1 Teoría

Los Modelos de Ecuaciones Estructurales (SEM) es una técnica de análisis de estadística multivariada, que permite analizar patrones complejos de relaciones entre variables, realizar comparaciones entre e intragrupos, y validar modelos teóricos y empíricos.

2 Ejemplo 1. Estudio de Holzinger y Swineford (1939)

2.1 Contexto

Holzinger y Swineford realizaron exámenes de habilidad mental a adolescentes de 7° y 8° grado de dos escuelas (Pasteur y Grand-White).

La base de datos está incluida como paquete en R, e incluye las siguientes columnas:

  • id: identificador
  • sex: género (1=male, 2=female)
  • x1: Percepción visual
  • x2: Juego con cubos
  • x3: Juego con pastillas/espacial
  • x4: Comprensión de párrafos
  • x5: Completar oraciones
  • x6: Significado de palabras
  • x7: Sumas aceleradas
  • x8: Conteo acelerado de puntos
  • x9: Discriminación acelerada de mayúsculas rectas y curvas

Se busca identificar las relaciones entre las habilidades visual (x1, x2, x3), textual (x4, x5, x6) y velocidad (x7, x8, x9) de los adolescentes.

2.2 Instalar paquetes y llamar librerías

# Lavaan = Latent variable analysis (no se observa, se infiere)
library(lavaan)
library(lavaanPlot)

2.3 Importar la base de datos

df1 <- HolzingerSwineford1939

2.4 Entender la base de datos

summary(df1)
##        id             sex            ageyr        agemo       
##  Min.   :  1.0   Min.   :1.000   Min.   :11   Min.   : 0.000  
##  1st Qu.: 82.0   1st Qu.:1.000   1st Qu.:12   1st Qu.: 2.000  
##  Median :163.0   Median :2.000   Median :13   Median : 5.000  
##  Mean   :176.6   Mean   :1.515   Mean   :13   Mean   : 5.375  
##  3rd Qu.:272.0   3rd Qu.:2.000   3rd Qu.:14   3rd Qu.: 8.000  
##  Max.   :351.0   Max.   :2.000   Max.   :16   Max.   :11.000  
##                                                               
##          school        grade             x1               x2       
##  Grant-White:145   Min.   :7.000   Min.   :0.6667   Min.   :2.250  
##  Pasteur    :156   1st Qu.:7.000   1st Qu.:4.1667   1st Qu.:5.250  
##                    Median :7.000   Median :5.0000   Median :6.000  
##                    Mean   :7.477   Mean   :4.9358   Mean   :6.088  
##                    3rd Qu.:8.000   3rd Qu.:5.6667   3rd Qu.:6.750  
##                    Max.   :8.000   Max.   :8.5000   Max.   :9.250  
##                    NA's   :1                                       
##        x3              x4              x5              x6        
##  Min.   :0.250   Min.   :0.000   Min.   :1.000   Min.   :0.1429  
##  1st Qu.:1.375   1st Qu.:2.333   1st Qu.:3.500   1st Qu.:1.4286  
##  Median :2.125   Median :3.000   Median :4.500   Median :2.0000  
##  Mean   :2.250   Mean   :3.061   Mean   :4.341   Mean   :2.1856  
##  3rd Qu.:3.125   3rd Qu.:3.667   3rd Qu.:5.250   3rd Qu.:2.7143  
##  Max.   :4.500   Max.   :6.333   Max.   :7.000   Max.   :6.1429  
##                                                                  
##        x7              x8               x9       
##  Min.   :1.304   Min.   : 3.050   Min.   :2.778  
##  1st Qu.:3.478   1st Qu.: 4.850   1st Qu.:4.750  
##  Median :4.087   Median : 5.500   Median :5.417  
##  Mean   :4.186   Mean   : 5.527   Mean   :5.374  
##  3rd Qu.:4.913   3rd Qu.: 6.100   3rd Qu.:6.083  
##  Max.   :7.435   Max.   :10.000   Max.   :9.250  
## 
str(df1)
## 'data.frame':    301 obs. of  15 variables:
##  $ id    : int  1 2 3 4 5 6 7 8 9 11 ...
##  $ sex   : int  1 2 2 1 2 2 1 2 2 2 ...
##  $ ageyr : int  13 13 13 13 12 14 12 12 13 12 ...
##  $ agemo : int  1 7 1 2 2 1 1 2 0 5 ...
##  $ school: Factor w/ 2 levels "Grant-White",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ grade : int  7 7 7 7 7 7 7 7 7 7 ...
##  $ x1    : num  3.33 5.33 4.5 5.33 4.83 ...
##  $ x2    : num  7.75 5.25 5.25 7.75 4.75 5 6 6.25 5.75 5.25 ...
##  $ x3    : num  0.375 2.125 1.875 3 0.875 ...
##  $ x4    : num  2.33 1.67 1 2.67 2.67 ...
##  $ x5    : num  5.75 3 1.75 4.5 4 3 6 4.25 5.75 5 ...
##  $ x6    : num  1.286 1.286 0.429 2.429 2.571 ...
##  $ x7    : num  3.39 3.78 3.26 3 3.7 ...
##  $ x8    : num  5.75 6.25 3.9 5.3 6.3 6.65 6.2 5.15 4.65 4.55 ...
##  $ x9    : num  6.36 7.92 4.42 4.86 5.92 ...

