
Descargar librerias
#install.packages("tidyverse")
library(tidyverse)
## Warning: package 'ggplot2' was built under R version 4.3.2
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.2 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.5.0 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Obtener datos
walmart <- read.csv("/Users/lightedit/Documents/TEC SEMESTRE 6.1/M2/R/walmart/Walmart_Store_sales.csv")
Entender y limpiar la base de
datos
walmart$Date <- as.Date(walmart$Date, format = "%d-%m-%Y")
summary(walmart)
## Store Date Weekly_Sales Holiday_Flag
## Min. : 1 Min. :2010-02-05 Min. : 209986 Min. :0.00000
## 1st Qu.:12 1st Qu.:2010-10-08 1st Qu.: 553350 1st Qu.:0.00000
## Median :23 Median :2011-06-17 Median : 960746 Median :0.00000
## Mean :23 Mean :2011-06-17 Mean :1046965 Mean :0.06993
## 3rd Qu.:34 3rd Qu.:2012-02-24 3rd Qu.:1420159 3rd Qu.:0.00000
## Max. :45 Max. :2012-10-26 Max. :3818686 Max. :1.00000
## Temperature Fuel_Price CPI Unemployment
## Min. : -2.06 Min. :2.472 Min. :126.1 Min. : 3.879
## 1st Qu.: 47.46 1st Qu.:2.933 1st Qu.:131.7 1st Qu.: 6.891
## Median : 62.67 Median :3.445 Median :182.6 Median : 7.874
## Mean : 60.66 Mean :3.359 Mean :171.6 Mean : 7.999
## 3rd Qu.: 74.94 3rd Qu.:3.735 3rd Qu.:212.7 3rd Qu.: 8.622
## Max. :100.14 Max. :4.468 Max. :227.2 Max. :14.313
## 'data.frame': 6435 obs. of 8 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : Date, format: "2010-02-05" "2010-02-12" ...
## $ Weekly_Sales: num 1643691 1641957 1611968 1409728 1554807 ...
## $ Holiday_Flag: int 0 1 0 0 0 0 0 0 0 0 ...
## $ Temperature : num 42.3 38.5 39.9 46.6 46.5 ...
## $ Fuel_Price : num 2.57 2.55 2.51 2.56 2.62 ...
## $ CPI : num 211 211 211 211 211 ...
## $ Unemployment: num 8.11 8.11 8.11 8.11 8.11 ...
Agregar variables a la base de
datos
walmart$Year <- format(walmart$Date, "%Y")
walmart$Year <- as.integer(walmart$Year)
walmart$Month <- format(walmart$Date, "%m")
walmart$Month <- as.integer(walmart$Month)
walmart$Day <- format(walmart$Date, "%d")
walmart$Day <- as.integer(walmart$Day)
str(walmart)
