187682303
## 163 -0.961447695 -0.8800321870 -1.244151e+00     -0.815985410    -1.089724705
## 164 -0.789608640 -0.7575168297 -6.432055e-01     -0.667022556    -0.769376882
## 165 -1.274194774 -1.3547791965 -6.432055e-01     -1.393780721    -1.230042346
## 166 -0.944263789 -1.0791196426  3.513175e-01     -1.181621505    -0.840859454
## 167 -0.827413232 -0.7422024101 -1.049479e+00     -0.698620737    -0.957349571
## 168 -0.927079884 -0.8494033477 -1.129887e+00     -0.477433469    -1.116199731
## 169 -1.202022371 -1.1020912721 -1.773153e+00     -1.021373587    -1.563627682
## 170 -1.239826963 -1.1939777901 -1.485376e+00     -1.215476699    -1.439195057
## 171 -1.315436148 -1.1939777901 -2.204818e+00     -0.685078659    -1.476260094
## 172 -1.133286749 -1.1174056918 -1.079103e+00     -1.041686703    -1.095019710
## 173 -1.229516620 -1.2169494196 -1.231455e+00     -1.219990725    -1.312114929
## 174 -1.184838466 -1.1327201114 -1.417664e+00     -1.111654104    -1.312114929
## 175 -1.380734988 -1.2246066294 -2.585700e+00     -0.791158267    -1.635110254
## 176 -1.391045332 -1.5232378128 -5.077811e-01     -1.461491109    -1.158559774
## 177 -1.232953401 -1.1863205803 -1.502304e+00     -0.998803457    -1.452432570
## 178 -1.411666018 -1.4007224555 -1.612337e+00     -1.091340988    -1.632462751
## 179 -1.157344217 -1.1556917409 -1.002927e+00     -1.012345535    -1.325352442
## 180 -0.906459197 -0.8340889280 -1.087567e+00     -0.612854245    -0.967939582
## 181 -1.181401685 -1.2322638392 -6.347415e-01     -1.215476699    -1.280344897
## 182 -0.820539670 -0.8800321870 -1.686759e-02     -0.885952811    -0.639649251
## 183 -0.913332759 -0.9183182362 -5.543333e-01     -0.876924759    -0.925579539
## 184 -1.098918938 -1.1403773213 -5.712613e-01     -1.174850466    -1.081782197
## 185 -0.672758082 -0.6043726331 -7.151498e-01     -0.301386461    -0.615821727
## 186 -1.129849968 -0.9566042853 -2.166730e+00     -0.599312168    -1.523915142
## 187 -1.043930441 -0.8494033477 -2.166730e+00     -0.486461521    -1.436547554
## 188 -1.353240740 -1.3471219867 -1.430360e+00     -1.219990725    -1.545095163
## 189 -1.243263744 -1.3318075670 -4.908531e-01     -1.217733712    -1.158559774
## 190 -1.463217735 -1.6457531701 -2.623244e-01     -1.646566169    -1.248574865
## 191 -1.346367177 -1.3471219867 -1.354184e+00     -1.314785268    -1.433900051
## 192 -1.229516620 -1.3011787277 -6.220455e-01     -1.213219686    -1.203567319
## 193 -1.023309754 -1.1786633704  3.597816e-01     -1.120682156    -0.809089422
## 194 -1.384171769 -1.3241503572 -1.921273e+00     -1.012345535    -1.664232783
## 195 -0.940827008 -0.9872331246 -3.004125e-01     -0.885952811    -0.750844363
## 196 -0.703689112 -0.8340889280  6.348624e-01     -1.057485794    -0.351071461
## 197 -0.707125893 -0.7881456690  3.216935e-01     -0.913036966    -0.541691653
## 198 -0.507792590 -0.5967154233  5.883103e-01     -0.696363724    -0.345776455
## 199 -0.765551172 -0.6809447314 -9.690705e-01     -0.493232560    -0.920284534
## 200 -0.717436237 -0.9030038165  1.074992e+00     -1.253845919    -0.274293883
## 201 -0.848033918 -0.8570605575 -4.273729e-01     -0.924322030    -0.713779326
## 202 -0.748367267 -0.9489470755  1.130008e+00     -1.454720070    -0.327243937
## 203 -1.260447650 -1.4083796654 -1.268999e-01     -1.398294747    -1.187682303
## 204 -0.738056923 -0.8800321870  6.941106e-01     -1.005574496    -0.443734054
## 205 -0.851470699 -0.8340889280 -6.051174e-01     -0.958177224    -0.790556903
## 206 -0.913332759 -1.0408335935  3.089974e-01     -1.109397091    -0.734959347
## 207 -1.243263744 -1.2858643081 -8.421101e-01     -1.102626052    -1.227394843
## 208 -0.566217868 -0.6886019412  7.321987e-01     -0.885952811    -0.070436178
## 209 -1.033620098 -1.0331763836 -7.997900e-01     -1.023630600    -1.118847234
## 210 -0.875528167 -0.9336326558 -1.099719e-01     -0.870153720    -0.753491866
##     asymetry coefficient length.of.kernel.groove cluster
## 1           -0.983800962             -0.38266305       1
## 2           -1.783903583             -0.91981560       1
## 3           -0.665888201             -1.18635720       1
## 4           -0.958527563             -1.22705057       1
## 5           -1.559768435             -0.47422315       1
## 6           -0.823514403             -0.91981560       1
## 7           -0.075953850             -0.38469772       1
## 8           -0.665223111             -0.83029017       1
## 9           -1.104182155              0.95411430       2
## 10          -1.151403506              