library(ggplot2)
library(dplyr)
MNSALES = read.csv('https://raw.githubusercontent.com/vittorioaddona/data/main/MNSALES.csv')
model=lm(formula=Price~Age,data=MNSALES)
ssr=sum((fitted(model)-mean(MNSALES$Price))^2)
ssr
## [1] 14076534339
sse=sum((fitted(model)-MNSALES$Price)^2)
sse
## [1] 1.059793e+12
sst=ssr+sse
sst
## [1] 1.07387e+12
Rsquared=1-(ssr/sst)
Rsquared
## [1] 0.9868918
Rsquared(Price~Age)=0.9868918 #### Price ~ NumApts
model1=lm(formula=Price~NumApts,data=MNSALES)
ssr1=sum((fitted(model1)-mean(MNSALES$Price))^2)
ssr1
## [1] 915775843108
sse1=sum((fitted(model1)-MNSALES$Price)^2)
sse1
## [1] 158094104206
sst1=ssr1+sse1
sst1
## [1] 1.07387e+12
Rsquared1=1-(ssr1/sst1)
Rsquared1
## [1] 0.147219
Rsquared(Price~NumApts)=0.147219 #### Price ~ LotSize
model2=lm(formula=Price~LotSize,data=MNSALES)
ssr2=sum((fitted(model2)-mean(MNSALES$Price))^2)
ssr2
## [1] 590946204278
sse2=sum((fitted(model2)-MNSALES$Price)^2)
sse2
## [1] 482923743036
sst2=ssr2+sse2
sst2
## [1] 1.07387e+12
Rsquared2=1-(ssr2/sst2)
Rsquared2
## [1] 0.4497041
Rsquared(Price~LotSize)=0.4497041 #### Price ~ Parking
model3=lm(formula=Price~Parking,data=MNSALES)
ssr3=sum((fitted(model3)-mean(MNSALES$Price))^2)
ssr3
## [1] 54310439533
sse3=sum((fitted(model3)-MNSALES$Price)^2)
sse3
## [1] 1.01956e+12
sst3=ssr3+sse3
sst3
## [1] 1.07387e+12
Rsquared3=1-(ssr3/sst3)
Rsquared3
## [1] 0.9494255
Rsquared(Price~Parking)=0.9494255 #### Price ~ Condition
model4=lm(formula=Price~Condition,data=MNSALES)
ssr4=sum((fitted(model4)-mean(MNSALES$Price))^2)
ssr4
## [1] 89083840373
sse4=sum((fitted(model4)-MNSALES$Price)^2)
sse4
## [1] 984786106941
sst4=ssr4+sse4
sst4
## [1] 1.07387e+12
Rsquared4=1-(ssr4/sst4)
Rsquared4
## [1] 0.9170441
Rsquared(Price~Condition)=0.9170441
1.) Age 2.) Parking 3.) Condition 4.) LotSize 5.) NumApts
model5=lm(formula=Price~NumApts+LotSize,data=MNSALES)
ssr5=sum((fitted(model5)-mean(MNSALES$Price))^2)
ssr5
## [1] 915809281076
sse5=sum((fitted(model5)-MNSALES$Price)^2)
sse5
## [1] 158060666239
sst5=ssr5+sse5
sst5
## [1] 1.07387e+12
Rsquared5=1-(ssr5/sst5)
Rsquared5
## [1] 0.1471879
Rsquared(Price~NumApts+LotSize)=0.1471879 #### Price ~ NumApts + Condition
model6=lm(formula=Price~NumApts+Condition,data=MNSALES)
ssr6=sum((fitted(model6)-mean(MNSALES$Price))^2)
ssr6
## [1] 986169504463
sse6=sum((fitted(model6)-MNSALES$Price)^2)
sse6
## [1] 87700442851
sst6=ssr6+sse6
sst6
## [1] 1.07387e+12
Rsquared6=1-(ssr6/sst6)
Rsquared6
## [1] 0.08166766
Rsquared(Price~NumApts+Condition)=0.08166766 #### Price ~ NumApts + Age
model7=lm(formula=Price~NumApts+Age,data=MNSALES)
ssr7=sum((fitted(model7)-mean(MNSALES$Price))^2)
ssr7
## [1] 926823801896
sse7=sum((fitted(model7)-MNSALES$Price)^2)
sse7
## [1] 147046145418
sst7=ssr7+sse7
sst7
## [1] 1.07387e+12
Rsquared7=1-(ssr7/sst7)
Rsquared7
## [1] 0.1369311
Rsquared(Price~NumApts+Age)=0.1369311
1.) NumApts+LotSize 2.) NumApts+Age 3.) NumApts+Condition
they really don’t match anything from (b) this might be due to the NumApts Variable
HumanHeight = read.csv('https://raw.githubusercontent.com/vittorioaddona/data/main/HumanHeight.csv')
Height and
FatherHeight using the command below (uncomment the command
by deleting the “#”, and run it): HumanHeight %>% summarize( cor( Height , FatherHeight ) )
## cor(Height, FatherHeight)
## 1 0.2753548
HumanHeight %>% summarize( cor( FatherHeight , Height ) )
## cor(FatherHeight, Height)
## 1 0.2753548
correlation between two variables doesn’t change based on which variable is explanatory or response.
