This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE
parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.
#seeds_dataset
library(readr)
seeds_dataset <- read.delim("C:/Users/dnred/Downloads/seeds_dataset.txt", header=FALSE)
View(seeds_dataset)
sdf1<-seeds_dataset[,-8]
View(sdf1)
summary(sdf1)
## V1 V2 V3 V4
## Min. : 1.00 Min. : 1.00 Min. :0.8081 Min. :0.8189
## 1st Qu.:12.11 1st Qu.:13.43 1st Qu.:0.8577 1st Qu.:5.2447
## Median :14.13 Median :14.29 Median :0.8735 Median :5.5180
## Mean :14.29 Mean :14.43 Mean :0.8713 Mean :5.5639
## 3rd Qu.:17.09 3rd Qu.:15.69 3rd Qu.:0.8877 3rd Qu.:5.9798
## Max. :21.18 Max. :17.25 Max. :0.9183 Max. :6.6750
## NA's :1 NA's :9 NA's :14 NA's :11
## V5 V6 V7
## Min. :2.630 Min. :0.7651 Min. :3.485
## 1st Qu.:2.956 1st Qu.:2.6002 1st Qu.:5.045
## Median :3.245 Median :3.5990 Median :5.226
## Mean :3.281 Mean :3.6935 Mean :5.408
## 3rd Qu.:3.566 3rd Qu.:4.7687 3rd Qu.:5.879
## Max. :5.325 Max. :8.4560 Max. :6.735
## NA's :12 NA's :11 NA's :15
#assign labels to columns
feature_name<- c('area', 'perimeter','compactness','length_of_kernel','width_of_kernel','asymetry_coefficient','length_of_kernel_groove')
colnames(sdf1)<-feature_name
is.na(sdf1)
## area perimeter compactness length_of_kernel width_of_kernel
## [1,] FALSE FALSE FALSE FALSE FALSE
## [2,] FALSE FALSE FALSE FALSE FALSE
## [3,] FALSE FALSE FALSE FALSE FALSE
## [4,] FALSE FALSE FALSE FALSE FALSE
## [5,] FALSE FALSE FALSE FALSE FALSE
## [6,] FALSE FALSE FALSE FALSE FALSE
## [7,] FALSE FALSE FALSE FALSE FALSE
## [8,] FALSE FALSE FALSE FALSE FALSE
## [9,] TRUE FALSE TRUE TRUE TRUE
## [10,] FALSE FALSE FALSE FALSE FALSE
## [11,] FALSE FALSE FALSE FALSE FALSE
## [12,] FALSE FALSE FALSE FALSE FALSE
## [13,] FALSE FALSE FALSE FALSE FALSE
## [14,] FALSE FALSE FALSE FALSE FALSE
## [15,] FALSE FALSE FALSE FALSE FALSE
## [16,] FALSE FALSE FALSE FALSE FALSE
## [17,] FALSE FALSE FALSE FALSE FALSE
## [18,] FALSE FALSE FALSE FALSE FALSE
## [19,] FALSE FALSE FALSE FALSE FALSE
## [20,] FALSE FALSE FALSE FALSE FALSE
## [21,] FALSE FALSE FALSE FALSE FALSE
## [22,] FALSE FALSE FALSE FALSE FALSE
## [23,] FALSE FALSE FALSE FALSE FALSE
## [24,] FALSE FALSE FALSE FALSE FALSE
## [25,] FALSE FALSE FALSE FALSE FALSE
## [26,] FALSE FALSE FALSE FALSE FALSE
## [27,] FALSE FALSE FALSE FALSE FALSE
## [28,] FALSE FALSE FALSE FALSE FALSE
## [29,] FALSE FALSE FALSE FALSE FALSE
## [30,] FALSE FALSE FALSE FALSE FALSE
## [31,] FALSE FALSE FALSE FALSE FALSE
## [32,] FALSE FALSE FALSE FALSE FALSE
## [33,] FALSE FALSE FALSE FALSE FALSE
## [34,] FALSE FALSE FALSE FALSE FALSE
## [35,] FALSE FALSE FALSE FALSE FALSE
## [36,] FALSE FALSE FALSE FALSE FALSE
## [37,] FALSE FALSE TRUE FALSE TRUE
## [38,] FALSE FALSE TRUE TRUE TRUE
## [39,] FALSE FALSE FALSE FALSE FALSE
## [40,] FALSE FALSE FALSE FALSE FALSE
## [41,] FALSE FALSE FALSE FALSE FALSE
## [42,] FALSE FALSE FALSE FALSE FALSE
## [43,] FALSE FALSE FALSE FALSE FALSE
## [44,] FALSE FALSE FALSE FALSE FALSE
## [45,] FALSE FALSE FALSE FALSE FALSE
## [46,] FALSE FALSE FALSE FALSE FALSE
## [47,] FALSE FALSE FALSE FALSE FALSE
## [48,] FALSE FALSE FALSE FALSE FALSE
## [49,] FALSE FALSE FALSE FALSE FALSE
## [50,] FALSE FALSE FALSE FALSE FALSE
## [51,] FALSE FALSE FALSE FALSE FALSE
## [52,] FALSE FALSE FALSE FALSE FALSE
## [53,] FALSE FALSE FALSE FALSE FALSE
## [54,] FALSE FALSE FALSE FALSE FALSE
## [55,] FALSE FALSE FALSE FALSE FALSE
## [56,] FALSE FALSE FALSE FALSE FALSE
## [57,] FALSE FALSE FALSE FALSE FALSE
## [58,] FALSE FALSE FALSE FALSE FALSE
## [59,] FALSE FALSE FALSE FALSE FALSE
## [60,] FALSE FALSE FALSE FALSE FALSE
## [61,] FALSE FALSE FALSE FALSE FALSE
## [62,] FALSE FALSE FALSE FALSE FALSE
## [63,] FALSE FALSE FALSE FALSE FALSE
## [64,] FALSE TRUE TRUE TRUE TRUE
## [65,] FALSE FALSE FALSE FALSE FALSE
## [66,] FALSE FALSE FALSE FALSE FALSE
## [67,] FALSE FALSE FALSE FALSE FALSE
## [68,] FALSE FALSE FALSE FALSE FALSE
## [69,] FALSE FALSE FALSE FALSE FALSE
## [70,] FALSE FALSE FALSE FALSE FALSE
## [71,] FALSE FALSE FALSE FALSE FALSE
## [72,] FALSE FALSE FALSE FALSE FALSE
## [73,] FALSE TRUE TRUE TRUE TRUE
## [74,] FALSE FALSE FALSE FALSE FALSE
## [75,] FALSE FALSE FALSE FALSE FALSE
## [76,] FALSE FALSE FALSE FALSE FALSE
## [77,] FALSE FALSE FALSE FALSE FALSE
## [78,] FALSE FALSE FALSE FALSE FALSE
## [79,] FALSE FALSE FALSE FALSE FALSE
## [80,] FALSE FALSE FALSE FALSE FALSE
## [81,] FALSE FALSE FALSE FALSE FALSE
## [82,] FALSE FALSE FALSE FALSE FALSE
## [83,] FALSE FALSE FALSE FALSE FALSE
## [84,] FALSE FALSE FALSE FALSE FALSE
## [85,] FALSE FALSE FALSE FALSE FALSE
## [86,] FALSE FALSE FALSE FALSE FALSE
## [87,] FALSE FALSE FALSE FALSE FALSE
## [88,] FALSE FALSE FALSE FALSE FALSE
## [89,] FALSE FALSE FALSE FALSE FALSE
## [90,] FALSE FALSE FALSE FALSE FALSE
## [91,] FALSE FALSE FALSE FALSE FALSE
## [92,] FALSE FALSE FALSE FALSE FALSE
## [93,] FALSE FALSE FALSE FALSE FALSE
## [94,] FALSE FALSE FALSE FALSE FALSE
## [95,] FALSE FALSE FALSE FALSE FALSE
## [96,] FALSE FALSE FALSE FALSE FALSE
## [97,] FALSE FALSE FALSE FALSE FALSE
## [98,] FALSE FALSE FALSE FALSE FALSE
## [99,] FALSE FALSE FALSE FALSE FALSE
## [100,] FALSE FALSE FALSE FALSE FALSE
## [101,] FALSE FALSE FALSE FALSE FALSE
## [102,] FALSE FALSE FALSE FALSE FALSE
## [103,] FALSE FALSE FALSE FALSE FALSE
## [104,] FALSE FALSE FALSE FALSE FALSE
## [105,] FALSE FALSE FALSE FALSE FALSE
## [106,] FALSE FALSE FALSE FALSE FALSE
## [107,] FALSE FALSE FALSE FALSE FALSE
## [108,] FALSE FALSE FALSE FALSE FALSE
## [109,] FALSE FALSE FALSE FALSE FALSE
## [110,] FALSE FALSE FALSE FALSE FALSE
## [111,] FALSE FALSE FALSE FALSE FALSE
## [112,] FALSE TRUE TRUE TRUE TRUE
## [113,] FALSE FALSE FALSE FALSE FALSE
## [114,] FALSE FALSE FALSE FALSE FALSE
## [115,] FALSE FALSE FALSE FALSE FALSE
## [116,] FALSE FALSE FALSE FALSE FALSE
## [117,] FALSE FALSE FALSE FALSE FALSE
## [118,] FALSE FALSE FALSE FALSE FALSE
## [119,] FALSE FALSE FALSE FALSE FALSE
## [120,] FALSE FALSE FALSE FALSE FALSE
## [121,] FALSE FALSE FALSE FALSE FALSE
## [122,] FALSE FALSE FALSE FALSE FALSE
## [123,] FALSE FALSE FALSE FALSE FALSE
## [124,] FALSE FALSE FALSE FALSE FALSE
## [125,] FALSE FALSE FALSE FALSE FALSE
## [126,] FALSE FALSE FALSE FALSE FALSE
## [127,] FALSE FALSE FALSE FALSE FALSE
## [128,] FALSE FALSE FALSE FALSE FALSE
## [129,] FALSE FALSE FALSE FALSE FALSE
## [130,] FALSE FALSE FALSE FALSE FALSE
## [131,] FALSE FALSE FALSE FALSE FALSE
## [132,] FALSE FALSE FALSE FALSE FALSE
## [133,] FALSE FALSE FALSE FALSE FALSE
## [134,] FALSE FALSE FALSE FALSE FALSE
## [135,] FALSE FALSE FALSE FALSE FALSE