0.25418826       1
## 11           0.560536763             -0.19140419       2
## 12          -1.319006050             -0.82825550       1
## 13           0.190081934             -1.36337338       1
## 14          -0.375244107             -1.09072777       3
## 15          -0.510922356             -1.18635720       3
## 16           0.322434737             -1.27588262       1
## 17           1.020113580             -1.27588262       1
## 18          -1.397486606             -0.73669541       1
## 19          -1.285751577             -1.54445890       1
## 20           0.267232312             -1.00527168       3
## 21          -0.417809832             -0.47218848       1
## 22          -0.673204185             -0.38469772       1
## 23          -1.952104707             -0.64513532       1
## 24          -1.519863067             -0.90964225       1
## 25          -1.269789430             -0.82825550       1
## 26          -1.860388871             -0.20564687       1
## 27          -0.217617905             -1.18635720       3
## 28          -0.795580645             -1.09683178       3
## 29          -0.629308280             -0.75297276       1
## 30          -0.112533770             -0.63292731       3
## 31          -1.892246656             -0.71634872       1
## 32          -0.191679416             -0.36638570       2
## 33           0.146186030             -0.22192422       2
## 34          -1.048314640             -0.80587415       1
## 35          -1.044989193             -0.09780943       1
## 36          -0.951211579              0.07106807       1
## 37          -0.583417108              0.24198024       2
## 38          -0.494960209              0.15448949       1
## 39          -0.391206254             -0.20157754       1
## 40           1.985158386             -0.82825550       1
## 41          -0.740378220             -0.46811914       1
## 42          -0.965178458             -0.47218848       1
## 43          -0.824179492             -1.27181329       1
## 44           0.672271793              0.24401491       2
## 45          -0.380564822             -0.46404980       1
## 46          -1.423425095             -0.90964225       1
## 47          -1.551787361             -0.56171390       1
## 48          -0.493630031             -0.47422315       1
## 49          -0.662562753             -0.60444194       1
## 50          -1.044989193             -0.11612145       1
## 51           0.182765950             -0.53729788       1
## 52           1.258880696             -0.55357523       1
## 53           0.276543564             -0.02456136       2
## 54          -0.247546930             -0.37452438       1
## 55          -1.475967163              0.16059350       1
## 56          -1.175346727              0.06292940       1
## 57          -0.597383986             -0.74076475       1
## 58          -1.701432490             -0.65123933       1
## 59          -1.131450823             -0.37859372       1
## 60          -1.462000284             -1.80896583       1
## 61          -0.665223111             -1.62991498       1
## 62          -0.951876668             -1.43458678       1
## 63          -0.319376592             -1.63398432       1
## 64           0.303812232             -0.65123933       3
## 65          -1.678819448             -1.27384795       1
## 66          -0.896674243             -1.62991498       1
## 67          -1.587702192             -0.52508986       1
## 68          -0.986461320             -0.56171390       1
## 69          -1.487273684             -0.21988956       1
## 70          -0.111203591             -0.69396737       3
## 71           0.249939986              1.32645867       2
## 72           0.648328572              0.95411430       2
## 73           0.557876406              0.77913279       2
## 74          -0.508261999              1.36511738       2
## 75           0.202053544              0.88086622       2
## 76           0.811275490              0.78727146       2
## 77           0.082337442              1.04567439       2
## 78           0.499348533              2.12201415       2
## 79           0.907048372              1.94092863       2
## 80          -0.560138977              0.68757270       2
## 81           1.218310239              0.96021830       2
## 82           1.079971631              0.95818364       2
## 83           0.979543123              1.58486160       2
## 84          -1.481952968              1.75984311       2
## 85          -0.490969673              1.58079227       2
## 