yes ### Is b1 = b2? yes
model8=lm(formula=Height~FatherHeight,data=HumanHeight)
model8=lm(formula=Height~FatherHeight,data=HumanHeight)
ssr8=sum((fitted(model8)-mean(HumanHeight$Height))^2)
ssr8
## [1] 873.0753
sse8=sum((fitted(model8)-HumanHeight$Height)^2)
sse8
## [1] 10641.99
sst8=ssr8+sse8
sst8
## [1] 11515.06
Rsquared8=1-(ssr8/sst8)
Rsquared8
## [1] 0.9241797
Model1R2=0.9241797
model9=lm(formula=FatherHeight~Height,data=HumanHeight)
ssr9=sum((fitted(model9)-mean(HumanHeight$FatherHeight))^2)
ssr9
## [1] 415.013
sse9=sum((fitted(model9)-HumanHeight$FatherHeight)^2)
sse9
## [1] 5058.628
sst9=ssr9+sse9
sst9
## [1] 5473.641
Rsquared9=1-(ssr9/sst9)
Rsquared9
## [1] 0.9241797
Model2R2=0.9241797 the R2 for both models is the same
Height and Sex. Try it. What happens and
why?"HumanHeight%>%
summarize(cor(Height,Sex))"
## [1] "HumanHeight%>%\n summarize(cor(Height,Sex))"
we get an error message because Sex is a categorical variable
Height by
FatherHeight, MotherHeight, and
Sex all in the same model. Can we find a correlation in
this situation? Can we find an R-squared value?"HumanHeight%>%
summarize(cor(Height,FatherHeight,MotherHeight,Sex))"
## [1] "HumanHeight%>%\n summarize(cor(Height,FatherHeight,MotherHeight,Sex))"
model10=lm(formula=Height~FatherHeight+MotherHeight+Sex,data=HumanHeight)
model10
##
## Call:
## lm(formula = Height ~ FatherHeight + MotherHeight + Sex, data = HumanHeight)
##
## Coefficients:
## (Intercept) FatherHeight MotherHeight SexM
## 15.3448 0.4060 0.3215 5.2260
model10=lm(formula=Height~FatherHeight+MotherHeight+Sex,data=HumanHeight)
ssr10=sum((fitted(model10)-mean(HumanHeight$Height))^2)
ssr10
## [1] 7365.9
sse10=sum((fitted(model10)-HumanHeight$Height)^2)
sse10
## [1] 4149.162
sst10=ssr10+sse10
sst10
## [1] 11515.06
Rsquared10=1-(ssr10/sst10)
Rsquared10
## [1] 0.3603248
we cannot find a correlation for this, but we can find the Rsquared
value, which is 0.3603248
because it works regardless of whether a variable is quantitative or qualitative
False, because the addition of additional explanatory variables does not mean a bigger R-squared value necessarily
False, the fact that M5 consists of the two higher Rsquared values does not mean anything, there is no real correlation between the R2 value of 2, single explanatory variable models, and the R2 value of a Model that combines those two explanatory variables.
BodyFat = read.csv('https://raw.githubusercontent.com/vittorioaddona/data/main/BodyFat.csv')
model1A=lm(formula=BF~Weight,data=BodyFat)
ssr1A=sum((fitted(model1A)-mean(BodyFat$BF))^2)
ssr1A
## [1] 6593.016
sse1A=sum((fitted(model1A)-BodyFat$BF)^2)
sse1A
## [1] 10985.97
sst1A=ssr1A+sse1A
sst1A
## [1] 17578.99
Rsquared1A=1-(ssr1A/sst1A)
Rsquared1A
## [1] 0.6249491
R2(BF~Weight)=0.6249491
model2A=lm(formula=BF~Height,data=BodyFat)
ssr2A=sum((fitted(model2A)-mean(BodyFat$BF))^2)
ssr2A
## [1] 140.7976
sse2A=sum((fitted(model2A)-BodyFat$BF)^2)
sse2A
## [1] 17438.19
sst2A=ssr2A+sse2A
sst2A
## [1] 17578.99
Rsquared2A=1-(ssr2A/sst2A)
Rsquared2A
## [1] 0.9919906
R2(BF~Height)=0.9919906
the smallest is probably around 0.5 and the highest is probably about 1
model3A=lm(formula=BF~Weight+Height,data=BodyFat)
ssr3A=sum((fitted(model3A)-mean(BodyFat$BF))^2)
ssr3A
## [1] 8097.391
sse3A=sum((fitted(model3A)-BodyFat$BF)^2)
sse3A
## [1] 9481.599
sst3A=ssr3A+sse3A
sst3A
## [1] 17578.99
Rsquared3A=1-(ssr3A/sst3A)
Rsquared3A
## [1] 0.5393711
R2(BF~Weight+Height)=0.5393711
that the addition of additional variables decreases how accurate a model is.