## [136,] FALSE FALSE FALSE FALSE FALSE
## [137,] FALSE FALSE FALSE FALSE FALSE
## [138,] FALSE FALSE FALSE FALSE FALSE
## [139,] FALSE FALSE FALSE FALSE FALSE
## [140,] FALSE FALSE FALSE FALSE FALSE
## [141,] FALSE FALSE FALSE FALSE FALSE
## [142,] FALSE TRUE TRUE TRUE TRUE
## [143,] FALSE FALSE FALSE FALSE FALSE
## [144,] FALSE FALSE FALSE FALSE FALSE
## [145,] FALSE FALSE FALSE FALSE FALSE
## [146,] FALSE FALSE FALSE FALSE FALSE
## [147,] FALSE FALSE FALSE FALSE FALSE
## [148,] FALSE FALSE FALSE FALSE FALSE
## [149,] FALSE FALSE FALSE FALSE FALSE
## [150,] FALSE FALSE FALSE FALSE FALSE
## [151,] FALSE FALSE FALSE FALSE FALSE
## [152,] FALSE FALSE FALSE FALSE FALSE
## [153,] FALSE FALSE FALSE FALSE FALSE
## [154,] FALSE FALSE FALSE FALSE FALSE
## [155,] FALSE FALSE FALSE FALSE FALSE
## [156,] FALSE FALSE FALSE FALSE FALSE
## [157,] FALSE FALSE FALSE FALSE FALSE
## [158,] FALSE FALSE FALSE FALSE FALSE
## [159,] FALSE FALSE FALSE FALSE FALSE
## [160,] FALSE FALSE FALSE FALSE FALSE
## [161,] FALSE FALSE FALSE FALSE FALSE
## [162,] FALSE FALSE FALSE FALSE FALSE
## [163,] FALSE FALSE FALSE FALSE FALSE
## [164,] FALSE FALSE FALSE FALSE FALSE
## [165,] FALSE FALSE FALSE FALSE FALSE
## [166,] FALSE FALSE FALSE FALSE FALSE
## [167,] FALSE FALSE FALSE FALSE FALSE
## [168,] FALSE FALSE FALSE FALSE FALSE
## [169,] FALSE FALSE FALSE FALSE FALSE
## [170,] FALSE FALSE FALSE FALSE FALSE
## [171,] FALSE FALSE FALSE FALSE FALSE
## [172,] FALSE FALSE FALSE FALSE FALSE
## [173,] FALSE FALSE FALSE FALSE FALSE
## [174,] FALSE FALSE FALSE FALSE FALSE
## [175,] FALSE FALSE FALSE FALSE FALSE
## [176,] FALSE FALSE TRUE FALSE FALSE
## [177,] FALSE TRUE TRUE TRUE TRUE
## [178,] FALSE FALSE TRUE FALSE FALSE
## [179,] FALSE TRUE TRUE TRUE TRUE
## [180,] FALSE FALSE FALSE FALSE FALSE
## [181,] FALSE FALSE FALSE FALSE FALSE
## [182,] FALSE TRUE TRUE TRUE TRUE
## [183,] FALSE FALSE FALSE FALSE FALSE
## [184,] FALSE FALSE FALSE FALSE FALSE
## [185,] FALSE FALSE FALSE FALSE FALSE
## [186,] FALSE FALSE FALSE FALSE FALSE
## [187,] FALSE FALSE FALSE FALSE FALSE
## [188,] FALSE FALSE FALSE FALSE FALSE
## [189,] FALSE FALSE FALSE FALSE FALSE
## [190,] FALSE FALSE FALSE FALSE FALSE
## [191,] FALSE FALSE FALSE FALSE FALSE
## [192,] FALSE FALSE FALSE FALSE FALSE
## [193,] FALSE FALSE FALSE FALSE FALSE
## [194,] FALSE FALSE FALSE FALSE FALSE
## [195,] FALSE FALSE FALSE FALSE FALSE
## [196,] FALSE FALSE FALSE FALSE FALSE
## [197,] FALSE FALSE FALSE FALSE FALSE
## [198,] FALSE FALSE FALSE FALSE FALSE
## [199,] FALSE FALSE FALSE FALSE FALSE
## [200,] FALSE FALSE FALSE FALSE FALSE
## [201,] FALSE FALSE FALSE FALSE FALSE
## [202,] FALSE FALSE FALSE FALSE FALSE
## [203,] FALSE FALSE FALSE FALSE FALSE
## [204,] FALSE FALSE FALSE FALSE FALSE
## [205,] FALSE FALSE FALSE FALSE FALSE
## [206,] FALSE FALSE FALSE FALSE FALSE
## [207,] FALSE FALSE FALSE FALSE FALSE
## [208,] FALSE FALSE FALSE FALSE FALSE
## [209,] FALSE FALSE FALSE FALSE FALSE
## [210,] FALSE FALSE FALSE FALSE FALSE
## [211,] FALSE FALSE FALSE FALSE FALSE
## [212,] FALSE TRUE TRUE TRUE TRUE
## [213,] FALSE FALSE FALSE FALSE FALSE
## [214,] FALSE FALSE FALSE FALSE FALSE
## [215,] FALSE TRUE TRUE TRUE TRUE
## [216,] FALSE FALSE FALSE FALSE FALSE
## [217,] FALSE FALSE FALSE FALSE FALSE
## [218,] FALSE FALSE FALSE FALSE FALSE
## [219,] FALSE FALSE FALSE FALSE FALSE
## [220,] FALSE FALSE FALSE FALSE FALSE
## [221,] FALSE FALSE FALSE FALSE FALSE
## asymetry_coefficient length_of_kernel_groove
## [1,] FALSE FALSE
## [2,] FALSE FALSE
## [3,] FALSE FALSE
## [4,] FALSE FALSE
## [5,] FALSE FALSE
## [6,] FALSE FALSE
## [7,] FALSE FALSE
## [8,] FALSE TRUE
## [9,] TRUE TRUE
## [10,] FALSE FALSE
## [11,] FALSE FALSE
## [12,] FALSE FALSE
## [13,] FALSE FALSE
## [14,] FALSE FALSE
## [15,] FALSE FALSE
## [16,] FALSE FALSE
## [17,] FALSE FALSE
## [18,] FALSE FALSE
## [19,] FALSE FALSE
## [20,] FALSE FALSE
## [21,] FALSE FALSE
## [22,] FALSE FALSE
## [23,] FALSE FALSE
## [24,] FALSE FALSE
## [25,] FALSE FALSE
## [26,] FALSE FALSE
## [27,] FALSE FALSE
## [28,] FALSE FALSE
## [29,] FALSE FALSE
## [30,] FALSE FALSE
## [31,] FALSE FALSE
## [32,] FALSE FALSE
## [33,] FALSE FALSE
## [34,] FALSE FALSE
## [35,] FALSE FALSE
## [36,] FALSE FALSE
## [37,] FALSE FALSE
## [38,] TRUE TRUE
## [39,] FALSE FALSE
## [40,] FALSE FALSE
## [41,] FALSE FALSE
## [42,] FALSE FALSE
## [43,] FALSE FALSE
## [44,] FALSE FALSE
## [45,] FALSE FALSE
## [46,] FALSE FALSE
## [47,] FALSE FALSE
## [48,] FALSE FALSE
## [49,] FALSE FALSE
## [50,] FALSE FALSE
## [51,] FALSE FALSE
## [52,] FALSE FALSE
## [53,] FALSE FALSE
## [54,] FALSE FALSE
## [55,] FALSE FALSE
## [56,] FALSE FALSE
## [57,] FALSE FALSE
## [58,] FALSE FALSE
## [59,] FALSE FALSE
## [60,] FALSE FALSE
## [61,] FALSE FALSE
## [62,] FALSE FALSE
## [63,] FALSE TRUE
## [64,] TRUE TRUE
## [65,] FALSE FALSE
## [66,] FALSE FALSE
## [67,] FALSE FALSE
## [68,] FALSE FALSE
## [69,] FALSE FALSE
## [70,] FALSE FALSE
## [71,] FALSE FALSE
## [72,] FALSE FALSE
## [73,] TRUE TRUE
## [74,] FALSE FALSE
## [75,] FALSE FALSE
## [76,] FALSE FALSE
## [77,] FALSE FALSE
## [78,] FALSE FALSE
## [79,] FALSE FALSE
## [80,] FALSE FALSE
## [81,] FALSE FALSE
## [82,] FALSE FALSE
## [83,] FALSE FALSE
## [84,] FALSE FALSE
## [85,] FALSE FALSE
## [86,] FALSE FALSE
## [87,] FALSE FALSE
## [88,] FALSE FALSE
## [89,] FALSE FALSE
## [90,] FALSE FALSE
## [91,] FALSE FALSE
## [92,] FALSE FALSE
## [93,] FALSE FALSE
## [94,] FALSE FALSE
## [95,] FALSE FALSE
## [96,] FALSE FALSE
## [97,] FALSE FALSE
## [98,] FALSE FALSE
## [99,] FALSE FALSE
## [100,] FALSE FALSE
## [101,] FALSE FALSE
## [102,] FALSE FALSE
## [103,] FALSE FALSE
## [104,] FALSE FALSE
## [105,] FALSE FALSE
## [106,] FALSE FALSE
## [107,] FALSE FALSE
## [108,] FALSE FALSE
## [109,] FALSE FALSE
## [110,] FALSE FALSE
## [111,] FALSE FALSE
## [112,] TRUE TRUE
## [113,] FALSE FALSE
## [114,] FALSE FALSE
## [115,] FALSE FALSE
## [116,] FALSE FALSE
## [117,] FALSE FALSE
## [118,] FALSE FALSE
## [119,] FALSE FALSE
## [120,] FALSE FALSE
## [121,] FALSE FALSE
## [122,] FALSE FALSE
## [123,] FALSE FALSE
## [124,] FALSE FALSE
## [125,] FALSE FALSE
## [126,] FALSE FALSE
## [127,] FALSE FALSE
## [128,] FALSE FALSE
## [129,] FALSE FALSE
## [130,] FALSE FALSE
## [131,] FALSE FALSE
## [132,] FALSE FALSE
## [133,] FALSE FALSE
## [134,] FALSE FALSE
## [135,] FALSE FALSE
## [136,] FALSE FALSE
## [137,] FALSE FALSE
## [138,] FALSE FALSE
## [139,] FALSE FALSE
## [140,] FALSE FALSE
## [141,] FALSE TRUE
## [142,] TRUE TRUE
## [143,] FALSE FALSE
## [144,] FALSE FALSE
## [145,] FALSE FALSE
## [146,] FALSE FALSE