## 'data.frame': 6435 obs. of 11 variables:
## $ Store : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Date : Date, format: "2010-02-05" "2010-02-12" ...
## $ Weekly_Sales: num 1643691 1641957 1611968 1409728 1554807 ...
## $ Holiday_Flag: int 0 1 0 0 0 0 0 0 0 0 ...
## $ Temperature : num 42.3 38.5 39.9 46.6 46.5 ...
## $ Fuel_Price : num 2.57 2.55 2.51 2.56 2.62 ...
## $ CPI : num 211 211 211 211 211 ...
## $ Unemployment: num 8.11 8.11 8.11 8.11 8.11 ...
## $ Year : int 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 ...
## $ Month : int 2 2 2 2 3 3 3 3 4 4 ...
## $ Day : int 5 12 19 26 5 12 19 26 2 9 ...
Ajustar regresión lineal
walmartajus <- walmart %>% select(-Store, -Date, -Fuel_Price, -Year:-Day)
regresion <- lm(Weekly_Sales ~., data=walmartajus)
summary(regresion)
##
## Call:
## lm(formula = Weekly_Sales ~ ., data = walmartajus)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1020421 -477999 -115859 396128 2800875
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1687798.2 52515.7 32.139 < 2e-16 ***
## Holiday_Flag 75760.1 27605.3 2.744 0.00608 **
## Temperature -773.1 393.2 -1.966 0.04930 *
## CPI -1570.0 189.9 -8.267 < 2e-16 ***
## Unemployment -41235.7 3942.0 -10.460 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 557300 on 6430 degrees of freedom
## Multiple R-squared: 0.02538, Adjusted R-squared: 0.02477
## F-statistic: 41.86 on 4 and 6430 DF, p-value: < 2.2e-16
LS0tCnRpdGxlOiAiUmVncmVzacOzbiBMaW5lYWwiCmF1dGhvcjogIkdpbGJlcnRvIE1lbmNoYWNhIgpkYXRlOiAiMjAyNC0wMi0yMyIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiBUUlVFCiAgICB0b2NfZmxvYXQ6IFRSVUUKICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUKICAgIHRoZW1lOiBjZXJ1bGVhbgogICAgaGlnaGxpZ2h0OiBrYXRlCi0tLQoKIVtdKC9Vc2Vycy9saWdodGVkaXQvRG9jdW1lbnRzL1RFQyBTRU1FU1RSRSA2LjEvTTIvUi93YWxtYXJ0LzE2OTM0MzIzMDY1MjIuanBnKQoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+RGVzY2FyZ2FyIGxpYnJlcmlhczwvc3Bhbj4KYGBge3J9CiNpbnN0YWxsLnBhY2thZ2VzKCJ0aWR5dmVyc2UiKQpsaWJyYXJ5KHRpZHl2ZXJzZSkKYGBgCgoKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPk9idGVuZXIgZGF0b3M8L3NwYW4+CmBgYHtyfQp3YWxtYXJ0IDwtIHJlYWQuY3N2KCIvVXNlcnMvbGlnaHRlZGl0L0RvY3VtZW50cy9URUMgU0VNRVNUUkUgNi4xL00yL1Ivd2FsbWFydC9XYWxtYXJ0X1N0b3JlX3NhbGVzLmNzdiIpCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+RW50ZW5kZXIgeSBsaW1waWFyIGxhIGJhc2UgZGUgZGF0b3M8L3NwYW4+CmBgYHtyfQp3YWxtYXJ0JERhdGUgPC0gYXMuRGF0ZSh3YWxtYXJ0JERhdGUsIGZvcm1hdCA9ICIlZC0lbS0lWSIpCnN1bW1hcnkod2FsbWFydCkKc3RyKHdhbG1hcnQpCgpgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPkFncmVnYXIgdmFyaWFibGVzIGEgbGEgYmFzZSBkZSBkYXRvczwvc3Bhbj4KYGBge3J9CndhbG1hcnQkWWVhciA8LSBmb3JtYXQod2FsbWFydCREYXRlLCAiJVkiKQp3YWxtYXJ0JFllYXIgPC0gYXMuaW50ZWdlcih3YWxtYXJ0JFllYXIpCndhbG1hcnQkTW9udGggPC0gZm9ybWF0KHdhbG1hcnQkRGF0ZSwgIiVtIikKd2FsbWFydCRNb250aCA8LSBhcy5pbnRlZ2VyKHdhbG1hcnQkTW9udGgpCndhbG1hcnQkRGF5IDwtIGZvcm1hdCh3YWxtYXJ0JERhdGUsICIlZCIpCndhbG1hcnQkRGF5IDwtIGFzLmludGVnZXIod2FsbWFydCREYXkpCnN0cih3YWxtYXJ0KQojVmlldyh3YWxtYXJ0KQpgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPkFqdXN0YXIgcmVncmVzacOzbiBsaW5lYWw8L3NwYW4+CmBgYHtyfQp3YWxtYXJ0YWp1cyA8LSB3YWxtYXJ0ICU+JSBzZWxlY3QoLVN0b3JlLCAtRGF0ZSwgLUZ1ZWxfUHJpY2UsIC1ZZWFyOi1EYXkpCnJlZ3Jlc2lvbiA8LSBsbShXZWVrbHlfU2FsZXMgfi4sIGRhdGE9d2FsbWFydGFqdXMpCnN1bW1hcnkocmVncmVzaW9uKQpgYGAKCg==