86          -0.836151102              1.60520829       2
## 87          -1.364232133              1.42615744       2
## 88          -0.006119456              2.21764358       2
## 89           1.383252425              1.67438703       2
## 90           0.875124078              1.85750721       2
## 91          -1.160714759              2.11794481       2
## 92          -0.385885538              1.31221599       2
## 93          -0.308070071              1.31221599       2
## 94           1.530237196              0.95411430       2
## 95           0.819921653              2.11591014       2
## 96          -0.002794009              1.13723448       2
## 97          -0.148448601              1.68862971       2
## 98          -1.035012851              2.12608348       2
## 99          -0.563464424              1.75984311       2
## 100         -1.005748915              1.40174142       2
## 101          0.343717599              0.42713510       2
## 102         -1.085559650              0.87272755       2
## 103          0.404240740              1.22269057       2
## 104         -0.228259336              1.67031769       2
## 105         -0.220943352              1.50550952       2
## 106         -0.762991262              0.95818364       2
## 107         -0.570115318              1.61131230       2
## 108          0.031125553              1.05991707       2
## 109         -0.298093729              2.32344635       2
## 110         -1.305039172              0.98870367       2
## 111         -0.974489710              0.78523679       2
## 112         -0.014765619              1.13316515       2
## 113         -1.058290982              1.04974373       2
## 114          1.983163118              1.31221599       2
## 115          0.649658751              1.84733387       2
## 116         -0.965843547              1.53602955       2
## 117          0.421533066              0.69571137       2
## 118         -0.409828759              1.58079227       2
## 119         -0.040704108              1.13519981       2
## 120         -0.423795637              1.85547254       2
## 121          1.463728250              1.58689627       2
## 122         -0.054005898              1.22675991       2
## 123          0.389608772              0.60008194       2
## 124         -0.476337705              1.01108502       2
## 125         -0.242226215             -0.53729788       1
## 126          0.324430005              1.18810120       2
## 127          0.459443165              1.41191476       2
## 128         -0.959857742              1.03957038       2
## 129         -1.190643784              1.58079227       2
## 130          1.107905389              0.51462585       2
## 131         -0.574105855              1.12706114       2
## 132         -0.526884504              1.10061045       2
## 133          0.506664517              0.78727146       2
## 134          0.376306983              0.78727146       2
## 135          0.845860142              0.89307424       2
## 136         -0.066642597              0.06292940       1
## 137         -0.115859217              1.14537316       2
## 138         -0.705128479              0.95818364       2
## 139         -0.648595875              0.69978071       2
## 140          0.045757521              1.04567439       2
## 141          1.066669842             -0.02659603       3
## 142          2.217939697              0.06496407       3
## 143          1.526246659             -0.20564687       3
## 144          1.176409603             -0.38062838       3
## 145          0.512650322             -0.46811914       3
## 146          1.641972225             -0.27075627       3
## 147         -0.983800962             -0.56171390       3
## 148          0.479395849             -0.82622084       3
## 149         -0.292773014             -0.18733486       3
## 150          1.171753977             -0.43556444       3
## 151          0.994175091             -0.20564687       3
## 152          2.189340851             -0.28092962       3
## 153          0.702200818             -0.09780943       3
## 154         -0.244886573             -0.82825550       3
## 155          0.231317481             -0.29517230       3
## 156          1.405200377             -0.38469772       3
## 157         -0.234910231             -0.82418617       3
## 158          0.748091991             -0.38266305       3
## 159          0.450797002             -0.19954287       3
## 160          1.122537357             -0.19954287       3
## 161         -0.411158938              