## [147,] FALSE FALSE
## [148,] FALSE FALSE
## [149,] FALSE FALSE
## [150,] FALSE FALSE
## [151,] FALSE FALSE
## [152,] FALSE FALSE
## [153,] FALSE FALSE
## [154,] FALSE FALSE
## [155,] FALSE FALSE
## [156,] FALSE FALSE
## [157,] FALSE FALSE
## [158,] FALSE FALSE
## [159,] FALSE FALSE
## [160,] FALSE FALSE
## [161,] FALSE FALSE
## [162,] FALSE FALSE
## [163,] FALSE FALSE
## [164,] FALSE FALSE
## [165,] FALSE FALSE
## [166,] FALSE FALSE
## [167,] FALSE FALSE
## [168,] FALSE FALSE
## [169,] FALSE FALSE
## [170,] FALSE FALSE
## [171,] FALSE FALSE
## [172,] FALSE FALSE
## [173,] FALSE FALSE
## [174,] FALSE FALSE
## [175,] FALSE FALSE
## [176,] FALSE FALSE
## [177,] TRUE TRUE
## [178,] FALSE FALSE
## [179,] TRUE TRUE
## [180,] FALSE FALSE
## [181,] FALSE FALSE
## [182,] TRUE TRUE
## [183,] FALSE FALSE
## [184,] FALSE FALSE
## [185,] FALSE FALSE
## [186,] FALSE FALSE
## [187,] FALSE FALSE
## [188,] FALSE FALSE
## [189,] FALSE FALSE
## [190,] FALSE FALSE
## [191,] FALSE FALSE
## [192,] FALSE FALSE
## [193,] FALSE FALSE
## [194,] FALSE FALSE
## [195,] FALSE FALSE
## [196,] FALSE FALSE
## [197,] FALSE FALSE
## [198,] FALSE FALSE
## [199,] FALSE FALSE
## [200,] FALSE FALSE
## [201,] FALSE FALSE
## [202,] FALSE FALSE
## [203,] FALSE FALSE
## [204,] FALSE FALSE
## [205,] FALSE FALSE
## [206,] FALSE FALSE
## [207,] FALSE FALSE
## [208,] FALSE FALSE
## [209,] FALSE FALSE
## [210,] FALSE FALSE
## [211,] FALSE TRUE
## [212,] TRUE TRUE
## [213,] FALSE FALSE
## [214,] FALSE FALSE
## [215,] TRUE TRUE
## [216,] FALSE FALSE
## [217,] FALSE FALSE
## [218,] FALSE FALSE
## [219,] FALSE FALSE
## [220,] FALSE FALSE
## [221,] FALSE FALSE
sdf1<-na.omit(sdf1) #remove all rows that contain NA
sdf1 #view to see how many rows were removed
## area perimeter compactness length_of_kernel width_of_kernel
## 1 15.26 14.84 0.8710 5.763 3.312
## 2 14.88 14.57 0.8811 5.554 3.333
## 3 14.29 14.09 0.9050 5.291 3.337
## 4 13.84 13.94 0.8955 5.324 3.379
## 5 16.14 14.99 0.9034 5.658 3.562
## 6 14.38 14.21 0.8951 5.386 3.312
## 7 14.69 14.49 0.8799 5.563 3.259
## 10 16.63 15.46 0.8747 6.053 3.465
## 11 16.44 15.25 0.8880 5.884 3.505
## 12 15.26 14.85 0.8696 5.714 3.242
## 13 14.03 14.16 0.8796 5.438 3.201
## 14 13.89 14.02 0.8880 5.439 3.199
## 15 13.78 14.06 0.8759 5.479 3.156
## 16 13.74 14.05 0.8744 5.482 3.114
## 17 14.59 14.28 0.8993 5.351 3.333
## 18 13.99 13.83 0.9183 5.119 3.383
## 19 15.69 14.75 0.9058 5.527 3.514
## 20 14.70 14.21 0.9153 5.205 3.466
## 21 12.72 13.57 0.8686 5.226 3.049
## 22 14.16 14.40 0.8584 5.658 3.129
## 23 14.11 14.26 0.8722 5.520 3.168
## 24 15.88 14.90 0.8988 5.618 3.507
## 25 12.08 13.23 0.8664 5.099 2.936
## 26 15.01 14.76 0.8657 5.789 3.245
## 27 16.19 15.16 0.8849 5.833 3.421
## 28 13.02 13.76 0.8641 5.395 3.026
## 29 12.74 13.67 0.8564 5.395 2.956
## 30 14.11 14.18 0.8820 5.541 3.221
## 31 13.45 14.02 0.8604 5.516 3.065
## 32 13.16 13.82 0.8662 5.454 2.975
## 33 15.49 14.94 0.8724 5.757 3.371
## 34 14.09 14.41 0.8529 5.717 3.186
## 35 13.94 14.17 0.8728 5.585 3.150
## 36 15.05 14.68 0.8779 5.712 3.328
## 39 16.20 15.27 0.8734 5.826 3.464
## 40 17.08 15.38 0.9079 5.832 3.683
## 41 14.80 14.52 0.8823 5.656 3.288
## 42 14.28 14.17 0.8944 5.397 3.298
## 43 13.54 13.85 0.8871 5.348 3.156
## 44 13.50 13.85 0.8852 5.351 3.158
## 45 13.16 13.55 0.9009 5.138 3.201
## 46 15.50 14.86 0.8820 5.877 3.396
## 47 15.11 14.54 0.8986 5.579 3.462
## 48 13.80 14.04 0.8794 5.376 3.155
## 49 15.36 14.76 0.8861 5.701 3.393
## 50 14.99 14.56 0.8883 5.570 3.377
## 51 14.79 14.52 0.8819 5.545 3.291
## 52 14.86 14.67 0.8676 5.678 3.258
## 53 14.43 14.40 0.8751 5.585 3.272
## 54 15.78 14.91 0.8923 5.674 3.434
## 55 14.49 14.61 0.8538 5.715 3.113
## 56 14.33 14.28 0.8831 5.504 3.199
## 57 14.52 14.60 0.8557 5.741 3.113
## 58 15.03 14.77 0.8658 5.702 3.212
## 59 14.46 14.35 0.8818 5.388 3.377
## 60 14.92 14.43 0.9006 5.384 3.412
## 61 15.38 14.77 0.8857 5.662 3.419
## 62 12.11 13.47 0.8392 5.159 3.032
## 65 11.23 12.63 0.8840 4.902 2.879
## 66 12.36 13.19 0.8923 5.076 3.042
## 67 13.22 13.84 0.8680 5.395 3.070
## 68 12.78 13.57 0.8716 5.262 3.026
## 69 12.88 13.50 0.8879 5.139 3.119
## 70 14.34 14.37 0.8726 5.630 3.190
## 71 14.01 14.29 0.8625 5.609 3.158
## 72 14.37 14.39 0.8726 5.569 3.153
## 74 12.73 13.75 0.8458 5.412 2.882
## 75 17.63 15.98 0.8673 6.191 3.561
## 76 16.84 15.67 0.8623 5.998 3.484
## 77 17.26 15.73 0.8763 5.978 3.594
## 78 19.11 16.26 0.9081 6.154 3.930
## 79 16.82 15.51 0.8786 6.017 3.486
## 80 16.77 15.62 0.8638 5.927 3.438
## 81 17.32 15.91 0.8599 6.064 3.403
## 82 20.71 17.23 0.8763 6.579 3.814
## 83 18.94 16.49 0.8750 6.445 3.639
## 84 17.12 15.55 0.8892 5.850 3.566
## 85 16.53 15.34 0.8823 5.875 3.467
## 86 18.72 16.19 0.8977 6.006 3.857
## 87 20.20 16.89 0.8894 6.285 3.864
## 88 19.57 16.74 0.8779 6.384 3.772
## 89 19.51 16.71 0.8780 6.366 3.801
## 90 18.27 16.09 0.8870 6.173 3.651
## 91 18.88 16.26 0.8969 6.084 3.764
## 92 18.98 16.66 0.8590 6.549 3.670
## 93 21.18 17.21 0.8989 6.573 4.033
## 94 20.88 17.05 0.9031 6.450 4.032
## 95 20.10 16.99 0.8746 6.581 3.785
## 96 18.76 16.20 0.8984 6.172 3.796
## 97 18.81 16.29 0.8906 6.272 3.693
## 98 18.59 16.05 0.9066 6.037 3.860
## 99 18.36 16.52 0.8452 6.666 3.485
## 100 16.87 15.65 0.8648 6.139 3.463
## 101 19.31 16.59 0.8815 6.341 3.810
## 102 18.98 16.57 0.8687 6.449 3.552
## 103 18.17 16.26 0.8637 6.271 3.512
## 104 18.72 16.34 0.8810 6.219 3.684
## 105 16.41 15.25 0.8866 5.718 3.525
## 106 17.99 15.86 0.8992 5.890 3.694
## 107 19.46 16.50 0.8985 6.113 3.892
## 108 19.18 16.63 0.8717 6.369 3.681
## 109 18.95 16.42 0.8829 6.248 3.755
## 110 18.83 16.29 0.8917 6.037 3.786
## 111 18.85 16.17 0.9056 6.152 3.806
## 113 17.63 15.86 0.8800 6.033 3.573
## 114 19.94 16.92 0.8752 6.675 3.763
## 115 18.55 16.22 0.8865 6.153 3.674
## 116 18.45 16.12 0.8921 6.107 3.769
## 117 19.38 16.72 0.8716 6.303 3.791
## 118 19.13 16.31 0.9035 6.183 3.902
## 119 19.14 16.61 0.8722 6.259 3.737
## 120 20.97 17.25 0.8859 6.563 3.991
## 121 19.06 16.45 0.8854 6.416 3.719
## 122 18.96 16.20 0.9077 6.051 3.897
## 123 19.15 16.45 0.8890 6.245 3.815
## 124 18.89 16.23 0.9008 6.227 3.769
## 125 20.03 16.90 0.8811 6.493 3.857
## 126 20.24 16.91 0.8897 6.315 3.962
## 127 18.14 16.12 0.8772 6.059 3.563
## 128 16.17 15.38 0.8588 5.762 3.387
## 129 18.43 15.97 0.9077 5.980 3.771
## 130 15.99 14.89 0.9064 5.363 3.582
## 131 18.75 16.18 0.8999 6.111 3.869
## 132 18.65 16.41 0.8698 6.285 3.594
## 133 17.98 15.85 0.8993 5.979 3.687
## 134 20.16 17.03 0.8735 6.513 3.773
## 135 17.55 15.66 0.8991 5.791 3.690
## 136 18.30 