2.5 Tipos de Fórmulas

  1. Regresión (~) Variable que depende de otras.
  2. Variables latentes (=~) No se observa, se infiere.
  3. Varianzas y covarianzas (~~) Relaciones entre variables latentes y observadas (varianza entre sí misma, covarianza entre otras).
  4. Intercepto (~1) Valor esperado cuando las demás variables son cero.

2.6 Estructurar el modelo

modelo1 <- ' # Regresiones
           # Variables latentes
           visual =~ x1+ x2 + x3
           textual =~ x4 + x5 + x6
           velocidad =~ x7 + x8 + x9
           # Varianzas y Covarianzas
           # Intercepto
           '

2.7 Generar el Análisis Factorial Confirmatorio (CFA)

fit <- cfa(modelo1,df1)
summary(fit)
## lavaan 0.6.16 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                85.306
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.554    0.100    5.554    0.000
##     x3                0.729    0.109    6.685    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.113    0.065   17.014    0.000
##     x6                0.926    0.055   16.703    0.000
##   velocidad =~                                        
##     x7                1.000                           
##     x8                1.180    0.165    7.152    0.000
##     x9                1.082    0.151    7.155    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.408    0.074    5.552    0.000
##     velocidad         0.262    0.056    4.660    0.000
##   textual ~~                                          
##     velocidad         0.173    0.049    3.518    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .x1                0.549    0.114    4.833    0.000
##    .x2                1.134    0.102   11.146    0.000
##    .x3                0.844    0.091    9.317    0.000
##    .x4                0.371    0.048    7.779    0.000
##    .x5                0.446    0.058    7.642    0.000
##    .x6                0.356    0.043    8.277    0.000
##    .x7                0.799    0.081    9.823    0.000
##    .x8                0.488    0.074    6.573    0.000
##    .x9                0.566    0.071    8.003    0.000
##     visual            0.809    0.145    5.564    0.000
##     textual           0.979    0.112    8.737    0.000
##     velocidad         0.384    0.086    4.451    0.000
lavaanPlot(fit,coef=TRUE,cov=TRUE)

3 Ejercicio 2: Democracia Política e Industrialización

3.1 Contexto

La base de datos contiene distintas mediciones sobre la democracia política e industrialización en países en desarrollo durante 1960 y 1965.

La tabla incluye los siguientes datos:

  • y1: Calificaciones sobre libertad de prensa en 1960
  • y2: Libertad de la oposición ólítica en 1960
  • y3: Imparcialidad de elecciones en 1960
  • y4: Eficacia de la legislatura electa en 1960
  • y5: Calificaciones sobre libertad de prensa en 1965
  • y6: Libertad de la oposición ólítica en 1965
  • y7: Imparcialidad de elecciones en 1965
  • y8: Eficacia de la legislatura electa en 1965
  • x1: PIB per cápita en 1960
  • x2: Consumo de energía inanimada per cápita en 1960
  • x3: Porcentaje de la fuerza laboral en la industria en 1960

