Descargar librerias

#install.packages("tidyverse")
library(tidyverse)
## Warning: package 'ggplot2' was built under R version 4.3.2
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.5.0     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Obtener datos

walmart <- read.csv("/Users/lightedit/Documents/TEC SEMESTRE 6.1/M2/R/walmart/Walmart_Store_sales.csv")

Entender y limpiar la base de datos

walmart$Date <- as.Date(walmart$Date, format = "%d-%m-%Y")
summary(walmart)
##      Store         Date             Weekly_Sales      Holiday_Flag    
##  Min.   : 1   Min.   :2010-02-05   Min.   : 209986   Min.   :0.00000  
##  1st Qu.:12   1st Qu.:2010-10-08   1st Qu.: 553350   1st Qu.:0.00000  
##  Median :23   Median :2011-06-17   Median : 960746   Median :0.00000  
##  Mean   :23   Mean   :2011-06-17   Mean   :1046965   Mean   :0.06993  
##  3rd Qu.:34   3rd Qu.:2012-02-24   3rd Qu.:1420159   3rd Qu.:0.00000  
##  Max.   :45   Max.   :2012-10-26   Max.   :3818686   Max.   :1.00000  
##   Temperature       Fuel_Price         CPI         Unemployment   
##  Min.   : -2.06   Min.   :2.472   Min.   :126.1   Min.   : 3.879  
##  1st Qu.: 47.46   1st Qu.:2.933   1st Qu.:131.7   1st Qu.: 6.891  
##  Median : 62.67   Median :3.445   Median :182.6   Median : 7.874  
##  Mean   : 60.66   Mean   :3.359   Mean   :171.6   Mean   : 7.999  
##  3rd Qu.: 74.94   3rd Qu.:3.735   3rd Qu.:212.7   3rd Qu.: 8.622  
##  Max.   :100.14   Max.   :4.468   Max.   :227.2   Max.   :14.313
str(walmart)
## 'data.frame':    6435 obs. of  8 variables:
##  $ Store       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Date        : Date, format: "2010-02-05" "2010-02-12" ...
##  $ Weekly_Sales: num  1643691 1641957 1611968 1409728 1554807 ...
##  $ Holiday_Flag: int  0 1 0 0 0 0 0 0 0 0 ...
##  $ Temperature : num  42.3 38.5 39.9 46.6 46.5 ...
##  $ Fuel_Price  : num  2.57 2.55 2.51 2.56 2.62 ...
##  $ CPI         : num  211 211 211 211 211 ...
##  $ Unemployment: num  8.11 8.11 8.11 8.11 8.11 ...

Agregar variables a la base de datos

walmart$Year <- format(walmart$Date, "%Y")
walmart$Year <- as.integer(walmart$Year)
walmart$Month <- format(walmart$Date, "%m")
walmart$Month <- as.integer(walmart$Month)
walmart$Day <- format(walmart$Date, "%d")
walmart$Day <- as.integer(walmart$Day)
str(walmart)
## 'data.frame':    6435 obs. of  11 variables:
##  $ Store       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Date        : Date, format: "2010-02-05" "2010-02-12" ...
##  $ Weekly_Sales: num  1643691 1641957 1611968 1409728 1554807 ...
##  $ Holiday_Flag: int  0 1 0 0 0 0 0 0 0 0 ...
##  $ Temperature : num  42.3 38.5 39.9 46.6 46.5 ...
##  $ Fuel_Price  : num  2.57 2.55 2.51 2.56 2.62 ...
##  $ CPI         : num  211 211 211 211 211 ...
##  $ Unemployment: num  8.11 8.11 8.11 8.11 8.11 ...
##  $ Year        : int  2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 ...
##  $ Month       : int  2 2 2 2 3 3 3 3 4 4 ...
##  $ Day         : int  5 12 19 26 5 12 19 26 2 9 ...
#View(walmart)

