Question 1:

# Prevalence Rate
Rate <- 0.001
# Sensitivity
P_Pos_Dis <- 0.96
# Specificity
P_Neg_notDis <- 0.98
P_Pos_notDis <- 1 - P_Neg_notDis

# Probability of testing positive
P_Pos <- P_Pos_Dis * Rate + P_Pos_notDis * (1 - Rate)

# Probability of having the disease given a positive test
P_D_Pos <- P_Pos_Dis * Rate / P_Pos

# Median cost per positive case
cost_per_positive <- 100000
# Cost per test administration
test_cost <- 1000
# Number of individuals
num_individuals <- 100000

# Total cost for treating 100,000 individuals
total_cost <- (P_D_Pos * cost_per_positive * num_individuals) + (num_individuals * test_cost)

P_D_Pos
## [1] 0.04584527
total_cost
## [1] 558452722

Question 2

# Probability of receiving a Joint Commission inspection in any given month
p <- 0.05
# Number of months
n <- 24

# Probability of receiving exactly 2 inspections
P2 <- dbinom(2, size = n, prob = p)

# Probability of receiving 2 or more inspections
P2more <- 1 - pbinom(1, size = n, prob = p)

# Probability of receiving fewer than 2 inspections
P2less <- pbinom(1, size = n, prob = p)

# Expected number of inspections
expected <- n * p

# Standard deviation
sd <- sqrt(n * p * (1 - p))

P2
## [1] 0.2232381
P2more
## [1] 0.3391827
P2less
## [1] 0.6608173
expected
## [1] 1.2
sd
## [1] 1.067708

Question 3

# Probability that exactly 3 arrive in one hour
P3 <- dpois(3, 10)

# Probability that more than 10 arrive in one hour
P10 <- 1 - ppois(10, 10)

# Expected number of arrivals in 8 hours
expected <- 10 * 8

# Standard deviation
sd <- sqrt(10 * 8)

# Percent utilization
utilization <- (expected / (24 * 3)) * 100

P3
## [1] 0.007566655
P10
## [1] 0.4169602
expected
## [1] 80
sd
## [1] 8.944272
utilization
## [1] 111.1111

The percentage of utilization is greater than 100%. I’d recommend employing more provider.

Question 4

# Probability of selecting 5 nurses innocently
P <- dhyper(5, m = 15, n = 15, k = 6)

# Expected number of nurses selected
expected_nurses <- 6 * (15 / 30)

# Expected number of non-nurses selected
expected_non_nurses <- 6 * (15 / 30)

P
## [1] 0.07586207
expected_nurses
## [1] 3
expected_non_nurses
## [1] 3

Question 5

# Probability of being seriously injured in a car crash during the course of a year
Pyear <- 1- pgeom(1200,.001)

# Probability of being seriously injured in a car crash during the course of 15 months
P15months <- 1-pgeom(1500,.001)

# Expected number of hours that a driver will drive before being seriously injured
expected <- 1 / 0.001

# Probability of being injured in the next 100 hours, given that the driver has already driven for 1200 hours

P100hours <- 1- pgeom(100,.001)

Pyear
## [1] 0.3007124
P15months
## [1] 0.2227398
expected
## [1] 1000
P100hours
## [1] 0.9038874

Question 6

# Failure rate of the generator
lambda <- 1/1000  

# Probability that the generator will fail more than twice in 1000 hours
P <- 1 - ppois(2, lambda * 1000)

# Expected value of generator failures in 1000 hours
expected_failures <- lambda * 1000

P
## [1] 0.0803014
expected_failures
## [1] 1

Question 7

# Probability that the patient will wait more than 10 minutes
P10min <- (30 - 10) / (30 - 0)

# Probability that the patient will wait at least another 5 minutes after waiting 10 minutes
P5min <- ((30 - 15) / (30 - 0))/((30 - 10) / (30 - 0))