3.2 Importar la base de datos

df2 <- PoliticalDemocracy

3.3 Entender la base de datos

summary(df2)
##        y1               y2               y3               y4        
##  Min.   : 1.250   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 2.900   1st Qu.: 0.000   1st Qu.: 3.767   1st Qu.: 1.581  
##  Median : 5.400   Median : 3.333   Median : 6.667   Median : 3.333  
##  Mean   : 5.465   Mean   : 4.256   Mean   : 6.563   Mean   : 4.453  
##  3rd Qu.: 7.500   3rd Qu.: 8.283   3rd Qu.:10.000   3rd Qu.: 6.667  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##        y5               y6               y7               y8        
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 3.692   1st Qu.: 0.000   1st Qu.: 3.478   1st Qu.: 1.301  
##  Median : 5.000   Median : 2.233   Median : 6.667   Median : 3.333  
##  Mean   : 5.136   Mean   : 2.978   Mean   : 6.196   Mean   : 4.043  
##  3rd Qu.: 7.500   3rd Qu.: 4.207   3rd Qu.:10.000   3rd Qu.: 6.667  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##        x1              x2              x3       
##  Min.   :3.784   Min.   :1.386   Min.   :1.002  
##  1st Qu.:4.477   1st Qu.:3.663   1st Qu.:2.300  
##  Median :5.075   Median :4.963   Median :3.568  
##  Mean   :5.054   Mean   :4.792   Mean   :3.558  
##  3rd Qu.:5.515   3rd Qu.:5.830   3rd Qu.:4.523  
##  Max.   :6.737   Max.   :7.872   Max.   :6.425
str(df2)
## 'data.frame':    75 obs. of  11 variables:
##  $ y1: num  2.5 1.25 7.5 8.9 10 7.5 7.5 7.5 2.5 10 ...
##  $ y2: num  0 0 8.8 8.8 3.33 ...
##  $ y3: num  3.33 3.33 10 10 10 ...
##  $ y4: num  0 0 9.2 9.2 6.67 ...
##  $ y5: num  1.25 6.25 8.75 8.91 7.5 ...
##  $ y6: num  0 1.1 8.09 8.13 3.33 ...
##  $ y7: num  3.73 6.67 10 10 10 ...
##  $ y8: num  3.333 0.737 8.212 4.615 6.667 ...
##  $ x1: num  4.44 5.38 5.96 6.29 5.86 ...
##  $ x2: num  3.64 5.06 6.26 7.57 6.82 ...
##  $ x3: num  2.56 3.57 5.22 6.27 4.57 ...

3.4 Estructurar el modelo

modelo2 <- ' # Regresiones
           Industrial60 ~ Democracia60
           # Variables latentes
           Democracia60 =~ y1 + y2 + y3 + y4
           Democracia65 =~ y5 + y6 + y7 + y8
           Industrial60 =~ x1 + x2 + x3
           Industrial65 =~ Democracia65
           # Varianzas y Covarianzas
           # Intercepto
           '

3.5 Generar el Análisis Factorial Confirmatorio (CFA)

fit2 <- cfa(modelo2,df2)
summary(fit2)
## lavaan 0.6.16 ended normally after 45 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        24
## 
##   Number of observations                            75
## 
## Model Test User Model:
##                                                       
##   Test statistic                                76.467
##   Degrees of freedom                                42
##   P-value (Chi-square)                           0.001
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Democracia60 =~                                     
##     y1                1.000                           
##     y2                1.354    0.179    7.548    0.000
##     y3                1.049    0.153    6.840    0.000
##     y4                1.320    0.141    9.334    0.000
##   Democracia65 =~                                     
##     y5                1.000                           
##     y6                1.289    0.170    7.570    0.000
##     y7                1.308    0.164    7.983    0.000
##     y8                1.335    0.160    8.342    0.000
##   Industrial60 =~                                     
##     x1                1.000                           
##     x2                2.179    0.139   15.685    0.000
##     x3                1.818    0.152   11.968    0.000
##   Industrial65 =~                                     
##     Democracia65      1.000                           
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Industrial60 ~                                      
##     Democracia60      0.155    0.036    4.330    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Democracia60 ~~                                     
##     Industrial65      4.405    0.904    4.872    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .y1                2.053    0.405    5.064    0.000
##    .y2                6.694    1.207    5.546    0.000
##    .y3                5.414    0.950    5.699    0.000
##    .y4                2.817    0.593    4.749    0.000
##    .y5                2.519    0.469    5.377    0.000
##    .y6                4.216    0.783    5.382    0.000
##    .y7                3.443    0.665    5.178    0.000
##    .y8                2.880    0.584    4.928    0.000
##    .x1                0.081    0.020    4.138    0.000
##    .x2                0.121    0.071    1.701    0.089
##    .x3                0.467    0.090    5.163    0.000
##     Democracia60      4.734    1.081    4.381    0.000
##    .Democracia65      0.000                           
##    .Industrial60      0.336    0.067    5.045    0.000
##     Industrial65      4.216    1.044    4.037    0.000
lavaanPlot(fit2,coef=TRUE,cov=TRUE)

