library(tidyverse)
library(mlbench)
library(kableExtra)
library(reactable)
library(GGally)
library(caret)
library(e1071)
library(univOutl)
library(moments)
library(outliers)
library(cowplot)
library(mice)
library(VIM)
data(Soybean)
## See ?Soybean for details
str(Soybean)
## 'data.frame': 683 obs. of 36 variables:
## $ Class : Factor w/ 19 levels "2-4-d-injury",..: 11 11 11 11 11 11 11 11 11 11 ...
## $ date : Factor w/ 7 levels "0","1","2","3",..: 7 5 4 4 7 6 6 5 7 5 ...
## $ plant.stand : Ord.factor w/ 2 levels "0"<"1": 1 1 1 1 1 1 1 1 1 1 ...
## $ precip : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 3 3 3 3 3 3 3 ...
## $ temp : Ord.factor w/ 3 levels "0"<"1"<"2": 2 2 2 2 2 2 2 2 2 2 ...
## $ hail : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 2 1 1 ...
## $ crop.hist : Factor w/ 4 levels "0","1","2","3": 2 3 2 2 3 4 3 2 4 3 ...
## $ area.dam : Factor w/ 4 levels "0","1","2","3": 2 1 1 1 1 1 1 1 1 1 ...
## $ sever : Factor w/ 3 levels "0","1","2": 2 3 3 3 2 2 2 2 2 3 ...
## $ seed.tmt : Factor w/ 3 levels "0","1","2": 1 2 2 1 1 1 2 1 2 1 ...
## $ germ : Ord.factor w/ 3 levels "0"<"1"<"2": 1 2 3 2 3 2 1 3 2 3 ...
## $ plant.growth : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ leaves : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ leaf.halo : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
## $ leaf.marg : Factor w/ 3 levels "0","1","2": 3 3 3 3 3 3 3 3 3 3 ...
## $ leaf.size : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 3 3 3 3 3 3 3 ...
## $ leaf.shread : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ leaf.malf : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ leaf.mild : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
## $ stem : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ lodging : Factor w/ 2 levels "0","1": 2 1 1 1 1 1 2 1 1 1 ...
## $ stem.cankers : Factor w/ 4 levels "0","1","2","3": 4 4 4 4 4 4 4 4 4 4 ...
## $ canker.lesion : Factor w/ 4 levels "0","1","2","3": 2 2 1 1 2 1 2 2 2 2 ...
## $ fruiting.bodies: Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ ext.decay : Factor w/ 3 levels "0","1","2": 2 2 2 2 2 2 2 2 2 2 ...
## $ mycelium : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ int.discolor : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
## $ sclerotia : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ fruit.pods : Factor w/ 4 levels "0","1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
## $ fruit.spots : Factor w/ 4 levels "0","1","2","4": 4 4 4 4 4 4 4 4 4 4 ...
## $ seed : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ mold.growth : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ seed.discolor : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ seed.size : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ shriveling : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ roots : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
reactable(Soybean)
Soybean %>%
select(-Class)%>%
gather() %>%
ggplot(aes(value)) +
geom_bar()+
facet_wrap(~ key) +
ggtitle("Bar Plot of Soybean Categorical Predictor Variables") +
theme(plot.title = element_text(hjust=0.5))
nearZeroVar(Soybean, names=TRUE)
## [1] "leaf.mild" "mycelium" "sclerotia"
According to Kuhn and Johnson, distributions that are degenerate are
said to have a single value for a vast majority of samples, or a handful
of unique values that occur with very low frequencies. Based on this
definition, the histogram of the categorical predictors identifies some
predictor variables that fall into this category. roots and
shriveling appear to stand out as variables that have a
single unique value. When using the nearZeroVar function
from the caret package, leaf.mild,
mycelium and sclerotia are identified as
variables that can be considered degenerate. When analyzing their
respective histogram distributions, they appear to validate this
conclusion.
Using the nearZeroVar function from the
caret package can help identify predictor variables that
should be eliminated from the model, which can improve model
performance. If using imputation, the mice package can help
fill in missing values for the predictor variables used in predictive
models. One method within mice that can be used is “pmm”,
which is predictive mean matching. PMM is an imputation method that
predicts values and subsequently selects observed values to be used to
replace the missing values. It is the default imputation method within
mice. More information of this method can be found here: https://bookdown.org/mwheymans/bookmi/multiple-imputation.html