fev
(liters per second)fevdata = read.csv('https://raw.githubusercontent.com/vittorioaddona/data/main/fev.csv')
mod1,
mod2, mod3, and mod4.mod1=lm(formula=fev~age,data=fevdata)
mod2=lm(formula=fev~smoke,data=fevdata)
mod3=lm(formula=fev~smoke+age,data=fevdata)
mod4=lm(formula=fev~smoke+age+smoke:age,data=fevdata)
the predicted response based on an explanatory value
the difference between the observed value and the fitted value
fitted(mod1)
## 1 2 3 4 5 6 7 8
## 2.430017 2.207976 1.985935 2.430017 2.430017 2.207976 1.763894 1.763894
## 9 10 11 12 13 14 15 16
## 2.207976 2.430017 1.763894 2.207976 2.207976 2.207976 2.207976 1.985935
## 17 18 19 20 21 22 23 24
## 1.541853 1.763894 2.430017 2.430017 1.541853 1.541853 1.319812 1.985935
## 25 26 27 28 29 30 31 32
## 2.430017 1.097771 2.430017 1.541853 2.207976 2.430017 1.541853 2.430017
## 33 34 35 36 37 38 39 40
## 2.207976 1.985935 1.541853 2.207976 2.430017 2.207976 2.207976 2.207976
## 41 42 43 44 45 46 47 48
## 2.430017 2.207976 1.541853 2.207976 1.541853 2.430017 1.985935 2.207976
## 49 50 51 52 53 54 55 56
## 1.763894 2.207976 1.541853 2.430017 2.430017 2.207976 1.763894 2.430017
## 57 58 59 60 61 62 63 64
## 2.430017 1.985935 1.319812 2.207976 2.207976 2.207976 1.763894 1.319812
## 65 66 67 68 69 70 71 72
## 2.207976 1.763894 2.430017 1.985935 1.541853 2.430017 2.207976 2.207976
## 73 74 75 76 77 78 79 80
## 2.430017 2.430017 2.430017 1.985935 1.541853 1.541853 2.430017 1.763894
## 81 82 83 84 85 86 87 88
## 1.985935 1.763894 2.207976 2.207976 1.985935 2.207976 1.985935 2.430017
## 89 90 91 92 93 94 95 96
## 1.541853 2.430017 2.430017 2.430017 1.985935 2.207976 2.207976 2.430017
## 97 98 99 100 101 102 103 104
## 2.430017 2.430017 1.985935 2.207976 2.207976 1.985935 2.430017 1.319812
## 105 106 107 108 109 110 111 112
## 2.430017 1.763894 2.207976 1.763894 1.985935 1.985935 2.207976 1.985935
## 113 114 115 116 117 118 119 120
## 1.985935 1.985935 1.985935 2.207976 1.985935 1.541853 2.207976 1.985935
## 121 122 123 124 125 126 127 128
## 2.430017 1.985935 1.985935 1.763894 2.207976 2.207976 2.207976 2.430017
## 129 130 131 132 133 134 135 136
## 1.985935 2.207976 2.430017 2.207976 2.207976 2.430017 2.207976 1.763894
## 137 138 139 140 141 142 143 144
## 1.763894 2.207976 2.430017 1.541853 1.985935 2.430017 1.763894 2.430017
## 145 146 147 148 149 150 151 152
## 2.430017 2.430017 1.763894 2.207976 2.430017 2.207976 2.207976 2.430017
## 153 154 155 156 157 158 159 160
## 2.430017 2.430017 1.985935 2.207976 1.763894 2.430017 2.430017 2.430017
## 161 162 163 164 165 166 167 168
## 1.985935 2.207976 1.541853 2.207976 2.430017 1.763894 2.430017 1.763894
## 169 170 171 172 173 174 175 176
## 2.207976 1.541853 1.985935 1.985935 1.319812 2.430017 2.207976 2.430017
## 177 178 179 180 181 182 183 184
## 2.430017 2.430017 1.541853 2.430017 1.985935 1.763894 2.430017 2.430017
## 185 186 187 188 189 190 191 192
## 2.430017 1.985935 1.541853 2.207976 2.430017 1.985935 2.430017 2.207976
## 193 194 195 196 197 198 199 200
## 2.430017 1.763894 1.763894 2.207976 2.430017 1.541853 1.763894 1.763894
## 201 202 203 204 205 206 207 208
## 2.430017 1.985935 2.430017 2.207976 1.541853 1.985935 1.763894 2.430017
## 209 210 211 212 213 214 215 216
## 1.985935 2.430017 2.430017 2.207976 2.430017 1.985935 2.430017 1.319812
## 217 218 219 220 221 222 223 224
## 2.430017 1.541853 2.207976 2.430017 2.207976 1.097771 2.430017 2.207976
## 225 226 227 228 229 230 231 232
## 1.763894 2.430017 2.207976 2.207976 1.985935 1.763894 2.207976 2.430017
## 233 234 235 236 237 238 239 240
## 1.319812 1.985935 2.207976 2.207976 2.430017 1.763894 2.207976 1.763894
## 241 242 243 244 245 246 247 248
## 2.207976 2.430017 2.207976 1.985935 2.430017 2.207976 1.985935 2.430017
## 249 250 251 252 253 254 255 256
## 2.207976 2.430017 