4 Actividad 3. Bienestar de los Colaboradores

4.1 Contexto

Uno de los retos más importantes de las organizaciones es entender el estado y bienestar de los colaboradores, ya que puede impactar directamente en el desempeño y el logro de los objetivos.

4.2 Parte 1. Experiencias de recuperación

4.2.1 Instalar paquetes y llamar librerías

# Lavaan = Latent variable analysis (no se observa, se infiere)
library(lavaan)
library(lavaanPlot)
library(readxl)

4.2.2 Importar la base de datos

df3 <- read_excel('Datos_SEM_Eng.xlsx')

4.2.3 Entender la base de datos

summary(df3)
##        ID             GEN             EXPER            EDAD      
##  Min.   :  1.0   Min.   :0.0000   Min.   : 0.00   Min.   :22.00  
##  1st Qu.: 56.5   1st Qu.:0.0000   1st Qu.:15.00   1st Qu.:37.50  
##  Median :112.0   Median :1.0000   Median :20.00   Median :44.00  
##  Mean   :112.0   Mean   :0.5919   Mean   :21.05   Mean   :43.95  
##  3rd Qu.:167.5   3rd Qu.:1.0000   3rd Qu.:27.50   3rd Qu.:51.00  
##  Max.   :223.0   Max.   :1.0000   Max.   :50.00   Max.   :72.00  
##      RPD01           RPD02          RPD03           RPD05           RPD06      
##  Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.00   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :5.000   Median :4.00   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :4.596   Mean   :4.09   Mean   :4.789   Mean   :4.327   Mean   :4.798  
##  3rd Qu.:6.000   3rd Qu.:6.00   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RPD07           RPD08           RPD09           RPD10      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:2.500  
##  Median :4.000   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :3.794   Mean   :4.735   Mean   :4.466   Mean   :4.435  
##  3rd Qu.:5.500   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RRE02           RRE03           RRE04           RRE05           RRE06    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.0  
##  1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:4.0  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000   Median :6.0  
##  Mean   :5.691   Mean   :5.534   Mean   :5.668   Mean   :5.623   Mean   :5.3  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.0  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.0  
##      RRE07           RRE10           RMA02           RMA03      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:5.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :6.000   Median :6.000   Median :4.000   Median :5.000  
##  Mean   :5.305   Mean   :5.664   Mean   :4.215   Mean   :4.377  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RMA04           RMA05           RMA06           RMA07      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:5.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :6.000   Median :5.000  
##  Mean   :4.686   Mean   :4.637   Mean   :5.511   Mean   :4.767  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RMA08           RMA09           RMA10          RCO02           RCO03      
##  Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:3.000   1st Qu.:3.00   1st Qu.:5.000   1st Qu.:5.000  
##  Median :5.000   Median :5.000   Median :5.00   Median :6.000   Median :6.000  
##  Mean   :4.942   Mean   :4.614   Mean   :4.43   Mean   :5.336   Mean   :5.574  
##  3rd Qu.:6.500   3rd Qu.:6.000   3rd Qu.:6.00   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.00   Max.   :7.000   Max.   :7.000  
##      RCO04           RCO05           RCO06           RCO07      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :5.704   Mean   :5.668   Mean   :5.619   Mean   :5.632  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       EN01            EN02            EN04            EN05      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :6.000   Median :5.000   Median :5.000  
##  Mean   :4.717   Mean   :5.004   Mean   :4.883   Mean   :4.928  
##  3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       EN06            EN07            EN08           EVI01      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :0.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :4.767   Mean   :4.578   Mean   :4.776   Mean   :5.013  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      EVI02           EVI03           EDE01           EDE02      
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :5.076   Mean   :4.973   Mean   :5.305   Mean   :5.543  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      EDE03           EAB01           EAB02           EAB03      
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:6.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :7.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :6.135   Mean   :5.605   Mean   :5.821   Mean   :5.363  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000
str(df3)
## tibble [223 × 51] (S3: tbl_df/tbl/data.frame)
##  $ ID   : num [1:223] 1 2 3 4 5 6 7 8 9 10 ...
##  $ GEN  : num [1:223] 1 1 1 1 1 0 0 1 1 1 ...
##  $ EXPER: num [1:223] 22 22 30 17 23 31 26 30 15 15 ...
##  $ EDAD : num [1:223] 45 44 52 41 51 52 53 48 40 38 ...
##  $ RPD01: num [1:223] 5 4 7 5 7 3 5 6 4 2 ...
##  $ RPD02: num [1:223] 1 4 7 5 6 4 5 7 4 3 ...
##  $ RPD03: num [1:223] 3 6 7 1 7 5 4 6 4 2 ...
##  $ RPD05: num [1:223] 2 5 7 1 6 4 4 7 4 3 ...
##  $ RPD06: num [1:223] 3 3 7 3 7 3 5 2 6 7 ...
##  $ RPD07: num [1:223] 1 2 6 5 6 5 6 5 4 1 ...
##  $ RPD08: num [1:223] 3 3 7 3 7 4 6 2 5 3 ...
##  $ RPD09: num [1:223] 2 4 7 2 6 4 7 4 4 2 ...
##  $ RPD10: num [1:223] 4 4 7 2 6 4 7 1 6 2 ...
##  $ RRE02: num [1:223] 6 6 7 6 7 5 7 5 6 7 ...
##  $ RRE03: num [1:223] 6 6 7 6 7 4 7 4 4 7 ...
##  $ RRE04: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE05: num [1:223] 6 6 7 6 7 5 7 4 6 7 ...
##  $ RRE06: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE07: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE10: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RMA02: num [1:223] 4 6 4 3 4 7 5 2 6 7 ...
##  $ RMA03: num [1:223] 5 6 5 4 4 7 5 1 2 7 ...
##  $ RMA04: num [1:223] 5 5 6 4 4 5 5 1 4 7 ...
##  $ RMA05: num [1:223] 5 5 6 4 4 6 5 3 4 7 ...
##  $ RMA06: num [1:223] 6 6 7 6 5 4 5 7 6 7 ...
##  $ RMA07: num [1:223] 4 6 6 5 4 5 7 4 6 7 ...
##  $ RMA08: num [1:223] 5 6 4 4 4 6 6 4 2 7 ...
##  $ RMA09: num [1:223] 3 5 4 3 5 4 5 2 4 7 ...
##  $ RMA10: num [1:223] 7 5 5 4 5 5 6 4 3 7 ...
##  $ RCO02: num [1:223] 7 7 7 5 7 6 7 7 3 7 ...
##  $ RCO03: num [1:223] 7 7 7 5 7 5 7 7 3 7 ...
##  $ RCO04: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
##  $ RCO05: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
##  $ RCO06: num [1:223] 7 7 7 6 7 4 7 7 4 7 ...
##  $ RCO07: num [1:223] 5 7 7 6 7 4 7 7 7 7 ...
##  $ EN01 : num [1:223] 6 6 7 4 6 4 7 7 4 7 ...
##  $ EN02 : num [1:223] 7 6 7 4 6 4 7 7 4 7 ...
##  $ EN04 : num [1:223] 6 6 7 4 6 4 7 6 4 7 ...
##  $ EN05 : num [1:223] 5 5 7 5 6 5 7 6 4 7 ...
##  $ EN06 : num [1:223] 5 5 7 5 6 3 7 5 5 7 ...
##  $ EN07 : num [1:223] 5 5 7 2 6 4 7 4 4 7 ...
##  $ EN08 : num [1:223] 6 5 7 5 6 4 7 4 4 7 ...
##  $ EVI01: num [1:223] 6 5 7 5 6 4 7 6 6 0 ...
##  $ EVI02: num [1:223] 6 5 7 6 6 4 6 5 5 1 ...
##  $ EVI03: num [1:223] 6 6 6 7 6 4 6 6 7 0 ...
##  $ EDE01: num [1:223] 6 6 6 5 7 6 7 7 7 1 ...
##  $ EDE02: num [1:223] 7 6 7 6 7 5 7 7 7 5 ...
##  $ EDE03: num [1:223] 7 7 7 7 7 5 7 7 7 6 ...
##  $ EAB01: num [1:223] 7 7 7 6 7 5 7 7 7 0 ...
##  $ EAB02: num [1:223] 7 7 7 6 7 5 7 2 5 1 ...
##  $ EAB03: num [1:223] 6 5 6 5 6 5 7 3 5 0 ...