15.89 0.9108 5.979 3.755
## 137 18.94 16.32 0.8942 6.144 3.825
## 138 15.38 14.90 0.8706 5.884 3.268
## 139 16.16 15.33 0.8644 5.845 3.395
## 140 15.56 14.89 0.8823 5.776 3.408
## 143 17.36 15.76 0.8785 6.145 3.574
## 144 15.57 15.15 0.8527 5.920 3.231
## 145 15.60 15.11 0.8580 5.832 3.286
## 146 16.23 15.18 0.8850 5.872 3.472
## 147 13.07 13.92 0.8480 5.472 2.994
## 148 13.32 13.94 0.8613 5.541 3.073
## 149 13.34 13.95 0.8620 5.389 3.074
## 150 12.22 13.32 0.8652 5.224 2.967
## 151 11.82 13.40 0.8274 5.314 2.777
## 152 11.21 13.13 0.8167 5.279 2.687
## 153 11.43 13.13 0.8335 5.176 2.719
## 154 12.49 13.46 0.8658 5.267 2.967
## 155 12.70 13.71 0.8491 5.386 2.911
## 156 10.79 12.93 0.8107 5.317 2.648
## 157 11.83 13.23 0.8496 5.263 2.840
## 158 12.01 13.52 0.8249 5.405 2.776
## 159 12.26 13.60 0.8333 5.408 2.833
## 160 11.18 13.04 0.8266 5.220 2.693
## 161 11.36 13.05 0.8382 5.175 2.755
## 162 11.19 13.05 0.8253 5.250 2.675
## 163 11.34 12.87 0.8596 5.053 2.849
## 164 12.13 13.73 0.8081 5.394 2.745
## 165 11.75 13.52 0.8082 5.444 2.678
## 166 11.49 13.22 0.8263 5.304 2.695
## 167 12.54 13.67 0.8425 5.451 2.879
## 168 12.02 13.33 0.8503 5.350 2.810
## 169 12.05 13.41 0.8416 5.267 2.847
## 170 12.55 13.57 0.8558 5.333 2.968
## 171 11.14 12.79 0.8558 5.011 2.794
## 172 12.10 13.15 0.8793 5.105 2.941
## 173 12.44 13.59 0.8462 5.319 2.897
## 174 12.15 13.45 0.8443 5.417 2.837
## 175 11.35 13.12 0.8291 5.176 2.668
## 180 11.55 13.10 0.8455 5.167 2.845
## 181 11.27 12.97 0.8419 5.088 2.763
## 183 11.40 13.08 0.8375 5.136 2.763
## 184 10.83 12.96 0.8099 5.278 2.641
## 185 10.80 12.57 0.8590 4.981 2.821
## 186 11.26 13.01 0.8355 5.186 2.710
## 187 10.74 12.73 0.8329 5.145 2.642
## 188 11.48 13.05 0.8473 5.180 2.758
## 189 12.21 13.47 0.8453 5.357 2.893
## 190 11.41 12.95 0.8560 5.090 2.775
## 191 12.46 13.41 0.8706 5.236 3.017
## 192 12.19 13.36 0.8579 5.240 2.909
## 193 11.65 13.07 0.8575 5.108 2.850
## 194 12.89 13.77 0.8541 5.495 3.026
## 195 11.56 13.31 0.8198 5.363 2.683
## 196 11.81 13.45 0.8198 5.413 2.716
## 197 10.91 12.80 0.8372 5.088 2.675
## 198 11.23 12.82 0.8594 5.089 2.821
## 199 10.59 12.41 0.8648 4.899 2.787
## 200 10.93 12.80 0.8390 5.046 2.717
## 201 11.27 12.86 0.8563 5.091 2.804
## 202 11.87 13.02 0.8795 5.132 2.953
## 203 10.82 12.83 0.8256 5.180 2.630
## 204 12.11 13.27 0.8639 5.236 2.975
## 205 12.80 13.47 0.8860 5.160 3.126
## 206 12.79 13.53 0.8786 5.224 3.054
## 207 13.37 13.78 0.8849 5.320 3.128
## 208 12.62 13.67 0.8481 5.410 2.911
## 209 12.76 13.38 0.8964 5.073 3.155
## 210 12.38 13.44 0.8609 5.219 2.989
## 213 11.18 12.72 0.8680 5.009 2.810
## 214 12.70 13.41 0.8874 5.183 3.091
## 216 12.37 13.47 0.8567 5.204 2.960
## 217 12.19 13.20 0.8783 5.137 2.981
## 218 11.23 12.88 0.8511 5.140 2.795
## 219 13.20 13.66 0.8883 5.236 3.232
## 220 11.84 13.21 0.8521 5.175 2.836
## 221 12.30 13.34 0.8684 5.243 2.974
## asymetry_coefficient length_of_kernel_groove
## 1 2.2210 5.220
## 2 1.0180 4.956
## 3 2.6990 4.825
## 4 2.2590 4.805
## 5 1.3550 5.175
## 6 2.4620 4.956
## 7 3.5860 5.219
## 10 2.0400 5.877
## 11 1.9690 5.533
## 12 4.5430 5.314
## 13 1.7170 5.001
## 14 3.9860 4.738
## 15 3.1360 4.872
## 16 2.9320 4.825
## 17 4.1850 4.781
## 18 5.2340 4.781
## 19 1.5990 5.046
## 20 1.7670 4.649
## 21 4.1020 4.914
## 22 3.0720 5.176
## 23 2.6880 5.219
## 24 0.7651 5.091
## 25 1.4150 4.961
## 26 1.7910 5.001
## 27 0.9030 5.307
## 28 3.3730 4.825
## 29 2.5040 4.869
## 30 2.7540 5.038
## 31 3.5310 5.097
## 32 0.8551 5.056
## 33 3.4120 5.228
## 34 3.9200 5.299
## 35 2.1240 5.012
## 36 2.1290 5.360
## 39 2.8230 5.527
## 40 2.9560 5.484
## 41 3.1120 5.309
## 42 6.6850 5.001
## 43 2.5870 5.178
## 44 2.2490 5.176
## 45 2.4610 4.783
## 46 4.7110 5.528
## 47 3.1280 5.180
## 48 1.5600 4.961
## 49 1.3670 5.132
## 50 2.9580 5.175
## 51 2.7040 5.111
## 52 2.1290 5.351
## 53 3.9750 5.144
## 54 5.5930 5.136
## 55 4.1160 5.396
## 56 3.3280 5.224
## 57 1.4810 5.487
## 58 1.9330 5.439
## 59 2.8020 5.044
## 60 1.1420 5.088
## 61 1.9990 5.222
## 62 1.5020 4.519
## 65 2.2690 4.703
## 66 3.2200 4.605
## 67 4.1570 5.088
## 68 1.1760 4.782
## 69 2.3520 4.607
## 70 1.3130 5.150
## 71 2.2170 5.132
## 72 1.4640 5.300
## 74 3.5330 5.067
## 75 4.0760 6.060
## 76 4.6750 5.877
## 77 4.5390 5.791
## 78 2.9360 6.079
## 79 4.0040 5.841
## 80 4.9200 5.795
## 81 3.8240 5.922
## 82 4.4510 6.451
## 83 5.0640 6.362
## 84 2.8580 5.746
## 85 5.5320 5.880
## 86 5.3240 5.879
## 87 5.1730 6.187
## 88 1.4720 6.273
## 89 2.9620 6.185
## 90 2.4430 6.197
## 91 1.6490 6.109
## 92 3.6910 6.498
## 93 5.7800 6.231
## 94 5.0160 6.321
## 95 1.9550 6.449
## 96 3.1200 6.053
## 97 3.2370 6.053
## 98 6.0010 5.877
## 99 4.9330 6.448
## 100 3.6960 5.967
## 101 3.4770 6.238
## 102 2.1440 6.453
## 103 2.8530 6.273
## 104 2.1880 6.097
## 105 4.2170 5.618
## 106 2.0680 5.837
## 107 4.3080 6.009
## 108 3.3570 6.229
## 109 3.3680 6.148
## 110 2.5530 5.879
## 111 2.8430 6.200
## 113 3.7470 5.929
## 114 3.2520 6.550
## 115 1.7380 5.894
## 116 2.2350 5.794
## 117 3.6780 5.965
## 118 2.1090 5.924
## 119 6.6820 6.053
## 120 4.6770 6.316
## 121 2.2480 6.163
## 122 4.3340 5.750
## 123 3.0840 6.185
## 124 3.6390 5.966
## 125 3.0630 6.320
## 126 5.9010 6.188
## 127 3.6190 6.011
## 128 4.2860 5.703
## 129 2.9840 5.905
## 130 3.3360 5.144
## 131 4.1880 5.992
## 132 4.3910 6.102
## 133 2.2570 5.919
## 134 1.9100 6.185
## 135 5.3660 5.661
## 136 2.8370 5.962
## 137 2.9080 5.949
## 138 4.4620 5.795
## 139 4.2660 5.795
## 140 4.9720 5.847
## 143 3.5260 5.971
## 144 2.6400 5.879
## 145 2.7250 5.752
## 146 3.7690 5.922
## 147 5.3040 5.395
## 148 7.0350 5.440
## 149 5.9950 5.307
## 150 5.4690 5.221
## 151 4.4710 5.178
## 152 6.1690 5.275
## 153 2.2210 5.132
## 154 4.4210 5.002
## 155 3.2600 5.316
## 156 5.4620 5.194
## 157 5.1950 5.307
## 158 6.9920 5.270
## 159 4.7560 5.360
## 160 3.3320 5.001
## 161 4.0480 5.263
## 162 5.8130 5.219
## 163 3.3470 5.003
## 164 4.8250 5.220
## 165 4.3780 5.310
## 166 5.3880 5.310
## 167 3.0820 5.491
## 168 4.2710 5.308
## 169 4.9880 5.046
## 170 4.4190 5.176
## 171 6.3880 5.049
## 172 2.2010 5.056
## 173 4.9240 5.270
## 174 3.6380 5.338
## 175 4.3370 5.132
## 180 6.7150 4.956
## 181 4.3090 5.000
## 183 5.5880 5.089
## 184 5.1820 5.185
## 185 4.7730 5.063
## 186 5.3350 5.092
## 187 4.7020 4.963
## 188 5.8760 5.002
## 189 1.6610 5.178
## 190 4.9570 4.825
## 191 4.9870 5.147
## 192 4.8570 5.158
## 193 5.2090 5.135
## 194 6.1850 5.316
## 195 4.0620 5.182
## 196 4.8980 5.352
## 197 4.1790 4.956
## 198 7.5240 4.957
## 199 4.9750 4.794
## 200 5.3980 5.045
## 201 3.9850 5.001
## 202 3.5970 5.132
## 203 4.8530 5.089
## 204 4.1320 5.012
## 205 4.8730 4.914
## 206 5.4830 4.958
## 207 4.6700 5.091
## 208 3.3060 5.231
## 209 2.8280 4.830
## 210 5.4720 5.045
## 213 4.0510 4.828
## 214 8.4560 5.000
## 216 3.9190 5.001
## 217 3.6310 4.870
## 218 4.3250 5.003
## 219 8.3150 5.056
## 220 3.5980 5.044
## 221 5.6370 5.063
sdf_scales<-scale(sdf1)