1.763894 2.207976 2.430017 2.207976 2.430017 2.430017
## 257 258 259 260 261 262 263 264
## 2.207976 1.985935 1.541853 1.985935 2.207976 2.430017 2.430017 1.763894
## 265 266 267 268 269 270 271 272
## 2.207976 1.985935 2.430017 1.985935 1.985935 1.541853 2.430017 2.430017
## 273 274 275 276 277 278 279 280
## 2.207976 2.207976 2.430017 1.763894 1.985935 1.541853 2.430017 1.541853
## 281 282 283 284 285 286 287 288
## 1.985935 1.763894 2.207976 1.985935 2.207976 1.319812 2.207976 1.541853
## 289 290 291 292 293 294 295 296
## 2.207976 1.985935 1.985935 2.430017 2.430017 2.207976 2.430017 1.763894
## 297 298 299 300 301 302 303 304
## 2.207976 2.430017 1.319812 1.763894 1.985935 2.430017 2.207976 1.763894
## 305 306 307 308 309 310 311 312
## 2.207976 1.985935 1.541853 2.207976 1.985935 2.874099 2.652058 3.540222
## 313 314 315 316 317 318 319 320
## 2.874099 2.874099 3.096140 2.652058 2.874099 2.652058 3.540222 3.318181
## 321 322 323 324 325 326 327 328
## 3.540222 3.096140 3.096140 2.652058 3.318181 2.652058 2.874099 2.652058
## 329 330 331 332 333 334 335 336
## 2.874099 2.652058 3.318181 3.540222 2.874099 2.652058 2.874099 3.318181
## 337 338 339 340 341 342 343 344
## 2.652058 2.652058 3.096140 2.652058 2.652058 2.652058 2.874099 2.874099
## 345 346 347 348 349 350 351 352
## 2.874099 2.652058 2.874099 2.874099 3.318181 3.318181 2.874099 2.874099
## 353 354 355 356 357 358 359 360
## 3.540222 2.874099 2.652058 2.652058 2.652058 3.540222 3.318181 2.652058
## 361 362 363 364 365 366 367 368
## 3.540222 2.652058 2.874099 3.318181 3.096140 3.318181 2.652058 3.318181
## 369 370 371 372 373 374 375 376
## 2.874099 3.540222 2.874099 3.318181 2.874099 2.874099 2.652058 2.874099
## 377 378 379 380 381 382 383 384
## 2.874099 2.652058 2.874099 3.318181 3.096140 2.652058 2.652058 3.540222
## 385 386 387 388 389 390 391 392
## 2.874099 2.652058 2.874099 2.652058 2.874099 3.318181 3.318181 2.652058
## 393 394 395 396 397 398 399 400
## 2.874099 2.874099 3.096140 2.652058 2.652058 2.874099 2.652058 2.874099
## 401 402 403 404 405 406 407 408
## 3.540222 3.318181 3.096140 2.874099 2.874099 2.874099 3.540222 3.096140
## 409 410 411 412 413 414 415 416
## 2.652058 3.096140 2.874099 2.652058 2.874099 3.318181 2.652058 2.652058
## 417 418 419 420 421 422 423 424
## 2.874099 3.318181 2.652058 2.874099 2.652058 3.318181 2.874099 2.652058
## 425 426 427 428 429 430 431 432
## 2.874099 2.874099 3.540222 2.874099 3.318181 2.874099 2.874099 2.652058
## 433 434 435 436 437 438 439 440
## 3.318181 2.652058 3.318181 2.652058 3.096140 2.652058 3.540222 3.096140
## 441 442 443 444 445 446 447 448
## 2.652058 2.874099 3.540222 3.096140 2.652058 2.652058 2.652058 2.652058
## 449 450 451 452 453 454 455 456
## 3.096140 3.318181 2.874099 3.096140 2.874099 3.096140 2.874099 2.874099
## 457 458 459 460 461 462 463 464
## 3.096140 3.096140 3.318181 2.874099 3.096140 2.652058 3.096140 3.318181
## 465 466 467 468 469 470 471 472
## 2.652058 3.096140 2.652058 3.096140 2.652058 2.874099 2.652058 3.096140
## 473 474 475 476 477 478 479 480
## 3.540222 2.652058 2.652058 3.096140 2.652058 2.652058 3.318181 3.096140
## 481 482 483 484 485 486 487 488
## 3.096140 2.874099 3.318181 3.096140 2.652058 2.874099 2.874099 3.318181
## 489 490 491 492 493 494 495 496
## 3.096140 3.318181 3.318181 2.652058 3.096140 3.096140 3.540222 2.874099
## 497 498 499 500 501 502 503 504
## 2.652058 3.318181 2.874099 2.874099 3.318181 3.096140 2.652058 2.652058
## 505 506 507 508 509 510 511 512
## 3.096140 3.318181 2.874099 2.652058 2.874099 2.874099 2.874099 2.874099
## 513 514 515 516 517 518 519 520
## 2.874099 3.540222 3.096140 3.318181 3.318181 2.652058 3.096140 2.652058
## 521 522 523 524 525 526 527 528
## 2.652058 3.096140 2.874099 3.096140 2.874099 2.874099 3.096140 3.096140
## 529 530 531 