0.16873217       3
## 162          0.379632430             -0.20361221       3
## 163          0.856501573             -0.73669541       3
## 164          0.478065670             -0.47218848       3
## 165          1.787626817             -0.73059141       3
## 166         -0.997102752             -0.71634872       1
## 167          0.813935848             -0.28092962       3
## 168         -0.041369198             -0.14257214       3
## 169          0.423528335             -0.56171390       3
## 170         -0.119184665             -0.65123933       3
## 171          2.018412859             -0.49863917       3
## 172          2.005111070             -0.91981560       3
## 173          0.404905830             -0.83029017       3
## 174          1.255555249             -0.64920466       3
## 175          0.985528928             -0.45387646       3
## 176          0.713507339             -0.70210604       3
## 177          1.087287616             -0.64310065       3
## 178          0.666285987             -0.90557292       3
## 179          1.447101013             -0.82622084       3
## 180         -1.356251060             -0.46811914       3
## 181          0.835883800             -1.18635720       3
## 182          0.855836484             -0.53119387       3
## 183          0.769374854             -0.50881251       3
## 184          1.003486344             -0.55560990       3
## 185          1.652613656             -0.18733486       3
## 186          0.240628733             -0.45998047       3
## 187          0.796643522             -0.11408678       3
## 188          0.318444200             -0.91981560       3
## 189          2.543168443             -0.91778093       3
## 190          0.847855410             -1.24943193       3
## 191          1.129188252             -0.73873008       3
## 192          0.189416845             -0.82825550       3
## 193         -0.068637866             -0.56171390       3
## 194          0.766714496             -0.64920466       3
## 195          0.287184995             -0.80587415       3
## 196          0.780016285             -1.00527168       1
## 197          1.185720856             -0.91574626       1
## 198          0.645003125             -0.64513532       1
## 199         -0.262178898             -0.36028170       3
## 200         -0.580091660             -1.17618386       1
## 201          1.178404872             -0.73873008       3
## 202         -0.931258895             -1.34913070       1
## 203          0.233312749             -1.18025319       3
## 204          3.163031820             -0.83029017       1
## 205          0.145520940             -0.82825550       3
## 206         -0.046024824             -1.09479711       3
## 207          0.415547261             -0.82418617       3
## 208          3.069254206             -0.71634872       1
## 209         -0.067972776             -0.74076475       3
## 210          1.288144632             -0.70210604       3
count(seeds_df_cl,cluster)
##   cluster  n
## 1       1 65
## 2       2 75
## 3       3 70
#Features and clusters
library(ggplot2)
ggplot(seeds_df_cl, aes(x=area, y = perimeter, color = factor(cluster))) + geom_point()

#Validating the reults: Using the Dunn's Index
library("clValid")
## Loading required package: cluster
dunn(dist_mat,cut_avg)
## [1] 0.09967099
set.seed(1234)
data(iris)
ir3 <- kmeans(iris[,-5],center = 3, iter.max = 200)
ir3
## K-means clustering with 3 clusters of sizes 50, 62, 38
## 
## Cluster means:
##   Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1     5.006000    3.428000     1.462000    0.246000
## 2     5.901613    2.748387     4.393548    1.433871
## 3     6.850000    3.073684     5.742105    2.071053
## 
## Clustering vector:
##   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
##  [75] 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 2 3 3 3 3
## [112] 3 3 2 2 3 3 3 3 2 3 2 3 2 3 3 2 2 3 3 3 3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 2 3
## [149] 3 2
## 
## Within cluster sum of squares by cluster:
## [1] 15.15100 39.82097 23.87947
##  (between_SS / total_SS =  88.4 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
## [6] "betweenss"    "size"         "iter"         "ifault"
table(ir3$cluster, iris$Species)
##    
##     setosa versicolor virginica
##   1     50          0         0
##   2      0         48        14
##   3      0          2        36
cm <- table(ir3$cluster, iris$Species)
1- sum(diag(cm))/sum(cm)
## [1] 0.1066667

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.