
Libraries
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.0 ✔ readr 2.1.4
## ✔ ggplot2 3.4.4 ✔ stringr 1.5.0
## ✔ lubridate 1.9.2 ✔ tibble 3.2.1
## ✔ purrr 1.0.2 ✔ tidyr 1.3.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Import Databases
library(readr)
df <- read_csv("Walmart_Store_sales.csv")
head(df)
## # A tibble: 6 × 8
## Store Date Weekly_Sales Holiday_Flag Temperature Fuel_Price CPI
## <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 05-02-2010 1643691. 0 42.3 2.57 211.
## 2 1 12-02-2010 1641957. 1 38.5 2.55 211.
## 3 1 19-02-2010 1611968. 0 39.9 2.51 211.
## 4 1 26-02-2010 1409728. 0 46.6 2.56 211.
## 5 1 05-03-2010 1554807. 0 46.5 2.62 211.
## 6 1 12-03-2010 1439542. 0 57.8 2.67 211.
## # ℹ 1 more variable: Unemployment <dbl>
Understand the database
df$Date <- as.Date(df$Date, format="%d-%m-%Y")
summary(df)
## Store Date Weekly_Sales Holiday_Flag
## Min. : 1 Min. :2010-02-05 Min. : 209986 Min. :0.00000
## 1st Qu.:12 1st Qu.:2010-10-08 1st Qu.: 553350 1st Qu.:0.00000
## Median :23 Median :2011-06-17 Median : 960746 Median :0.00000
## Mean :23 Mean :2011-06-17 Mean :1046965 Mean :0.06993
## 3rd Qu.:34 3rd Qu.:2012-02-24 3rd Qu.:1420159 3rd Qu.:0.00000
## Max. :45 Max. :2012-10-26 Max. :3818686 Max. :1.00000
## Temperature Fuel_Price CPI Unemployment
## Min. : -2.06 Min. :2.472 Min. :126.1 Min. : 3.879
## 1st Qu.: 47.46 1st Qu.:2.933 1st Qu.:131.7 1st Qu.: 6.891
## Median : 62.67 Median :3.445 Median :182.6 Median : 7.874
## Mean : 60.66 Mean :3.359 Mean :171.6 Mean : 7.999
## 3rd Qu.: 74.94 3rd Qu.:3.735 3rd Qu.:212.7 3rd Qu.: 8.622
## Max. :100.14 Max. :4.468 Max. :227.2 Max. :14.313
str(df)
## spc_tbl_ [6,435 × 8] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ Store : num [1:6435] 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : Date[1:6435], format: "2010-02-05" "2010-02-12" ...
## $ Weekly_Sales: num [1:6435] 1643691 1641957 1611968 1409728 1554807 ...
## $ Holiday_Flag: num [1:6435] 0 1 0 0 0 0 0 0 0 0 ...
## $ Temperature : num [1:6435] 42.3 38.5 39.9 46.6 46.5 ...
## $ Fuel_Price : num [1:6435] 2.57 2.55 2.51 2.56 2.62 ...
## $ CPI : num [1:6435] 211 211 211 211 211 ...
## $ Unemployment: num [1:6435] 8.11 8.11 8.11 8.11 8.11 ...
## - attr(*, "spec")=
## .. cols(
## .. Store = col_double(),
## .. Date = col_character(),
## .. Weekly_Sales = col_double(),
## .. Holiday_Flag = col_double(),
## .. Temperature = col_double(),
## .. Fuel_Price = col_double(),
## .. CPI = col_double(),
## .. Unemployment = col_double()
## .. )
## - attr(*, "problems")=<externalptr>
Add variables to dataframe
df$Year <- format(df$Date, "%Y")
df$Year <- as.integer(df$Year)
df$Month <- format(df$Date, "%m")
df$Month <- as.integer(df$Month)
df$Day <- format(df$Date, "%d")
df$Day <- as.integer(df$Day)
# df$WeekYear <- format(df$Date, "%w")
# df$WeekYear <- as.integer(df$WeekYear)
# df$WeekDay <- format(df$Date, "%u")
# df$WeekDay <- as.integer(df$WeekDay)
str(df)
## spc_tbl_ [6,435 × 11] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ Store : num [1:6435] 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : Date[1:6435], format: "2010-02-05" "2010-02-12" ...
## $ Weekly_Sales: num [1:6435] 1643691 1641957 1611968 1409728 1554807 ...
## $ Holiday_Flag: num [1:6435] 0 1 0 0 0 0 0 0 0 0 ...
## $ Temperature : num [1:6435] 42.3 38.5 39.9 46.6 46.5 ...
## $ Fuel_Price : num [1:6435] 2.57 2.55 2.51 2.56 2.62 ...
## $ CPI : num [1:6435] 211 211 211 211 211 ...
## $ Unemployment: num [1:6435] 8.11 8.11 8.11 8.11 8.11 ...
## $ Year : int [1:6435] 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 ...
## $ Month : int [1:6435] 2 2 2 2 3 3 3 3 4 4 ...
## $ Day : int [1:6435] 5 12 19 26 5 12 19 26 2 9 ...
## - attr(*, "spec")=
## .. cols(
## .. Store = col_double(),
## .. Date = col_character(),
## .. Weekly_Sales = col_double(),
## .. Holiday_Flag = col_double(),
## .. Temperature = col_double(),
## .. Fuel_Price = col_double(),
## .. CPI = col_double(),
## .. Unemployment = col_double()
## .. )
## - attr(*, "problems")=<externalptr>
Generate Linear Regression
regression <- lm(Weekly_Sales ~.,data=df)
summary(regression)
##
## Call:
## lm(formula = Weekly_Sales ~ ., data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1094800 -382464 -42860 375406 2587123
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.384e+09 9.127e+09 -0.261 0.7940