4.2.4 Tipos de Fórmulas

  1. Regresión (~) Variable que depende de otras.
  2. Variables latentes (=~) No se observa, se infiere.
  3. Varianzas y covarianzas (~~) Relaciones entre variables latentes y observada (varianza entre sí misma, covarianza entre otras).
  4. Intercepto (~1) Valor esperado cuando las demás variables son cero.

4.2.5 Estructurar el modelo

modelo3 <- ' # Regresiones
           # Variables latentes
           desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
           relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
           dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
           control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
           recuperacion =~ desapego + relajacion + dominio + control
           # Varianzas y Covarianzas
           # Intercepto
           '

4.2.6 Generar el Análisis Factorial Confirmatorio (CFA)

fit3 <- cfa(modelo3,df3)
summary(fit3)
## lavaan 0.6.16 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        66
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1221.031
##   Degrees of freedom                               430
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.206    0.082   14.780    0.000
##     RPD03             1.143    0.085   13.374    0.000
##     RPD05             1.312    0.086   15.244    0.000
##     RPD06             1.088    0.089   12.266    0.000
##     RPD07             1.229    0.085   14.440    0.000
##     RPD08             1.164    0.087   13.447    0.000
##     RPD09             1.317    0.087   15.153    0.000
##     RPD10             1.346    0.088   15.258    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.227    0.000
##     RRE04             1.025    0.058   17.713    0.000
##     RRE05             1.055    0.056   18.758    0.000
##     RRE06             1.245    0.074   16.869    0.000
##     RRE07             1.117    0.071   15.689    0.000
##     RRE10             0.815    0.067   12.120    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.155    0.096   12.079    0.000
##     RMA04             1.178    0.089   13.274    0.000
##     RMA05             1.141    0.087   13.072    0.000
##     RMA06             0.645    0.075    8.597    0.000
##     RMA07             1.103    0.084   13.061    0.000
##     RMA08             1.109    0.085   12.994    0.000
##     RMA09             1.028    0.084   12.246    0.000
##     RMA10             1.055    0.088   12.044    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.948    0.049   19.182    0.000
##     RCO04             0.796    0.044   18.110    0.000
##     RCO05             0.818    0.043   18.990    0.000
##     RCO06             0.834    0.046   18.216    0.000
##     RCO07             0.835    0.046   18.057    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.149    0.131    8.787    0.000
##     dominio           0.858    0.129    6.666    0.000
##     control           1.341    0.156    8.605    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.172    0.120    9.782    0.000
##    .RPD02             0.999    0.108    9.228    0.000
##    .RPD03             1.441    0.148    9.733    0.000
##    .RPD05             0.987    0.110    8.964    0.000
##    .RPD06             1.817    0.182    9.967    0.000
##    .RPD07             1.173    0.125    9.383    0.000
##    .RPD08             1.460    0.150    9.714    0.000
##    .RPD09             1.032    0.114    9.021    0.000
##    .RPD10             1.034    0.115    8.955    0.000
##    .RRE02             0.626    0.068    9.274    0.000
##    .RRE03             0.653    0.073    9.011    0.000
##    .RRE04             0.481    0.055    8.794    0.000
##    .RRE05             0.374    0.046    8.153    0.000
##    .RRE06             0.886    0.097    9.149    0.000
##    .RRE07             0.950    0.100    9.505    0.000
##    .RRE10             1.137    0.113   10.093    0.000
##    .RMA02             1.740    0.175    9.931    0.000
##    .RMA03             1.485    0.155    9.575    0.000
##    .RMA04             0.855    0.097    8.772    0.000
##    .RMA05             0.899    0.100    8.967    0.000
##    .RMA06             1.631    0.159   10.281    0.000
##    .RMA07             0.845    0.094    8.977    0.000
##    .RMA08             0.886    0.098    9.034    0.000
##    .RMA09             1.094    0.115    9.500    0.000
##    .RMA10             1.259    0.131    9.590    0.000
##    .RCO02             0.983    0.105    9.379    0.000
##    .RCO03             0.484    0.058    8.391    0.000
##    .RCO04             0.462    0.052    8.963    0.000
##    .RCO05             0.382    0.045    8.513    0.000
##    .RCO06             0.494    0.055    8.917    0.000
##    .RCO07             0.515    0.057    8.985    0.000
##    .desapego          0.943    0.152    6.207    0.000
##    .relajacion        0.333    0.089    3.757    0.000
##    .dominio           1.260    0.212    5.942    0.000
##    .control           0.900    0.159    5.666    0.000
##     recuperacion      0.978    0.202    4.833    0.000
lavaanPlot(fit3,coef=TRUE,cov=TRUE)
modelo_depurado3 <- ' # Regresiones
           # Variables latentes
           desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD07 + RPD08 + RPD09 + RPD10
           relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07
           dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA07 + RMA08 + RMA09 + RMA10
           control =~ RCO02 + RCO03 + RCO05 + RCO06 + RCO07
           recuperacion =~ desapego + relajacion + dominio + control
           # Varianzas y Covarianzas
           # Intercepto
           '