View(sdf_scales)
summary(sdf_scales)
## area perimeter compactness length_of_kernel
## Min. :-1.4783 Min. :-1.6633 Min. :-2.6925 Min. :-1.6712
## 1st Qu.:-0.8824 1st Qu.:-0.8579 1st Qu.:-0.5927 1st Qu.:-0.8461
## Median :-0.1803 Median :-0.1670 Median : 0.1058 Median :-0.2238
## Mean : 0.0000 Mean : 0.0000 Mean : 0.0000 Mean : 0.0000
## 3rd Qu.: 0.8728 3rd Qu.: 0.9286 3rd Qu.: 0.6908 3rd Qu.: 0.8155
## Max. : 2.1486 Max. : 2.0317 Max. : 2.0300 Max. : 2.3327
## width_of_kernel asymetry_coefficient length_of_kernel_groove
## Min. :-1.67620 Min. :-1.95774 Min. :-1.8280
## 1st Qu.:-0.81868 1st Qu.:-0.75803 1st Qu.:-0.7595
## Median :-0.05894 Median :-0.05279 Median :-0.3892
## Mean : 0.00000 Mean : 0.00000 Mean : 0.0000
## 3rd Qu.: 0.79329 3rd Qu.: 0.72357 3rd Qu.: 0.9320
## Max. : 2.03133 Max. : 3.15435 Max. : 2.2938
#need to find distance
d<-dist(scale(sdf1))
#create cluster
h<-hclust(d)
#plot cluster dendrogram
plot(h)
#replace the row number with the class (categories)
plot(h, hang=-0.1, labels=sdf1[["V8"]], cex=0.5)
seeds_dataset
## V1 V2 V3 V4 V5 V6 V7 V8
## 1 15.260 14.84 0.8710 5.7630 3.312 2.2210 5.220 1.000
## 2 14.880 14.57 0.8811 5.5540 3.333 1.0180 4.956 1.000
## 3 14.290 14.09 0.9050 5.2910 3.337 2.6990 4.825 1.000
## 4 13.840 13.94 0.8955 5.3240 3.379 2.2590 4.805 1.000
## 5 16.140 14.99 0.9034 5.6580 3.562 1.3550 5.175 1.000
## 6 14.380 14.21 0.8951 5.3860 3.312 2.4620 4.956 1.000
## 7 14.690 14.49 0.8799 5.5630 3.259 3.5860 5.219 1.000
## 8 14.110 14.10 0.8911 5.4200 3.302 2.7000 NA 5.000
## 9 NA 1.00 NA NA NA NA NA NA
## 10 16.630 15.46 0.8747 6.0530 3.465 2.0400 5.877 1.000
## 11 16.440 15.25 0.8880 5.8840 3.505 1.9690 5.533 1.000
## 12 15.260 14.85 0.8696 5.7140 3.242 4.5430 5.314 1.000
## 13 14.030 14.16 0.8796 5.4380 3.201 1.7170 5.001 1.000
## 14 13.890 14.02 0.8880 5.4390 3.199 3.9860 4.738 1.000
## 15 13.780 14.06 0.8759 5.4790 3.156 3.1360 4.872 1.000
## 16 13.740 14.05 0.8744 5.4820 3.114 2.9320 4.825 1.000
## 17 14.590 14.28 0.8993 5.3510 3.333 4.1850 4.781 1.000
## 18 13.990 13.83 0.9183 5.1190 3.383 5.2340 4.781 1.000
## 19 15.690 14.75 0.9058 5.5270 3.514 1.5990 5.046 1.000
## 20 14.700 14.21 0.9153 5.2050 3.466 1.7670 4.649 1.000
## 21 12.720 13.57 0.8686 5.2260 3.049 4.1020 4.914 1.000
## 22 14.160 14.40 0.8584 5.6580 3.129 3.0720 5.176 1.000
## 23 14.110 14.26 0.8722 5.5200 3.168 2.6880 5.219 1.000
## 24 15.880 14.90 0.8988 5.6180 3.507 0.7651 5.091 1.000
## 25 12.080 13.23 0.8664 5.0990 2.936 1.4150 4.961 1.000
## 26 15.010 14.76 0.8657 5.7890 3.245 1.7910 5.001 1.000
## 27 16.190 15.16 0.8849 5.8330 3.421 0.9030 5.307 1.000
## 28 13.020 13.76 0.8641 5.3950 3.026 3.3730 4.825 1.000
## 29 12.740 13.67 0.8564 5.3950 2.956 2.5040 4.869 1.000
## 30 14.110 14.18 0.8820 5.5410 3.221 2.7540 5.038 1.000
## 31 13.450 14.02 0.8604 5.5160 3.065 3.5310 5.097 1.000
## 32 13.160 13.82 0.8662 5.4540 2.975 0.8551 5.056 1.000
## 33 15.490 14.94 0.8724 5.7570 3.371 3.4120 5.228 1.000
## 34 14.090 14.41 0.8529 5.7170 3.186 3.9200 5.299 1.000
## 35 13.940 14.17 0.8728 5.5850 3.150 2.1240 5.012 1.000
## 36 15.050 14.68 0.8779 5.7120 3.328 2.1290 5.360 1.000
## 37 16.120 15.00 NA 0.9000 NA 5.7090 3.485 2.270
## 38 5.443 1.00 NA NA NA NA NA NA
## 39 16.200 15.27 0.8734 5.8260 3.464 2.8230 5.527 1.000
## 40 17.080 15.38 0.9079 5.8320 3.683 2.9560 5.484 1.000
## 41 14.800 14.52 0.8823 5.6560 3.288 3.1120 5.309 1.000
## 42 14.280 14.17 0.8944 5.3970 3.298 6.6850 5.001 1.000
## 43 13.540 13.85 0.8871 5.3480 3.156 2.5870 5.178 1.000
## 44 13.500 13.85 0.8852 5.3510 3.158 2.2490 5.176 1.000
## 45 13.160 13.55 0.9009 5.1380 3.201 2.4610 4.783 1.000
## 46 15.500 14.86 0.8820 5.8770 3.396 4.7110 5.528 1.000
## 47 15.110 14.54 0.8986 5.5790 3.462 3.1280 5.180 1.000
## 48 13.800 14.04 0.8794 5.3760 3.155 1.5600 4.961 1.000
## 49 15.360 14.76 0.8861 5.7010 3.393 1.3670 5.132 1.000
## 50 14.990 14.56 0.8883 5.5700 3.377 2.9580 5.175 1.000
## 51 14.790 14.52 0.8819 5.5450 3.291 2.7040 5.111 1.000
## 52 14.860 14.67 0.8676 5.6780 3.258 2.1290 5.351 1.000
## 53 14.430 14.40 0.8751 5.5850 3.272 3.9750 5.144 1.000
## 54 15.780 14.91 0.8923 5.6740 3.434 5.5930 5.136 1.000
## 55 14.490 14.61 0.8538 5.7150 3.113 4.1160 5.396 1.000
## 56 14.330 14.28 0.8831 5.5040 3.199 3.3280 5.224 1.000
## 57 14.520 14.60 0.8557 5.7410 3.113 1.4810 5.487 1.000
## 58 15.030 14.77 0.8658 5.7020 3.212 1.9330 5.439 1.000
## 59 14.460 14.35 0.8818 5.3880 3.377 2.8020 5.044 1.000
## 60 14.920 14.43 0.9006 5.3840 3.412 1.1420 5.088 1.000
## 61 15.380 14.77 0.8857 5.6620 3.419 1.9990 5.222 1.000
## 62 12.110 13.47 0.8392 5.1590 3.032 1.5020 4.519 1.000
## 63 11.420 12.86 0.8683 5.0080 2.850 2.7000 NA 4.607
## 64 1.000 NA NA NA NA NA NA NA
## 65 11.230 12.63 0.8840 4.9020 2.879 2.2690 4.703 1.000
## 66 12.360 13.19 0.8923 5.0760 3.042 3.2200 4.605 1.000
## 67 13.220 13.84 0.8680 5.3950 3.070 4.1570 5.088 1.000
## 68 12.780 13.57 0.8716 5.2620 3.026 1.1760 4.782 1.000
## 69 12.880 13.50 0.8879 5.1390 3.119 2.3520 4.607 1.000
## 70 14.340 14.37 0.8726 5.6300 3.190 1.3130 5.150 1.000
## 71 14.010 14.29 0.8625 5.6090 3.158 2.2170 5.132 1.000
## 72 14.370 14.39 0.8726 5.5690 3.153 1.4640 5.300 NA
## 73 1.000 NA NA NA NA NA NA NA
## 74 12.730 13.75 0.8458 5.4120 2.882 3.5330 5.067 1.000
## 75 17.630 15.98 0.8673 6.1910 3.561 4.0760 6.060 2.000
## 76 16.840 15.67 0.8623 5.9980 3.484 4.6750 5.877 2.000
## 77 17.260 15.73 0.8763 5.9780 3.594 4.5390 5.791 2.000
## 78 19.110 16.26 0.9081 6.1540 3.930 2.9360 6.079 2.000
## 79 16.820 15.51 0.8786 6.0170 3.486 4.0040 5.841 2.000
## 80 16.770 15.62 0.8638 5.9270 3.438 4.9200 5.795 2.000
## 81 17.320 15.91 0.8599 6.0640 3.403 3.8240 5.922 2.000
## 82 20.710 17.23 0.8763 6.5790 3.814 4.4510 6.451 2.000
## 83 18.940 16.49 0.8750 6.4450 3.639 5.0640 6.362 2.000
## 84 17.120 15.55 0.8892 5.8500 3.566 2.8580 5.746 2.000
## 85 16.530 15.34 0.8823 5.8750 3.467 5.5320 5.880 2.000
## 86 18.720 16.19 0.8977 6.0060 3.857 5.3240 5.879 2.000
## 87 20.200 16.89 0.8894 6.2850 3.864 5.1730 6.187 2.000
## 88 19.570 16.74 0.8779 6.3840 3.772 1.4720 6.273 2.000
## 89 19.510 16.71 0.8780 6.3660 3.801 2.9620 6.185 2.000
## 90 18.270 16.09 0.8870 6.1730 3.651 2.4430 6.197 2.000
## 91 18.880 