# Expected waiting time 
expected <- (30 - 0) / 2

P10min
## [1] 0.6666667
P5min
## [1] 0.75
expected
## [1] 15

Question 8

# Expected failure time 
expected <- 10

# Standard deviation
sd <- 10

# Probability that the MRI will fail after 8 years
P8 <- pexp(8, rate = 1/10, lower.tail = FALSE)

# Probability that the MRI will fail in the next two years, given that it has been owned for 8 years
P2 <- pexp(10, rate = 1/10) - pexp(8, rate = 1/10)

expected
## [1] 10
sd
## [1] 10
P8
## [1] 0.449329
P2
## [1] 0.08144952

LS0tDQp0aXRsZTogIlByb2JhYmlsaXR5Ig0KYXV0aG9yOiAiV2VlayA1Ig0KZGF0ZTogImByIFN5cy5EYXRlKClgIg0Kb3V0cHV0OiBvcGVuaW50cm86OmxhYl9yZXBvcnQNCi0tLQ0KDQojIyBRdWVzdGlvbiAxOg0KDQpgYGB7cn0NCiMgUHJldmFsZW5jZSBSYXRlDQpSYXRlIDwtIDAuMDAxDQojIFNlbnNpdGl2aXR5DQpQX1Bvc19EaXMgPC0gMC45Ng0KIyBTcGVjaWZpY2l0eQ0KUF9OZWdfbm90RGlzIDwtIDAuOTgNClBfUG9zX25vdERpcyA8LSAxIC0gUF9OZWdfbm90RGlzDQoNCiMgUHJvYmFiaWxpdHkgb2YgdGVzdGluZyBwb3NpdGl2ZQ0KUF9Qb3MgPC0gUF9Qb3NfRGlzICogUmF0ZSArIFBfUG9zX25vdERpcyAqICgxIC0gUmF0ZSkNCg0KIyBQcm9iYWJpbGl0eSBvZiBoYXZpbmcgdGhlIGRpc2Vhc2UgZ2l2ZW4gYSBwb3NpdGl2ZSB0ZXN0DQpQX0RfUG9zIDwtIFBfUG9zX0RpcyAqIFJhdGUgLyBQX1Bvcw0KDQojIE1lZGlhbiBjb3N0IHBlciBwb3NpdGl2ZSBjYXNlDQpjb3N0X3Blcl9wb3NpdGl2ZSA8LSAxMDAwMDANCiMgQ29zdCBwZXIgdGVzdCBhZG1pbmlzdHJhdGlvbg0KdGVzdF9jb3N0IDwtIDEwMDANCiMgTnVtYmVyIG9mIGluZGl2aWR1YWxzDQpudW1faW5kaXZpZHVhbHMgPC0gMTAwMDAwDQoNCiMgVG90YWwgY29zdCBmb3IgdHJlYXRpbmcgMTAwLDAwMCBpbmRpdmlkdWFscw0KdG90YWxfY29zdCA8LSAoUF9EX1BvcyAqIGNvc3RfcGVyX3Bvc2l0aXZlICogbnVtX2luZGl2aWR1YWxzKSArIChudW1faW5kaXZpZHVhbHMgKiB0ZXN0X2Nvc3QpDQoNClBfRF9Qb3MNCnRvdGFsX2Nvc3QNCg0KYGBgDQoNCiMjIFF1ZXN0aW9uIDINCg0KYGBge3J9DQojIFByb2JhYmlsaXR5IG9mIHJlY2VpdmluZyBhIEpvaW50IENvbW1pc3Npb24gaW5zcGVjdGlvbiBpbiBhbnkgZ2l2ZW4gbW9udGgNCnAgPC0gMC4wNQ0KIyBOdW1iZXIgb2YgbW9udGhzDQpuIDwtIDI0DQoNCiMgUHJvYmFiaWxpdHkgb2YgcmVjZWl2aW5nIGV4YWN0bHkgMiBpbnNwZWN0aW9ucw0KUDIgPC0gZGJpbm9tKDIsIHNpemUgPSBuLCBwcm9iID0gcCkNCg0KIyBQcm9iYWJpbGl0eSBvZiByZWNlaXZpbmcgMiBvciBtb3JlIGluc3BlY3Rpb25zDQpQMm1vcmUgPC0gMSAtIHBiaW5vbSgxLCBzaXplID0gbiwgcHJvYiA9IHApDQoNCiMgUHJvYmFiaWxpdHkgb2YgcmVjZWl2aW5nIGZld2VyIHRoYW4gMiBpbnNwZWN0aW9ucw0KUDJsZXNzIDwtIHBiaW5vbSgxLCBzaXplID0gbiwgcHJvYiA9IHApDQoNCiMgRXhwZWN0ZWQgbnVtYmVyIG9mIGluc3BlY3Rpb25zDQpleHBlY3RlZCA8LSBuICogcA0KDQojIFN0YW5kYXJkIGRldmlhdGlvbg0Kc2QgPC0gc3FydChuICogcCAqICgxIC0gcCkpDQoNClAyDQpQMm1vcmUNClAybGVzcw0KZXhwZWN0ZWQNCnNkDQoNCmBgYA0KDQojIyBRdWVzdGlvbiAzDQoNCmBgYHtyfQ0KIyBQcm9iYWJpbGl0eSB0aGF0IGV4YWN0bHkgMyBhcnJpdmUgaW4gb25lIGhvdXINClAzIDwtIGRwb2lzKDMsIDEwKQ0KDQojIFByb2JhYmlsaXR5IHRoYXQgbW9yZSB0aGFuIDEwIGFycml2ZSBpbiBvbmUgaG91cg0KUDEwIDwtIDEgLSBwcG9pcygxMCwgMTApDQoNCiMgRXhwZWN0ZWQgbnVtYmVyIG9mIGFycml2YWxzIGluIDggaG91cnMNCmV4cGVjdGVkIDwtIDEwICogOA0KDQojIFN0YW5kYXJkIGRldmlhdGlvbg0Kc2QgPC0gc3FydCgxMCAqIDgpDQoNCiMgUGVyY2VudCB1dGlsaXphdGlvbg0KdXRpbGl6YXRpb24gPC0gKGV4cGVjdGVkIC8gKDI0ICogMykpICogMTAwDQoNClAzDQpQMTANCmV4cGVjdGVkDQpzZA0KdXRpbGl6YXRpb24NCg0KYGBgDQpUaGUgcGVyY2VudGFnZSBvZiB1dGlsaXphdGlvbiBpcyBncmVhdGVyIHRoYW4gMTAwJS4gSSdkIHJlY29tbWVuZCBlbXBsb3lpbmcgbW9yZSBwcm92aWRlci4NCg0KIyMgUXVlc3Rpb24gNA0KDQpgYGB7cn0NCiMgUHJvYmFiaWxpdHkgb2Ygc2VsZWN0aW5nIDUgbnVyc2VzIGlubm9jZW50bHkNClAgPC0gZGh5cGVyKDUsIG0gPSAxNSwgbiA9IDE1LCBrID0gNikNCg0KIyBFeHBlY3RlZCBudW1iZXIgb2YgbnVyc2VzIHNlbGVjdGVkDQpleHBlY3RlZF9udXJzZXMgPC0gNiAqICgxNSAvIDMwKQ0KDQojIEV4cGVjdGVkIG51bWJlciBvZiBub24tbnVyc2VzIHNlbGVjdGVkDQpleHBlY3RlZF9ub25fbnVyc2VzIDwtIDYgKiAoMTUgLyAzMCkNCg0KUA0KZXhwZWN0ZWRfbnVyc2VzDQpleHBlY3RlZF9ub25fbnVyc2VzDQoNCmBgYA0KDQojIyBRdWVzdGlvbiA1DQoNCmBgYHtyfQ0KIyBQcm9iYWJpbGl0eSBvZiBiZWluZyBzZXJpb3VzbHkgaW5qdXJlZCBpbiBhIGNhciBjcmFzaCBkdXJpbmcgdGhlIGNvdXJzZSBvZiBhIHllYXINClB5ZWFyIDwtIDEtIHBnZW9tKDEyMDAsLjAwMSkNCg0KIyBQcm9iYWJpbGl0eSBvZiBiZWluZyBzZXJpb3VzbHkgaW5qdXJlZCBpbiBhIGNhciBjcmFzaCBkdXJpbmcgdGhlIGNvdXJzZSBvZiAxNSBtb250aHMNClAxNW1vbnRocyA8LSAxLXBnZW9tKDE1MDAsLjAwMSkNCg0KIyBFeHBlY3RlZCBudW1iZXIgb2YgaG91cnMgdGhhdCBhIGRyaXZlciB3aWxsIGRyaXZlIGJlZm9yZSBiZWluZyBzZXJpb3VzbHkgaW5qdXJlZA0KZXhwZWN0ZWQgPC0gMSAvIDAuMDAxDQoNCiMgUHJvYmFiaWxpdHkgb2YgYmVpbmcgaW5qdXJlZCBpbiB0aGUgbmV4dCAxMDAgaG91cnMsIGdpdmVuIHRoYXQgdGhlIGRyaXZlciBoYXMgYWxyZWFkeSBkcml2ZW4gZm9yIDEyMDAgaG91cnMNCg0KUDEwMGhvdXJzIDwtIDEtIHBnZW9tKDEwMCwuMDAxKQ0KDQpQeWVhcg0KUDE1bW9udGhzDQpleHBlY3RlZA0KUDEwMGhvdXJzDQoNCmBgYA0KDQojIyBRdWVzdGlvbiA2DQoNCmBgYHtyfQ0KIyBGYWlsdXJlIHJhdGUgb2YgdGhlIGdlbmVyYXRvcg0KbGFtYmRhIDwtIDEvMTAwMCAgDQoNCiMgUHJvYmFiaWxpdHkgdGhhdCB0aGUgZ2VuZXJhdG9yIHdpbGwgZmFpbCBtb3JlIHRoYW4gdHdpY2UgaW4gMTAwMCBob3Vycw0KUCA8LSAxIC0gcHBvaXMoMiwgbGFtYmRhICogMTAwMCkNCg0KIyBFeHBlY3RlZCB2YWx1ZSBvZiBnZW5lcmF0b3IgZmFpbHVyZXMgaW4gMTAwMCBob3Vycw0KZXhwZWN0ZWRfZmFpbHVyZXMgPC0gbGFtYmRhICogMTAwMA0KDQpQDQpleHBlY3RlZF9mYWlsdXJlcw0KDQpgYGANCg0KIyMgUXVlc3Rpb24gNw0KDQpgYGB7cn0NCiMgUHJvYmFiaWxpdHkgdGhhdCB0aGUgcGF0aWVudCB3aWxsIHdhaXQgbW9yZSB0aGFuIDEwIG1pbnV0ZXMNClAxMG1pbiA8LSAoMzAgLSAxMCkgLyAoMzAgLSAwKQ0KDQojIFByb2JhYmlsaXR5IHRoYXQgdGhlIHBhdGllbnQgd2lsbCB3YWl0IGF0IGxlYXN0IGFub3RoZXIgNSBtaW51dGVzIGFmdGVyIHdhaXRpbmcgMTAgbWludXRlcw0KUDVtaW4gPC0gKCgzMCAtIDE1KSAvICgzMCAtIDApKS8oKDMwIC0gMTApIC8gKDMwIC0gMCkpDQoNCiMgRXhwZWN0ZWQgd2FpdGluZyB0aW1lIA0KZXhwZWN0ZWQgPC0gKDMwIC0gMCkgLyAyDQoNClAxMG1pbg0KUDVtaW4NCmV4cGVjdGVkDQoNCmBgYA0KDQojIyBRdWVzdGlvbiA4DQoNCmBgYHtyfQ0KIyBFeHBlY3RlZCBmYWlsdXJlIHRpbWUgDQpleHBlY3RlZCA8LSAxMA0KDQojIFN0YW5kYXJkIGRldmlhdGlvbg0Kc2QgPC0gMTANCg0KIyBQcm9iYWJpbGl0eSB0aGF0IHRoZSBNUkkgd2lsbCBmYWlsIGFmdGVyIDggeWVhcnMNClA4IDwtIHBleHAoOCwgcmF0ZSA9IDEvMTAsIGxvd2VyLnRhaWwgPSBGQUxTRSkNCg0KIyBQcm9iYWJpbGl0eSB0aGF0IHRoZSBNUkkgd2lsbCBmYWlsIGluIHRoZSBuZXh0IHR3byB5ZWFycywgZ2l2ZW4gdGhhdCBpdCBoYXMgYmVlbiBvd25lZCBmb3IgOCB5ZWFycw0KUDIgPC0gcGV4cCgxMCwgcmF0ZSA9IDEvMTApIC0gcGV4cCg4LCByYXRlID0gMS8xMCkNCg0KZXhwZWN0ZWQNCnNkDQpQOA0KUDINCg0KYGBgDQoNCi4uLg0KDQo=