4.2.7 Generar el Análisis Factorial Confirmatorio (CFA)

fitdepurado <- cfa(modelo_depurado3,df3)
summary(fitdepurado)
## lavaan 0.6.16 ended normally after 48 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        58
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                               886.791
##   Degrees of freedom                               320
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.204    0.079   15.158    0.000
##     RPD03             1.146    0.083   13.750    0.000
##     RPD05             1.310    0.084   15.663    0.000
##     RPD07             1.219    0.083   14.675    0.000
##     RPD08             1.114    0.086   13.004    0.000
##     RPD09             1.301    0.085   15.315    0.000
##     RPD10             1.328    0.086   15.404    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.111    0.064   17.245    0.000
##     RRE04             1.025    0.057   17.974    0.000
##     RRE05             1.054    0.055   19.046    0.000
##     RRE06             1.237    0.073   16.904    0.000
##     RRE07             1.105    0.071   15.618    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.155    0.095   12.223    0.000
##     RMA04             1.176    0.088   13.412    0.000
##     RMA05             1.140    0.086   13.220    0.000
##     RMA07             1.091    0.083   13.067    0.000
##     RMA08             1.103    0.084   13.087    0.000
##     RMA09             1.020    0.083   12.287    0.000
##     RMA10             1.049    0.087   12.097    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.944    0.051   18.648    0.000
##     RCO05             0.820    0.044   18.683    0.000
##     RCO06             0.840    0.046   18.083    0.000
##     RCO07             0.842    0.047   18.010    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.145    0.132    8.696    0.000
##     dominio           0.843    0.129    6.525    0.000
##     control           1.356    0.159    8.549    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.134    0.117    9.697    0.000
##    .RPD02             0.956    0.105    9.070    0.000
##    .RPD03             1.381    0.143    9.629    0.000
##    .RPD05             0.932    0.107    8.749    0.000
##    .RPD07             1.162    0.125    9.304    0.000
##    .RPD08             1.629    0.166    9.815    0.000
##    .RPD09             1.053    0.117    8.980    0.000
##    .RPD10             1.061    0.119    8.926    0.000
##    .RRE02             0.612    0.067    9.179    0.000
##    .RRE03             0.666    0.074    8.988    0.000
##    .RRE04             0.467    0.054    8.651    0.000
##    .RRE05             0.361    0.045    7.940    0.000
##    .RRE06             0.898    0.098    9.119    0.000
##    .RRE07             0.974    0.102    9.502    0.000
##    .RMA02             1.720    0.174    9.901    0.000
##    .RMA03             1.456    0.153    9.519    0.000
##    .RMA04             0.839    0.097    8.681    0.000
##    .RMA05             0.879    0.099    8.876    0.000
##    .RMA07             0.874    0.097    9.009    0.000
##    .RMA08             0.884    0.098    8.993    0.000
##    .RMA09             1.105    0.116    9.490    0.000
##    .RMA10             1.265    0.132    9.573    0.000
##    .RCO02             0.999    0.109    9.187    0.000
##    .RCO03             0.517    0.063    8.171    0.000
##    .RCO05             0.385    0.047    8.145    0.000
##    .RCO06             0.482    0.056    8.540    0.000
##    .RCO07             0.495    0.058    8.582    0.000
##    .desapego          0.985    0.157    6.286    0.000
##    .relajacion        0.360    0.092    3.917    0.000
##    .dominio           1.309    0.218    5.994    0.000
##    .control           0.850    0.159    5.341    0.000
##     recuperacion      0.974    0.203    4.795    0.000
lavaanPlot(fitdepurado,coef=TRUE,cov=TRUE)