16.26 0.8969 6.0840 3.764 1.6490 6.109 2.000
## 92 18.980 16.66 0.8590 6.5490 3.670 3.6910 6.498 2.000
## 93 21.180 17.21 0.8989 6.5730 4.033 5.7800 6.231 2.000
## 94 20.880 17.05 0.9031 6.4500 4.032 5.0160 6.321 2.000
## 95 20.100 16.99 0.8746 6.5810 3.785 1.9550 6.449 2.000
## 96 18.760 16.20 0.8984 6.1720 3.796 3.1200 6.053 2.000
## 97 18.810 16.29 0.8906 6.2720 3.693 3.2370 6.053 2.000
## 98 18.590 16.05 0.9066 6.0370 3.860 6.0010 5.877 2.000
## 99 18.360 16.52 0.8452 6.6660 3.485 4.9330 6.448 2.000
## 100 16.870 15.65 0.8648 6.1390 3.463 3.6960 5.967 2.000
## 101 19.310 16.59 0.8815 6.3410 3.810 3.4770 6.238 2.000
## 102 18.980 16.57 0.8687 6.4490 3.552 2.1440 6.453 2.000
## 103 18.170 16.26 0.8637 6.2710 3.512 2.8530 6.273 2.000
## 104 18.720 16.34 0.8810 6.2190 3.684 2.1880 6.097 2.000
## 105 16.410 15.25 0.8866 5.7180 3.525 4.2170 5.618 2.000
## 106 17.990 15.86 0.8992 5.8900 3.694 2.0680 5.837 2.000
## 107 19.460 16.50 0.8985 6.1130 3.892 4.3080 6.009 2.000
## 108 19.180 16.63 0.8717 6.3690 3.681 3.3570 6.229 2.000
## 109 18.950 16.42 0.8829 6.2480 3.755 3.3680 6.148 2.000
## 110 18.830 16.29 0.8917 6.0370 3.786 2.5530 5.879 2.000
## 111 18.850 16.17 0.9056 6.1520 3.806 2.8430 6.200 NA
## 112 2.000 NA NA NA NA NA NA NA
## 113 17.630 15.86 0.8800 6.0330 3.573 3.7470 5.929 2.000
## 114 19.940 16.92 0.8752 6.6750 3.763 3.2520 6.550 2.000
## 115 18.550 16.22 0.8865 6.1530 3.674 1.7380 5.894 2.000
## 116 18.450 16.12 0.8921 6.1070 3.769 2.2350 5.794 2.000
## 117 19.380 16.72 0.8716 6.3030 3.791 3.6780 5.965 2.000
## 118 19.130 16.31 0.9035 6.1830 3.902 2.1090 5.924 2.000
## 119 19.140 16.61 0.8722 6.2590 3.737 6.6820 6.053 2.000
## 120 20.970 17.25 0.8859 6.5630 3.991 4.6770 6.316 2.000
## 121 19.060 16.45 0.8854 6.4160 3.719 2.2480 6.163 2.000
## 122 18.960 16.20 0.9077 6.0510 3.897 4.3340 5.750 2.000
## 123 19.150 16.45 0.8890 6.2450 3.815 3.0840 6.185 2.000
## 124 18.890 16.23 0.9008 6.2270 3.769 3.6390 5.966 2.000
## 125 20.030 16.90 0.8811 6.4930 3.857 3.0630 6.320 2.000
## 126 20.240 16.91 0.8897 6.3150 3.962 5.9010 6.188 2.000
## 127 18.140 16.12 0.8772 6.0590 3.563 3.6190 6.011 2.000
## 128 16.170 15.38 0.8588 5.7620 3.387 4.2860 5.703 2.000
## 129 18.430 15.97 0.9077 5.9800 3.771 2.9840 5.905 2.000
## 130 15.990 14.89 0.9064 5.3630 3.582 3.3360 5.144 2.000
## 131 18.750 16.18 0.8999 6.1110 3.869 4.1880 5.992 2.000
## 132 18.650 16.41 0.8698 6.2850 3.594 4.3910 6.102 2.000
## 133 17.980 15.85 0.8993 5.9790 3.687 2.2570 5.919 2.000
## 134 20.160 17.03 0.8735 6.5130 3.773 1.9100 6.185 2.000
## 135 17.550 15.66 0.8991 5.7910 3.690 5.3660 5.661 2.000
## 136 18.300 15.89 0.9108 5.9790 3.755 2.8370 5.962 2.000
## 137 18.940 16.32 0.8942 6.1440 3.825 2.9080 5.949 2.000
## 138 15.380 14.90 0.8706 5.8840 3.268 4.4620 5.795 2.000
## 139 16.160 15.33 0.8644 5.8450 3.395 4.2660 5.795 2.000
## 140 15.560 14.89 0.8823 5.7760 3.408 4.9720 5.847 2.000
## 141 15.380 14.66 0.8990 5.4770 3.465 3.6000 NA 5.439
## 142 2.000 NA NA NA NA NA NA NA
## 143 17.360 15.76 0.8785 6.1450 3.574 3.5260 5.971 2.000
## 144 15.570 15.15 0.8527 5.9200 3.231 2.6400 5.879 2.000
## 145 15.600 15.11 0.8580 5.8320 3.286 2.7250 5.752 2.000
## 146 16.230 15.18 0.8850 5.8720 3.472 3.7690 5.922 2.000
## 147 13.070 13.92 0.8480 5.4720 2.994 5.3040 5.395 3.000
## 148 13.320 13.94 0.8613 5.5410 3.073 7.0350 5.440 3.000
## 149 13.340 13.95 0.8620 5.3890 3.074 5.9950 5.307 3.000
## 150 12.220 13.32 0.8652 5.2240 2.967 5.4690 5.221 3.000
## 151 11.820 13.40 0.8274 5.3140 2.777 4.4710 5.178 3.000
## 152 11.210 13.13 0.8167 5.2790 2.687 6.1690 5.275 3.000
## 153 11.430 13.13 0.8335 5.1760 2.719 2.2210 5.132 3.000
## 154 12.490 13.46 0.8658 5.2670 2.967 4.4210 5.002 3.000
## 155 12.700 13.71 0.8491 5.3860 2.911 3.2600 5.316 3.000
## 156 10.790 12.93 0.8107 5.3170 2.648 5.4620 5.194 3.000
## 157 11.830 13.23 0.8496 5.2630 2.840 5.1950 5.307 3.000
## 158 12.010 13.52 0.8249 5.4050 2.776 6.9920 5.270 3.000
## 159 12.260 13.60 0.8333 5.4080 2.833 4.7560 5.360 3.000
## 160 11.180 13.04 0.8266 5.2200 2.693 3.3320 5.001 3.000
## 161 11.360 13.05 0.8382 5.1750 2.755 4.0480 5.263 3.000
## 162 11.190 13.05 0.8253 5.2500 2.675 5.8130 5.219 3.000
## 163 11.340 12.87 0.8596 5.0530 2.849 3.3470 5.003 3.000
## 164 12.130 13.73 0.8081 5.3940 2.745 4.8250 5.220 3.000
## 165 11.750 13.52 0.8082 5.4440 2.678 4.3780 5.310 3.000
## 166 11.490 13.22 0.8263 5.3040 2.695 5.3880 5.310 3.000
## 167 12.540 13.67 0.8425 5.4510 2.879 3.0820 5.491 3.000
## 168 12.020 13.33 0.8503 5.3500 2.810 4.2710 5.308 3.000
## 169 12.050 13.41 0.8416 5.2670 2.847 4.9880 5.046 3.000
## 170 12.550 13.57 0.8558 5.3330 2.968 4.4190 5.176 3.000
## 171 11.140 12.79 0.8558 5.0110 2.794 6.3880 5.049 3.000
## 172 12.100 13.15 0.8793 5.1050 2.941 2.2010 5.056 3.000
## 173 12.440 13.59 0.8462 5.3190 2.897 4.9240 5.270 3.000
## 174 12.150 13.45 0.8443 5.4170 2.837 3.6380 5.338 3.000
## 175 11.350 13.12 0.8291 5.1760 2.668 4.3370 5.132 3.000
## 176 11.240 13.00 NA 0.8359 5.090 2.7150 3.521 5.088
## 177 3.000 NA NA NA NA NA NA NA
## 178 11.020 13.00 NA 0.8189 5.325 2.7010 6.735 5.163
## 179 3.000 NA NA NA NA NA NA NA
## 180 11.550 13.10 0.8455 5.1670 2.845 6.7150 4.956 3.000
## 181 11.270 12.97 0.8419 5.0880 2.763 4.3090 5.000 NA
## 182 3.000 NA NA NA NA NA NA NA
## 183 11.400 13.08 0.8375 5.1360 2.763 5.5880 5.089 3.000
## 184 10.830 12.96 0.8099 5.2780 2.641 5.1820 5.185 3.000
## 185 10.800 12.57 0.8590 4.9810 2.821 4.7730 5.063 3.000
## 186 11.260 13.01 0.8355 5.1860 2.710 5.3350 5.092 3.000
## 187 10.740 12.73 0.8329 5.1450 2.642 4.7020 4.963 3.000
## 188 11.480 13.05 0.8473 5.1800 2.758 5.8760 5.002 3.000
## 189 12.210 13.47 0.8453 5.3570 2.893 1.6610 5.178 3.000
## 190 11.410 12.95 0.8560 5.0900 2.775 4.9570 4.825 3.000
## 191 12.460 13.41 0.8706 5.2360 3.017 4.9870 5.147 3.000
## 192 12.190 13.36 0.8579 5.2400 2.909 4.8570 5.158 3.000
## 193 11.650 13.07 0.8575 5.1080 2.850 5.2090 5.135 3.000
## 194 12.890 13.77 0.8541 5.4950 3.026 6.1850 5.316 3.000
## 195 11.560 13.31 0.8198 5.3630 2.683 4.0620 5.182 3.000
## 196 11.810 13.45 0.8198 5.4130 2.716 4.8980 5.352 3.000
## 197 10.910 12.80 0.8372 5.0880 2.675 4.1790 4.956 3.000
## 198 11.230 12.82 0.8594 5.0890 2.821 7.5240 4.957 3.000
## 199 10.590 12.41 0.8648 4.8990 2.787 4.9750 4.794 3.000
## 200 10.930 12.80 0.8390 5.0460 2.717 5.3980 5.045 3.000
## 201 11.270 12.86 0.8563 5.0910 2.804 3.9850 5.001 3.000
## 202 11.870 13.02 0.8795 5.1320 2.953 3.5970 5.132 3.000
## 203 10.820 12.83 0.8256 5.1800 2.630 4.8530 5.089 3.000
## 204 12.110 13.27 0.8639 5.2360 2.975 