532 533 534 535 536
## 3.540222 2.874099 2.652058 2.874099 3.096140 3.318181 3.096140 2.874099
## 537 538 539 540 541 542 543 544
## 2.874099 2.874099 3.540222 2.874099 3.318181 3.096140 2.652058 3.096140
## 545 546 547 548 549 550 551 552
## 3.318181 2.652058 2.652058 2.652058 2.652058 3.540222 3.096140 2.874099
## 553 554 555 556 557 558 559 560
## 2.874099 3.096140 3.540222 3.540222 2.652058 2.874099 2.874099 2.652058
## 561 562 563 564 565 566 567 568
## 2.652058 3.096140 3.096140 2.874099 3.096140 2.652058 3.096140 3.318181
## 569 570 571 572 573 574 575 576
## 2.652058 3.096140 2.652058 3.318181 3.096140 2.652058 3.096140 2.652058
## 577 578 579 580 581 582 583 584
## 2.874099 3.096140 2.874099 3.096140 2.652058 3.318181 3.096140 2.874099
## 585 586 587 588 589 590 591 592
## 2.874099 2.874099 2.874099 3.096140 3.540222 2.874099 2.874099 3.096140
## 593 594 595 596 597 598 599 600
## 3.540222 2.874099 3.318181 2.874099 2.652058 3.318181 3.096140 2.874099
## 601 602 603 604 605 606 607 608
## 3.318181 3.540222 2.652058 2.874099 2.874099 3.762263 3.762263 4.428386
## 609 610 611 612 613 614 615 616
## 4.650427 4.650427 3.984304 4.206345 3.762263 3.762263 3.762263 3.762263
## 617 618 619 620 621 622 623 624
## 3.762263 4.650427 4.428386 3.984304 4.206345 3.984304 3.762263 3.762263
## 625 626 627 628 629 630 631 632
## 3.762263 4.428386 4.206345 3.762263 4.206345 4.206345 3.984304 4.206345
## 633 634 635 636 637 638 639 640
## 3.762263 3.762263 3.984304 3.984304 3.762263 4.428386 3.762263 3.984304
## 641 642 643 644 645 646 647 648
## 4.206345 3.984304 3.984304 3.762263 4.428386 3.762263 3.984304 4.206345
## 649 650 651 652 653 654
## 3.984304 3.984304 3.762263 4.428386 3.984304 3.762263
resid(mod1)
## 1 2 3 4 5 6
## -0.722016889 -0.483975913 -0.265934937 -0.872016889 -0.535016889 0.128024087
## 7 8 9 10 11 12
## 0.155106039 -0.348893961 -0.220975913 -0.488016889 -0.161893961 -0.472975913
## 13 14 15 16 17 18
## -0.014975913 -0.089975913 0.050024087 -0.053934937 -0.069852986 0.114106039
## 19 20 21 22 23 24
## -0.078016889 0.173983111 -0.141852986 -0.285852986 -0.480812010 0.592065063
## 25 26 27 28 29 30
## 0.557983111 0.306228966 -0.082016889 0.213147014 0.772024087 -0.330016889
## 31 32 33 34 35 36
## -0.259852986 0.569983111 0.465024087 0.107065063 0.070147014 -0.032975913
## 37 38 39 40 41 42
## 0.294983111 -0.136975913 -0.660975913 -0.203975913 0.704983111 0.212024087
## 43 44 45 46 47 48
## 0.234147014 -0.276975913 -0.198852986 -0.354016889 -0.361934937 -0.863975913
## 49 50 51 52 53 54
## -0.113893961 0.524024087 0.475147014 0.366983111 1.125983111 -0.504975913
## 55 56 57 58 59 60
## -0.129893961 0.139983111 0.585983111 0.433065063 0.249187990 -0.509975913
## 61 62 63 64 65 66
## -0.084975913 0.273024087 -0.282893961 0.257187990 -0.267975913 -0.016893961
## 67 68 69 70 71 72
## -0.361016889 -0.354934937 -0.005852986 0.129983111 -0.245975913 0.323024087
## 73 74 75 76 77 78
## 0.284983111 0.026983111 -0.340016889 -0.196934937 0.316147014 -0.089852986
## 79 80 81 82 83 84
## 1.411983111 -0.044893961 0.125065063 -0.068893961 0.003024087 -0.413975913
## 85 86 87 88 89 90
## -0.068934937 -0.063975913 -0.732934937 0.228983111 0.038147014 -0.304016889
## 91 92 93 94 95 96
## 0.598983111 0.533983111 -0.374934937 0.007024087 0.180024087 -0.234016889
## 97 98 99 100 101 102
## -0.679016889 -0.265016889 -0.303934937 -0.684975913 -0.915975913 -0.336934937
## 103 104 105 106 107 108
## 0.157983111 -0.523812010 0.143983111 0.215106039 0.146024087 -0.045893961
## 109 110 111 112 113 114
## -0.243934937 -0.382934937 0.431024087 -0.156934937 0.098065063 0.234065063
## 115 116 117 118 119 120
## -0.512934937 0.133024087 -0.287934937 -0.345852986 -0.335975913 0.233065063
## 121 122 123 124 125 126
## -0.010016889 -0.158934937 -0.524934937 -0.425893961 -0.117975913 -0.510975913
## 127 128 129 130 131 132
## -0.645975913 -0.390016889 -0.376934937 0.250024087 0.219983111 -0.778975913
## 133 134 135 136 137 138
## -0.532975913 -0.483016889 -0.138975913 -0.191893961 -0.415893961 0.080024087
## 139 140 141 142 143 144
## -0.657016889 -0.750852986 -0.080934937 0.032983111 -0.332893961 0.200983111
## 145 146 147 148 149 150
## 0.683983111 -0.295016889 -0.236893961 0.085024087 0.611983111 0.719024087
## 151 152 153 154 155 156
## 0.457024087 -0.129016889 0.029983111 0.161983111 -0.235934937 -0.448975913
## 157 158 159 160 161 162
## -0.227893961 -0.171016889 -0.382016889 0.140983111 0.060065063 -0.427975913
## 163 164 165 166 167 168
## 0.010147014 -0.254975913 0.462983111 -0.050893961 0.420983111 -0.139893961
## 169 170 171 172 173 174
## 0.423024087 0.277147014 -0.327934937 0.172065063 0.469187990 0.573983111
## 175 176 177 178 179 180
## 0.295024087 -0.497016889 -0.339016889 -0.114016889 0.162147014 -0.824016889
## 181 182 183 184 185 186
## -0.820934937 0.338106039 -0.110016889 -0.200016889 -0.714016889 -0.195934937
## 187 188 189 190 191 192
## -0.395852986 -0.020975913 0.286983111 -0.189934937 -0.477016889 -0.872975913
## 193 194 195 196 197 198
## -0.311016889 -0.097893961 0.062106039 0.501024087 0.440983111 -0.449852986
## 199 200 201 202 203 204
## 0.498106039 0.340106039 -0.264016889 -0.295934937 0.542983111 -0.062975913
## 205 206 207 208 209 210
## 0.429147014 0.109065063 -0.066893961 0.024983111 -0.065934937 -0.266016889
## 211 212 213 214 215 216
## -0.300016889 0.785024087 0.098983111 -0.259934937 0.011983111 -0.217812010
## 217 218 219 220 221 222
## -0.374016889 0.266147014 0.097024087 -0.461016889 -0.651975913 -0.025771034
## 223 224 225 226 227 228
## -0.388016889 -0.695975913 -0.340893961 1.250983111 -0.216975913 -0.310975913
## 229 230 231 232 233 234
## -0.615934937 -0.425893961 -0.191975913 0.208983111 0.069187990 -0.373934937
## 235 236 237 238 239 240
## -0.072975913 0.473024087 0.792983111 0.032106039 -0.197975913 -0.240893961
## 241 242 243 244 245 246
## -0.463975913 0.054983111 0.127024087 -0.570934937 -0.354016889 0.227024087
## 247 248 249 250 251 252
## -0.257934937 0.419983111 -0.363975913 -0.676016889 -0.420893961 0.095024087
## 253 254 255 256 257 258
## -0.184016889 0.268024087 0.808983111 0.026983111 0.174024087 -0.345934937
## 259 260 261 262 263 264
## 0.047147014 0.070065063 0.018024087 -0.544016889 0.402983111 -0.048893961
## 265 266 267 268 269 270
## 0.423024087 0.564065063 -0.518016889 -0.108934937 -0.050934937 -0.002852986
## 271 272 273 274 275 276
## 0.372983111 0.492983111 0.150024087 -0.113975913 -0.575016889 -0.228893961
## 277 278 279 280 281 282
## 0.149065063 0.388147014 -0.248016889 -0.182852986 0.016065063 -0.064893961
## 283 284 285 286 287 288
## 0.292024087 0.380065063 -0.138975913 0.098187990 0.125024087 -0.027852986
## 289 290 291 292 293 294
## -0.449975913 0.549065063 0.578065063 0.056983111 -0.839016889 -0.583975913
## 295 296 297 298 299 300
## 0.367983111 -0.072893961 -0.208975913 -0.561016889 -0.315812010 -0.336893961
## 301 302 303 304 305 306
## -0.159934937 0.257983111 -0.550975913 -0.091893961 -0.192975913 0.385065063
## 307 308 309 310 311 312
## 0.573147014 0.120024087 -0.490934937 0.009901159 -0.324057865 -0.159221769
## 313 314 315 316 317 318
## -0.704098841 0.595901159 -0.038139817 -0.841057865 -0.350098841 -0.010057865
## 319 320 321 322 323 324
## 0.200778231 1.017819207 1.301778231 1.453860183 -0.255139817 0.513942135
## 325 326 327 328 329 330
## 0.497819207 -0.091057865 0.779901159 -0.171057865 -0.209098841 0.550942135
## 331 332 333 334 335 336
## 0.230819207 -1.304221769 0.347901159 0.458942135 0.615901159 -0.171180793
## 337 338 339 340 341 342
## -0.132057865 -0.360057865 -0.207139817 -0.406057865 -0.715057865 -0.006057865
## 343 344 345 346 347 348
## 0.082901159 1.132901159 -0.488098841 0.598942135 -0.112098841 0.136901159
## 349 350 351 352 353 354
## 0.986819207 0.587819207 0.708901159 0.361901159 -0.104221769 0.183901159
## 355 356 357 358 359 360
## 0.354942135 0.836942135 0.211942135 -0.112221769 -0.499180793 -0.402057865
## 361 362 363 364 365 366
## 1.142778231 -0.300057865 0.233901159 0.675819207 1.296860183 -0.110180793
## 367 368 369 370 371 372
## -0.060057865 -0.125180793 -1.180098841 0.416778231 -0.528098841 1.470819207
## 373 374 375 376 377 378
## 0.640901159 -0.120098841 0.067942135 -0.411098841 -0.241098841 0.395942135
## 379 380 381 382 383 384
## 0.236901159 0.426819207 -0.712139817 -0.558057865 0.530942135 -0.466221769
## 385 386 387 388 389 390
## 1.102901159 0.701942135 0.536901159 -0.265057865 0.296901159 0.568819207
## 391 392 393 394 395 396
## -0.672180793 -0.148057865 0.712901159 0.970901159 -0.125139817 0.238942135
## 397 398 399 400 401 402
## -0.829057865 -0.457098841 -0.477057865 -0.139098841 0.732778231 -0.342180793
## 403 404 405 406 407 408
## 0.738860183 1.190901159 -0.556098841 0.721901159 -0.145221769 -0.345139817
## 409 410 411 412 413 414
## 0.020942135 -0.540139817 -0.332098841 -0.044057865 -0.520098841 -0.719180793
## 415 416 417 418 419 420
## -1.194057865 1.142942135 -0.383098841 -0.258180793 -0.107057865 0.118901159
## 421 422 423 424 425 426
## 0.652942135 1.437819207 0.899901159 0.202942135 0.113901159 -0.376098841
## 427 428 429 430 431 432
## -0.371221769 0.012901159 -0.614180793 0.640901159 0.550901159 -0.365057865
## 433 434 435 436 437 438
## -0.884180793 -0.287057865 -0.232180793 0.043942135 -0.228139817 0.160942135
## 439 440 441 442 443 444
## 0.768778231 0.158860183 0.760942135 1.718901159 0.570778231 -1.180139817
## 445 446 447 448 449 450
## -0.794057865 0.322942135 0.697942135 0.248942135 -0.855139817 0.906819207
## 451 452 453 454 455 456
## 0.348901159 2.127860183 1.198901159 0.983860183 -0.268098841 0.294901159
## 457 458 459 460 461 462
## 1.314860183 0.694860183 -0.229180793 -0.409098841 0.246860183 0.547942135
## 463 464 465 466 467 468
## -0.183139817 1.558819207 -0.294057865 0.182860183 -0.071057865 -0.749139817
## 469 470 471 472 473 474
## 0.038942135 -0.047098841 -0.779057865 0.654860183 -1.002221769 0.105942135
## 475 476 477 478 479 480
## 0.397942135 -0.017139817 -0.451057865 -0.794057865 -1.102180793 0.306860183
## 481 482 483 484 485 486
## 0.404860183 -0.296098841 -0.240180793 0.089860183 -0.987057865 -0.793098841
## 487 488 489 490 491 492
## 0.099901159 -0.021180793 0.976860183 1.129819207 0.665819207 -0.402057865
## 493 494 495 496 497 498
## -0.344139817 -0.792139817 0.139778231 0.227901159 0.209942135 -0.641180793
## 499 500 501 502 503 504
## 0.148901159 0.806901159 -0.063180793 0.595860183 -0.296057865 1.938942135
## 505 506 507 508 509 510
## -0.014139817 -0.021180793 0.383901159 -0.436057865 0.372901159 1.449901159
## 511 512 513 514 515 516
## -0.512098841 -0.311098841 0.331901159 0.044778231 1.623860183 0.012819207
## 517 518 519 520 521 522
## 1.764819207 0.845942135 -0.679139817 -0.288057865 -0.311057865 -0.337139817
## 523 524 525 526 527 528
## 0.078901159 0.134860183 0.203901159 0.494901159 0.432860183 -0.230139817
## 529 530 531 532 533 534
## -0.649221769 0.147901159 0.474942135 -0.008098841 -0.491139817 -0.262180793
## 535 536 537 538 539 540
## -0.527139817 -0.373098841 0.445901159 -0.751098841 0.239778231 0.972901159
## 541 542 543 544 545 546
## 0.466819207 0.827860183 -0.520057865 -0.344139817 -0.869180793 0.803942135
## 547 548 549 550 551 552
## 0.420942135 0.035942135 0.676942135 0.730778231 0.433860183 0.053901159
## 553 554 555 556 557 558
## -0.185098841 -0.764139817 -0.606221769 -1.264221769 0.457942135 0.019901159
## 559 560 561 