## Store -1.538e+04 5.202e+02 -29.576 < 2e-16 ***
## Date -3.399e+03 1.266e+04 -0.268 0.7883
## Holiday_Flag 4.773e+04 2.706e+04 1.763 0.0779 .
## Temperature -1.817e+03 4.053e+02 -4.484 7.47e-06 ***
## Fuel_Price 6.124e+04 2.876e+04 2.130 0.0332 *
## CPI -2.109e+03 1.928e+02 -10.941 < 2e-16 ***
## Unemployment -2.209e+04 3.967e+03 -5.569 2.67e-08 ***
## Year 1.212e+06 4.633e+06 0.262 0.7937
## Month 1.177e+05 3.858e+05 0.305 0.7604
## Day 2.171e+03 1.269e+04 0.171 0.8642
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 520900 on 6424 degrees of freedom
## Multiple R-squared: 0.1495, Adjusted R-squared: 0.1482
## F-statistic: 113 on 10 and 6424 DF, p-value: < 2.2e-16
Adjusta Regression
df_adjusted <- df %>%
select(-Store, -Date, -Fuel_Price, -Year:-Day)
regression_adjusted <- lm(Weekly_Sales ~., data=df_adjusted)
summary(regression_adjusted)
##
## Call:
## lm(formula = Weekly_Sales ~ ., data = df_adjusted)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1020421 -477999 -115859 396128 2800875
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1687798.2 52515.7 32.139 < 2e-16 ***
## Holiday_Flag 75760.1 27605.3 2.744 0.00608 **
## Temperature -773.1 393.2 -1.966 0.04930 *
## CPI -1570.0 189.9 -8.267 < 2e-16 ***
## Unemployment -41235.7 3942.0 -10.460 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 557300 on 6430 degrees of freedom
## Multiple R-squared: 0.02538, Adjusted R-squared: 0.02477
## F-statistic: 41.86 on 4 and 6430 DF, p-value: < 2.2e-16
LS0tCnRpdGxlOiAiUmVncmVzc2lvbiBMaW5lYWwiCmF1dGhvcjogIkRhdmlkIERvbWluZ3VleiAtIEEwMTU3MDk3NSIKZGF0ZTogIjIwMjQtMDItMjMiCm91dHB1dDogCiAgaHRtbF9kb2N1bWVudDoKICAgIHRvYzogVFJVRQogICAgdG9jX2Zsb2F0OiBUUlVFCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFCiAgICB0aGVtZTogY29zbW8KLS0tCgohW10obG9nby1XYWxtYXJ0LnBuZykKCiMgTGlicmFyaWVzCmBgYHtyfQpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KHRpZHl2ZXJzZSkKYGBgCgoKIyBJbXBvcnQgRGF0YWJhc2VzCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CmxpYnJhcnkocmVhZHIpCmRmIDwtIHJlYWRfY3N2KCJXYWxtYXJ0X1N0b3JlX3NhbGVzLmNzdiIpCmhlYWQoZGYpCmBgYAoKIyBVbmRlcnN0YW5kIHRoZSBkYXRhYmFzZQpgYGB7cn0KZGYkRGF0ZSA8LSBhcy5EYXRlKGRmJERhdGUsIGZvcm1hdD0iJWQtJW0tJVkiKQpzdW1tYXJ5KGRmKQpzdHIoZGYpCmBgYAoKIyBBZGQgdmFyaWFibGVzIHRvIGRhdGFmcmFtZQpgYGB7cn0KZGYkWWVhciA8LSBmb3JtYXQoZGYkRGF0ZSwgIiVZIikKZGYkWWVhciA8LSBhcy5pbnRlZ2VyKGRmJFllYXIpCgpkZiRNb250aCA8LSBmb3JtYXQoZGYkRGF0ZSwgIiVtIikKZGYkTW9udGggPC0gYXMuaW50ZWdlcihkZiRNb250aCkKCmRmJERheSA8LSBmb3JtYXQoZGYkRGF0ZSwgIiVkIikKZGYkRGF5IDwtIGFzLmludGVnZXIoZGYkRGF5KQoKIyBkZiRXZWVrWWVhciA8LSBmb3JtYXQoZGYkRGF0ZSwgIiV3IikKIyBkZiRXZWVrWWVhciA8LSBhcy5pbnRlZ2VyKGRmJFdlZWtZZWFyKQoKIyBkZiRXZWVrRGF5IDwtIGZvcm1hdChkZiREYXRlLCAiJXUiKQojIGRmJFdlZWtEYXkgPC0gYXMuaW50ZWdlcihkZiRXZWVrRGF5KQoKc3RyKGRmKQpgYGAKCiMgR2VuZXJhdGUgTGluZWFyIFJlZ3Jlc3Npb24KYGBge3J9CnJlZ3Jlc3Npb24gPC0gbG0oV2Vla2x5X1NhbGVzIH4uLGRhdGE9ZGYpCnN1bW1hcnkocmVncmVzc2lvbikKYGBgCgojIEFkanVzdGEgUmVncmVzc2lvbgpgYGB7cn0KZGZfYWRqdXN0ZWQgPC0gZGYgJT4lCiAgc2VsZWN0KC1TdG9yZSwgLURhdGUsIC1GdWVsX1ByaWNlLCAtWWVhcjotRGF5KQoKcmVncmVzc2lvbl9hZGp1c3RlZCA8LSBsbShXZWVrbHlfU2FsZXMgfi4sIGRhdGE9ZGZfYWRqdXN0ZWQpCnN1bW1hcnkocmVncmVzc2lvbl9hZGp1c3RlZCkKYGBgCgojIwo=