4.1320 5.012 3.000
## 205 12.800 13.47 0.8860 5.1600 3.126 4.8730 4.914 3.000
## 206 12.790 13.53 0.8786 5.2240 3.054 5.4830 4.958 3.000
## 207 13.370 13.78 0.8849 5.3200 3.128 4.6700 5.091 3.000
## 208 12.620 13.67 0.8481 5.4100 2.911 3.3060 5.231 3.000
## 209 12.760 13.38 0.8964 5.0730 3.155 2.8280 4.830 3.000
## 210 12.380 13.44 0.8609 5.2190 2.989 5.4720 5.045 3.000
## 211 12.670 13.32 0.8977 4.9840 3.135 2.3000 NA 4.745
## 212 3.000 NA NA NA NA NA NA NA
## 213 11.180 12.72 0.8680 5.0090 2.810 4.0510 4.828 3.000
## 214 12.700 13.41 0.8874 5.1830 3.091 8.4560 5.000 NA
## 215 3.000 NA NA NA NA NA NA NA
## 216 12.370 13.47 0.8567 5.2040 2.960 3.9190 5.001 3.000
## 217 12.190 13.20 0.8783 5.1370 2.981 3.6310 4.870 3.000
## 218 11.230 12.88 0.8511 5.1400 2.795 4.3250 5.003 3.000
## 219 13.200 13.66 0.8883 5.2360 3.232 8.3150 5.056 3.000
## 220 11.840 13.21 0.8521 5.1750 2.836 3.5980 5.044 3.000
## 221 12.300 13.34 0.8684 5.2430 2.974 5.6370 5.063 3.000
plot(h, hang=-0.1, labels=seeds_dataset$x8, cex=0.5)
plot(h, hang=-0.1, labels=seeds_dataset[["x8"]], cex=0.5)
#seeds_nan<-seeds_dataset[, -8]
#is.na(seeds_nan)
#seeds_nan<-na.omit(seeds_nan) #remove all rows that contain NA
seeds_nan<-na.omit(seeds_dataset)
seeds_nan
## V1 V2 V3 V4 V5 V6 V7 V8
## 1 15.26 14.84 0.8710 5.763 3.312 2.2210 5.220 1
## 2 14.88 14.57 0.8811 5.554 3.333 1.0180 4.956 1
## 3 14.29 14.09 0.9050 5.291 3.337 2.6990 4.825 1
## 4 13.84 13.94 0.8955 5.324 3.379 2.2590 4.805 1
## 5 16.14 14.99 0.9034 5.658 3.562 1.3550 5.175 1
## 6 14.38 14.21 0.8951 5.386 3.312 2.4620 4.956 1
## 7 14.69 14.49 0.8799 5.563 3.259 3.5860 5.219 1
## 10 16.63 15.46 0.8747 6.053 3.465 2.0400 5.877 1
## 11 16.44 15.25 0.8880 5.884 3.505 1.9690 5.533 1
## 12 15.26 14.85 0.8696 5.714 3.242 4.5430 5.314 1
## 13 14.03 14.16 0.8796 5.438 3.201 1.7170 5.001 1
## 14 13.89 14.02 0.8880 5.439 3.199 3.9860 4.738 1
## 15 13.78 14.06 0.8759 5.479 3.156 3.1360 4.872 1
## 16 13.74 14.05 0.8744 5.482 3.114 2.9320 4.825 1
## 17 14.59 14.28 0.8993 5.351 3.333 4.1850 4.781 1
## 18 13.99 13.83 0.9183 5.119 3.383 5.2340 4.781 1
## 19 15.69 14.75 0.9058 5.527 3.514 1.5990 5.046 1
## 20 14.70 14.21 0.9153 5.205 3.466 1.7670 4.649 1
## 21 12.72 13.57 0.8686 5.226 3.049 4.1020 4.914 1
## 22 14.16 14.40 0.8584 5.658 3.129 3.0720 5.176 1
## 23 14.11 14.26 0.8722 5.520 3.168 2.6880 5.219 1
## 24 15.88 14.90 0.8988 5.618 3.507 0.7651 5.091 1
## 25 12.08 13.23 0.8664 5.099 2.936 1.4150 4.961 1
## 26 15.01 14.76 0.8657 5.789 3.245 1.7910 5.001 1
## 27 16.19 15.16 0.8849 5.833 3.421 0.9030 5.307 1
## 28 13.02 13.76 0.8641 5.395 3.026 3.3730 4.825 1
## 29 12.74 13.67 0.8564 5.395 2.956 2.5040 4.869 1
## 30 14.11 14.18 0.8820 5.541 3.221 2.7540 5.038 1
## 31 13.45 14.02 0.8604 5.516 3.065 3.5310 5.097 1
## 32 13.16 13.82 0.8662 5.454 2.975 0.8551 5.056 1
## 33 15.49 14.94 0.8724 5.757 3.371 3.4120 5.228 1
## 34 14.09 14.41 0.8529 5.717 3.186 3.9200 5.299 1
## 35 13.94 14.17 0.8728 5.585 3.150 2.1240 5.012 1
## 36 15.05 14.68 0.8779 5.712 3.328 2.1290 5.360 1
## 39 16.20 15.27 0.8734 5.826 3.464 2.8230 5.527 1
## 40 17.08 15.38 0.9079 5.832 3.683 2.9560 5.484 1
## 41 14.80 14.52 0.8823 5.656 3.288 3.1120 5.309 1
## 42 14.28 14.17 0.8944 5.397 3.298 6.6850 5.001 1
## 43 13.54 13.85 0.8871 5.348 3.156 2.5870 5.178 1
## 44 13.50 13.85 0.8852 5.351 3.158 2.2490 5.176 1
## 45 13.16 13.55 0.9009 5.138 3.201 2.4610 4.783 1
## 46 15.50 14.86 0.8820 5.877 3.396 4.7110 5.528 1
## 47 15.11 14.54 0.8986 5.579 3.462 3.1280 5.180 1
## 48 13.80 14.04 0.8794 5.376 3.155 1.5600 4.961 1
## 49 15.36 14.76 0.8861 5.701 3.393 1.3670 5.132 1
## 50 14.99 14.56 0.8883 5.570 3.377 2.9580 5.175 1
## 51 14.79 14.52 0.8819 5.545 3.291 2.7040 5.111 1
## 52 14.86 14.67 0.8676 5.678 3.258 2.1290 5.351 1
## 53 14.43 14.40 0.8751 5.585 3.272 3.9750 5.144 1
## 54 15.78 14.91 0.8923 5.674 3.434 5.5930 5.136 1
## 55 14.49 14.61 0.8538 5.715 3.113 4.1160 5.396 1
## 56 14.33 14.28 0.8831 5.504 3.199 3.3280 5.224 1
## 57 14.52 14.60 0.8557 5.741 3.113 1.4810 5.487 1
## 58 15.03 14.77 0.8658 5.702 3.212 1.9330 5.439 1
## 59 14.46 14.35 0.8818 5.388 3.377 2.8020 5.044 1
## 60 14.92 14.43 0.9006 5.384 3.412 1.1420 5.088 1
## 61 15.38 14.77 0.8857 5.662 3.419 1.9990 5.222 1
## 62 12.11 13.47 0.8392 5.159 3.032 1.5020 4.519 1
## 65 11.23 12.63 0.8840 4.902 2.879 2.2690 4.703 1
## 66 12.36 13.19 0.8923 5.076 3.042 3.2200 4.605 1
## 67 13.22 13.84 0.8680 5.395 3.070 4.1570 5.088 1
## 68 12.78 13.57 0.8716 5.262 3.026 1.1760 4.782 1
## 69 12.88 13.50 0.8879 5.139 3.119 2.3520 4.607 1
## 70 14.34 14.37 0.8726 5.630 3.190 1.3130 5.150 1
## 71 14.01 14.29 0.8625 5.609 3.158 2.2170 5.132 1
## 74 12.73 13.75 0.8458 5.412 2.882 3.5330 5.067 1
## 75 17.63 15.98 0.8673 6.191 3.561 4.0760 6.060 2
## 76 16.84 15.67 0.8623 5.998 3.484 4.6750 5.877 2
## 77 17.26 15.73 0.8763 5.978 3.594 4.5390 5.791 2
## 78 19.11 16.26 0.9081 6.154 3.930 2.9360 6.079 2
## 79 16.82 15.51 0.8786 6.017 3.486 4.0040 5.841 2
## 80 16.77 15.62 0.8638 5.927 3.438 4.9200 5.795 2
## 81 17.32 15.91 0.8599 6.064 3.403 3.8240 5.922 2
## 82 20.71 17.23 0.8763 6.579 3.814 4.4510 6.451 2
## 83 18.94 16.49 0.8750 6.445 3.639 5.0640 6.362 2
## 84 17.12 15.55 0.8892 5.850 3.566 2.8580 5.746 2
## 85 16.53 15.34 0.8823 5.875 3.467 5.5320 5.880 2
## 86 18.72 16.19 0.8977 6.006 3.857 5.3240 5.879 2
## 87 20.20 16.89 0.8894 6.285 3.864 5.1730 6.187 2
## 88 19.57 16.74 0.8779 6.384 3.772 1.4720 6.273 2
## 89 19.51 16.71 0.8780 6.366 3.801 2.9620 6.185 2
## 90 18.27 16.09 0.8870 6.173 3.651 2.4430 6.197 2
## 91 18.88 16.26 0.8969 6.084 3.764 1.6490 6.109 2
## 92 18.98 16.66 0.8590 6.549 3.670 3.6910 6.498 2
## 93 21.18 17.21 0.8989 6.573 4.033 5.7800 6.231 2
## 94 20.88 17.05 0.9031 6.450 4.032 5.0160 6.321 2
## 95 20.10 16.99 0.8746 6.581 3.785 1.9550 6.449 2
## 96 18.76 16.20 0.8984 6.172 3.796 3.1200 6.053 2
## 97 18.81 16.29 0.8906 6.272 3.693 3.2370 6.053 2
## 98 18.59 16.05 0.9066 6.037 3.860 6.0010 5.877 2
## 99 18.36 16.52 0.8452 6.666 3.485 4.9330 6.448 2
## 100 16.87 15.65 0.8648 6.139 3.463 3.6960 5.967 2
## 101 19.31 16.59 0.8815 6.341 3.810 3.4770 6.238 2
## 102 18.98 16.57 0.8687 6.449 3.552 2.1440 6.453 2
## 103 18.17 16.26 0.8637 6.271 3.512 2.8530 6.273 2
## 104 18.72 16.34 0.8810 6.219 3.684 2.1880 6.097 2
## 105 16.41 15.25 0.8866 5.718 3.525 4.2170 5.618 2
## 106 17.99 15.86 0.8992 5.890 3.694 2.0680 5.837 2
## 107 19.46 16.50 0.8985 6.113 3.892 4.3080 6.009 2
## 108 19.18 16.63 0.8717 6.369 3.681 3.3570 6.229 2
## 109 18.95 16.42 0.8829 6.248 3.755 3.3680 6.148 2
## 110 18.83 16.29 0.8917 