562 563 564
## 1.762901159 -0.217057865 0.185942135 -0.061139817 1.734860183 -0.062098841
## 565 566 567 568 569 570
## -0.382139817 0.433942135 0.422860183 0.913819207 0.117942135 0.244860183
## 571 572 573 574 575 576
## 0.437942135 -0.787180793 -0.274139817 0.385942135 -0.161139817 -0.084057865
## 577 578 579 580 581 582
## -0.487098841 -0.597139817 1.255901159 -0.095139817 0.479942135 0.258819207
## 583 584 585 586 587 588
## 0.125860183 0.405901159 -0.215098841 -0.052098841 -0.734098841 1.106860183
## 589 590 591 592 593 594
## -0.543221769 0.245901159 -0.312098841 -0.014139817 0.265778231 0.464901159
## 595 596 597 598 599 600
## -0.166180793 -0.416098841 -0.261057865 -0.177180793 -0.517139817 0.229901159
## 601 602 603 604 605 606
## 0.726819207 1.222778231 -0.552057865 0.194901159 -0.089098841 0.521737255
## 607 608 609 610 611 612
## 0.743737255 -1.522385673 0.451573351 -1.131426649 -0.296303721 0.222655303
## 613 614 615 616 617 618
## 0.516737255 0.737737255 -1.127262745 -1.083262745 -1.564262745 -1.305426649
## 619 620 621 622 623 624
## -1.346385673 -0.597303721 -1.124344697 -1.081303721 -0.758262745 2.030737255
## 625 626 627 628 629 630
## 0.222737255 -0.208385673 0.517655303 -0.031262745 -0.800344697 -0.706344697
## 631 632 633 634 635 636
## -0.310303721 1.426655303 -0.640262745 -0.432262745 -1.376303721 -0.339303721
## 637 638 639 640 641 642
## 0.036737255 -0.342385673 -0.875262745 0.085696279 -0.246344697 0.314696279
## 643 644 645 646 647 648
## -1.003303721 -1.498262745 -0.024385673 -1.484262745 0.519696279 1.431655303
## 649 650 651 652 653 654
## 0.887696279 0.285696279 -0.035262745 -1.575385673 -1.189303721 -0.551262745
fitted value=2.207976 residual=-0.483975913
if our residual is exactly 0, that means that the fitted value and the observed value are the same, if the residual is positive, that means that the observed value is greater than the fitted value, if the residual is negative, then the observed value is less than the fitted value.
mod1) for all of the observed FEV data:residuals=resid(mod1)
fitted=fitted(mod1)
because the 2nd line of the table is the 8 year old kid with the 1.724 fev.
mod1.sd(resid(mod1))
## [1] 0.5670923
SD=0.5670923
mod1, and write
down an interpretation of it.ssr1B=sum((fitted(mod1)-mean(fevdata$fev))^2)
ssr1B
## [1] 280.9192
sse1B=sum((fitted(mod1)-fevdata$fev)^2)
sse1B
## [1] 210.0007
sst1B=ssr1B+sse1B
sst1B
## [1] 490.9198
Rsquared1B=1-(ssr1B/sst1B)
Rsquared1B
## [1] 0.4277698
R2=0.4277698 this value is pretty low, meaning that the variance in the explanatory does not really explain the variance in the response.
mod2, mod3, and mod4. Which model
has the best residual standard error? The best R-squared?"Rfunction(x)=function(){ssr=sum((fitted(x)-mean(fevdata$fev))^2)
sse=sum((fitted(x)-fevdata$fev)^2)
sst=ssr+sse
1-(ssr1B/sst1B)}"
## [1] "Rfunction(x)=function(){ssr=sum((fitted(x)-mean(fevdata$fev))^2)\nsse=sum((fitted(x)-fevdata$fev)^2)\nsst=ssr+sse\n1-(ssr1B/sst1B)}"
ssr1C=sum((fitted(mod2)-mean(fevdata$fev))^2)
ssr1C
## [1] 29.56968
sse1C=sum((fitted(mod2)-fevdata$fev)^2)
sse1C
## [1] 461.3502
sst1C=ssr1C+sse1C
sst1C
## [1] 490.9198
Rsquared1C=1-(ssr1C/sst1C)
Rsquared1C
## [1] 0.9397668
"print(Rfunction(mod2))
print(Rfunction(mod3))
print(Rfunction(mod4))"
## [1] "print(Rfunction(mod2))\nprint(Rfunction(mod3))\nprint(Rfunction(mod4))"
R2(mod2)=0.9397668 R2(mod3)=0.4234125 R2(mod4)=0.4059151
high_peaks data includes information on hiking
trails in the 46 “high peaks” in the Adirondack mountains of northern
New York state. Our goal will be to understand the variability in the
time in hours that it takes to complete each hike. In doing
so, we’ll separately consider four possible predictors:peaks <- read.csv('https://raw.githubusercontent.com/vittorioaddona/data/main/high_peaks.csv')