Ajustar regresión lineal

walmartajus <- walmart %>% select(-Store, -Date, -Fuel_Price, -Year:-Day)
regresion <- lm(Weekly_Sales ~., data=walmartajus)
summary(regresion)
## 
## Call:
## lm(formula = Weekly_Sales ~ ., data = walmartajus)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1020421  -477999  -115859   396128  2800875 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1687798.2    52515.7  32.139  < 2e-16 ***
## Holiday_Flag   75760.1    27605.3   2.744  0.00608 ** 
## Temperature     -773.1      393.2  -1.966  0.04930 *  
## CPI            -1570.0      189.9  -8.267  < 2e-16 ***
## Unemployment  -41235.7     3942.0 -10.460  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 557300 on 6430 degrees of freedom
## Multiple R-squared:  0.02538,    Adjusted R-squared:  0.02477 
## F-statistic: 41.86 on 4 and 6430 DF,  p-value: < 2.2e-16
LS0tCnRpdGxlOiAiUmVncmVzacOzbiBMaW5lYWwiCmF1dGhvcjogIkdpbGJlcnRvIE1lbmNoYWNhIgpkYXRlOiAiMjAyNC0wMi0yMyIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiBUUlVFCiAgICB0b2NfZmxvYXQ6IFRSVUUKICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUKICAgIHRoZW1lOiBjZXJ1bGVhbgogICAgaGlnaGxpZ2h0OiBrYXRlCi0tLQoKIVtdKC9Vc2Vycy9saWdodGVkaXQvRG9jdW1lbnRzL1RFQyBTRU1FU1RSRSA2LjEvTTIvUi93YWxtYXJ0LzE2OTM0MzIzMDY1MjIuanBnKQoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+RGVzY2FyZ2FyIGxpYnJlcmlhczwvc3Bhbj4KYGBge3J9CiNpbnN0YWxsLnBhY2thZ2VzKCJ0aWR5dmVyc2UiKQpsaWJyYXJ5KHRpZHl2ZXJzZSkKYGBgCgoKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPk9idGVuZXIgZGF0b3M8L3NwYW4+CmBgYHtyfQp3YWxtYXJ0IDwtIHJlYWQuY3N2KCIvVXNlcnMvbGlnaHRlZGl0L0RvY3VtZW50cy9URUMgU0VNRVNUUkUgNi4xL00yL1Ivd2FsbWFydC9XYWxtYXJ0X1N0b3JlX3NhbGVzLmNzdiIpCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+RW50ZW5kZXIgeSBsaW1waWFyIGxhIGJhc2UgZGUgZGF0b3M8L3NwYW4+CmBgYHtyfQp3YWxtYXJ0JERhdGUgPC0gYXMuRGF0ZSh3YWxtYXJ0JERhdGUsIGZvcm1hdCA9ICIlZC0lbS0lWSIpCnN1bW1hcnkod2FsbWFydCkKc3RyKHdhbG1hcnQpCgpgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPkFncmVnYXIgdmFyaWFibGVzIGEgbGEgYmFzZSBkZSBkYXRvczwvc3Bhbj4KYGBge3J9CndhbG1hcnQkWWVhciA8LSBmb3JtYXQod2FsbWFydCREYXRlLCAiJVkiKQp3YWxtYXJ0JFllYXIgPC0gYXMuaW50ZWdlcih3YWxtYXJ0JFllYXIpCndhbG1hcnQkTW9udGggPC0gZm9ybWF0KHdhbG1hcnQkRGF0ZSwgIiVtIikKd2FsbWFydCRNb250aCA8LSBhcy5pbnRlZ2VyKHdhbG1hcnQkTW9udGgpCndhbG1hcnQkRGF5IDwtIGZvcm1hdCh3YWxtYXJ0JERhdGUsICIlZCIpCndhbG1hcnQkRGF5IDwtIGFzLmludGVnZXIod2FsbWFydCREYXkpCnN0cih3YWxtYXJ0KQojVmlldyh3YWxtYXJ0KQpgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPkFqdXN0YXIgcmVncmVzacOzbiBsaW5lYWw8L3NwYW4+CmBgYHtyfQp3YWxtYXJ0YWp1cyA8LSB3YWxtYXJ0ICU+JSBzZWxlY3QoLVN0b3JlLCAtRGF0ZSwgLUZ1ZWxfUHJpY2UsIC1ZZWFyOi1EYXkpCnJlZ3Jlc2lvbiA8LSBsbShXZWVrbHlfU2FsZXMgfi4sIGRhdGE9d2FsbWFydGFqdXMpCnN1bW1hcnkocmVncmVzaW9uKQpgYGAKCg==