6.037 3.786 2.5530 5.879 2
## 113 17.63 15.86 0.8800 6.033 3.573 3.7470 5.929 2
## 114 19.94 16.92 0.8752 6.675 3.763 3.2520 6.550 2
## 115 18.55 16.22 0.8865 6.153 3.674 1.7380 5.894 2
## 116 18.45 16.12 0.8921 6.107 3.769 2.2350 5.794 2
## 117 19.38 16.72 0.8716 6.303 3.791 3.6780 5.965 2
## 118 19.13 16.31 0.9035 6.183 3.902 2.1090 5.924 2
## 119 19.14 16.61 0.8722 6.259 3.737 6.6820 6.053 2
## 120 20.97 17.25 0.8859 6.563 3.991 4.6770 6.316 2
## 121 19.06 16.45 0.8854 6.416 3.719 2.2480 6.163 2
## 122 18.96 16.20 0.9077 6.051 3.897 4.3340 5.750 2
## 123 19.15 16.45 0.8890 6.245 3.815 3.0840 6.185 2
## 124 18.89 16.23 0.9008 6.227 3.769 3.6390 5.966 2
## 125 20.03 16.90 0.8811 6.493 3.857 3.0630 6.320 2
## 126 20.24 16.91 0.8897 6.315 3.962 5.9010 6.188 2
## 127 18.14 16.12 0.8772 6.059 3.563 3.6190 6.011 2
## 128 16.17 15.38 0.8588 5.762 3.387 4.2860 5.703 2
## 129 18.43 15.97 0.9077 5.980 3.771 2.9840 5.905 2
## 130 15.99 14.89 0.9064 5.363 3.582 3.3360 5.144 2
## 131 18.75 16.18 0.8999 6.111 3.869 4.1880 5.992 2
## 132 18.65 16.41 0.8698 6.285 3.594 4.3910 6.102 2
## 133 17.98 15.85 0.8993 5.979 3.687 2.2570 5.919 2
## 134 20.16 17.03 0.8735 6.513 3.773 1.9100 6.185 2
## 135 17.55 15.66 0.8991 5.791 3.690 5.3660 5.661 2
## 136 18.30 15.89 0.9108 5.979 3.755 2.8370 5.962 2
## 137 18.94 16.32 0.8942 6.144 3.825 2.9080 5.949 2
## 138 15.38 14.90 0.8706 5.884 3.268 4.4620 5.795 2
## 139 16.16 15.33 0.8644 5.845 3.395 4.2660 5.795 2
## 140 15.56 14.89 0.8823 5.776 3.408 4.9720 5.847 2
## 143 17.36 15.76 0.8785 6.145 3.574 3.5260 5.971 2
## 144 15.57 15.15 0.8527 5.920 3.231 2.6400 5.879 2
## 145 15.60 15.11 0.8580 5.832 3.286 2.7250 5.752 2
## 146 16.23 15.18 0.8850 5.872 3.472 3.7690 5.922 2
## 147 13.07 13.92 0.8480 5.472 2.994 5.3040 5.395 3
## 148 13.32 13.94 0.8613 5.541 3.073 7.0350 5.440 3
## 149 13.34 13.95 0.8620 5.389 3.074 5.9950 5.307 3
## 150 12.22 13.32 0.8652 5.224 2.967 5.4690 5.221 3
## 151 11.82 13.40 0.8274 5.314 2.777 4.4710 5.178 3
## 152 11.21 13.13 0.8167 5.279 2.687 6.1690 5.275 3
## 153 11.43 13.13 0.8335 5.176 2.719 2.2210 5.132 3
## 154 12.49 13.46 0.8658 5.267 2.967 4.4210 5.002 3
## 155 12.70 13.71 0.8491 5.386 2.911 3.2600 5.316 3
## 156 10.79 12.93 0.8107 5.317 2.648 5.4620 5.194 3
## 157 11.83 13.23 0.8496 5.263 2.840 5.1950 5.307 3
## 158 12.01 13.52 0.8249 5.405 2.776 6.9920 5.270 3
## 159 12.26 13.60 0.8333 5.408 2.833 4.7560 5.360 3
## 160 11.18 13.04 0.8266 5.220 2.693 3.3320 5.001 3
## 161 11.36 13.05 0.8382 5.175 2.755 4.0480 5.263 3
## 162 11.19 13.05 0.8253 5.250 2.675 5.8130 5.219 3
## 163 11.34 12.87 0.8596 5.053 2.849 3.3470 5.003 3
## 164 12.13 13.73 0.8081 5.394 2.745 4.8250 5.220 3
## 165 11.75 13.52 0.8082 5.444 2.678 4.3780 5.310 3
## 166 11.49 13.22 0.8263 5.304 2.695 5.3880 5.310 3
## 167 12.54 13.67 0.8425 5.451 2.879 3.0820 5.491 3
## 168 12.02 13.33 0.8503 5.350 2.810 4.2710 5.308 3
## 169 12.05 13.41 0.8416 5.267 2.847 4.9880 5.046 3
## 170 12.55 13.57 0.8558 5.333 2.968 4.4190 5.176 3
## 171 11.14 12.79 0.8558 5.011 2.794 6.3880 5.049 3
## 172 12.10 13.15 0.8793 5.105 2.941 2.2010 5.056 3
## 173 12.44 13.59 0.8462 5.319 2.897 4.9240 5.270 3
## 174 12.15 13.45 0.8443 5.417 2.837 3.6380 5.338 3
## 175 11.35 13.12 0.8291 5.176 2.668 4.3370 5.132 3
## 180 11.55 13.10 0.8455 5.167 2.845 6.7150 4.956 3
## 183 11.40 13.08 0.8375 5.136 2.763 5.5880 5.089 3
## 184 10.83 12.96 0.8099 5.278 2.641 5.1820 5.185 3
## 185 10.80 12.57 0.8590 4.981 2.821 4.7730 5.063 3
## 186 11.26 13.01 0.8355 5.186 2.710 5.3350 5.092 3
## 187 10.74 12.73 0.8329 5.145 2.642 4.7020 4.963 3
## 188 11.48 13.05 0.8473 5.180 2.758 5.8760 5.002 3
## 189 12.21 13.47 0.8453 5.357 2.893 1.6610 5.178 3
## 190 11.41 12.95 0.8560 5.090 2.775 4.9570 4.825 3
## 191 12.46 13.41 0.8706 5.236 3.017 4.9870 5.147 3
## 192 12.19 13.36 0.8579 5.240 2.909 4.8570 5.158 3
## 193 11.65 13.07 0.8575 5.108 2.850 5.2090 5.135 3
## 194 12.89 13.77 0.8541 5.495 3.026 6.1850 5.316 3
## 195 11.56 13.31 0.8198 5.363 2.683 4.0620 5.182 3
## 196 11.81 13.45 0.8198 5.413 2.716 4.8980 5.352 3
## 197 10.91 12.80 0.8372 5.088 2.675 4.1790 4.956 3
## 198 11.23 12.82 0.8594 5.089 2.821 7.5240 4.957 3
## 199 10.59 12.41 0.8648 4.899 2.787 4.9750 4.794 3
## 200 10.93 12.80 0.8390 5.046 2.717 5.3980 5.045 3
## 201 11.27 12.86 0.8563 5.091 2.804 3.9850 5.001 3
## 202 11.87 13.02 0.8795 5.132 2.953 3.5970 5.132 3
## 203 10.82 12.83 0.8256 5.180 2.630 4.8530 5.089 3
## 204 12.11 13.27 0.8639 5.236 2.975 4.1320 5.012 3
## 205 12.80 13.47 0.8860 5.160 3.126 4.8730 4.914 3
## 206 12.79 13.53 0.8786 5.224 3.054 5.4830 4.958 3
## 207 13.37 13.78 0.8849 5.320 3.128 4.6700 5.091 3
## 208 12.62 13.67 0.8481 5.410 2.911 3.3060 5.231 3
## 209 12.76 13.38 0.8964 5.073 3.155 2.8280 4.830 3
## 210 12.38 13.44 0.8609 5.219 2.989 5.4720 5.045 3
## 213 11.18 12.72 0.8680 5.009 2.810 4.0510 4.828 3
## 216 12.37 13.47 0.8567 5.204 2.960 3.9190 5.001 3
## 217 12.19 13.20 0.8783 5.137 2.981 3.6310 4.870 3
## 218 11.23 12.88 0.8511 5.140 2.795 4.3250 5.003 3
## 219 13.20 13.66 0.8883 5.236 3.232 8.3150 5.056 3
## 220 11.84 13.21 0.8521 5.175 2.836 3.5980 5.044 3
## 221 12.30 13.34 0.8684 5.243 2.974 5.6370 5.063 3
plot(h, hang=-0.1, labels=seeds_nan[["x8"]], cex=0.5)
#cut it at 3 because we have 3 categories
C<-cutree(h,3)
C
## 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22
## 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 3 1 1 3 1
## 23 24 25 26 27 28 29 30 31 32 33 34 35 36 39 40 41 42 43 44
## 1 1 3 1 1 3 3 1 3 3 1 1 1 1 1 1 1 3 1 1
## 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 65 66
## 3 2 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 3 3 3
## 67 68 69 70 71 72 74 75 76 77 78 79 80 81 82 83 84 85 86 87
## 3 3 3 1 1 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2
## 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
## 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## 108 109 110 111 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
## 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## 129 130 131 132 133 134 135 136 137 138 139 140 143 144 145 146 147 148 149 150
## 2 1 2 2 2 2 2 2 2 2 2 2 2 1 1 2 3 3 3 3
## 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
## 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## 171 172 173 174 175 180 181 183 184 185 186 187 188 189 190 191 192 193 194 195
## 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 213 214 216 217 218
## 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## 219 220 221
## 3 3 3
length(C)
## [1] 203
dim(seeds_nan)
## [1] 199 8