4.3 Parte 2. Energía Recuperada

4.3.1 Estructurar el modelo

modelo4 <- ' # Regresiones
           # Variables latentes
           energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
           # Varianzas y Covarianzas
           # Intercepto
           '

4.3.2 Generar el Análisis Factorial Confirmatorio (CFA)

fit4 <- cfa(modelo4,df3)
summary(fit4)
## lavaan 0.6.16 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.222
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.029    0.044   23.192    0.000
##     EN04              0.999    0.044   22.583    0.000
##     EN05              0.999    0.042   23.649    0.000
##     EN06              0.986    0.042   23.722    0.000
##     EN07              1.049    0.046   22.856    0.000
##     EN08              1.036    0.043   24.173    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .EN01              0.711    0.074    9.651    0.000
##    .EN02              0.444    0.049    9.012    0.000
##    .EN04              0.481    0.052    9.214    0.000
##    .EN05              0.375    0.042    8.830    0.000
##    .EN06              0.359    0.041    8.798    0.000
##    .EN07              0.499    0.055    9.129    0.000
##    .EN08              0.353    0.041    8.580    0.000
##     energia           2.801    0.327    8.565    0.000
lavaanPlot(fit4,coef=TRUE,cov=TRUE)

Después de evaluar los valores estimativos, los errores estándar y el p-value, determinamos innecesario depurar el modelo.

4.4 Parte 3. Engagement laboral

4.4.1 Estructurar el modelo

modelo5 <- ' # Regresiones

           # Variables latentes 1
           desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
           relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
           dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
           control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
           recuperacion =~ desapego + relajacion + dominio + control
           
           # Variables latentes 2
           energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
           
           # Variables latentes 3
           vigor =~ EVI01 + EVI02 + EVI03
           dedicacion =~ EDE01 + EDE02 + EDE03
           absorcion =~ EAB01 + EAB02
           engagement =~ vigor + dedicacion + absorcion
           
           # Varianzas y Covarianzas
           engagement ~~ energia + recuperacion
           
           # Intercepto
           
           '

4.4.2 Generar el Análisis Factorial Confirmatorio (CFA)

fit5 <- sem(modelo5,df3)
summary(fit5)
## lavaan 0.6.16 ended normally after 73 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       102
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              2395.225
##   Degrees of freedom                               979
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.209    0.081   14.866    0.000
##     RPD03             1.144    0.085   13.419    0.000
##     RPD05             1.313    0.086   15.317    0.000
##     RPD06             1.082    0.089   12.214    0.000
##     RPD07             1.229    0.085   14.487    0.000
##     RPD08             1.157    0.086   13.375    0.000
##     RPD09             1.315    0.087   15.163    0.000
##     RPD10             1.343    0.088   15.247    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.295    0.000
##     RRE04             1.021    0.058   17.626    0.000
##     RRE05             1.051    0.056   18.687    0.000
##     RRE06             1.246    0.074   16.924    0.000
##     RRE07             1.121    0.071   15.837    0.000
##     RRE10             0.814    0.067   12.134    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.152    0.096   12.041    0.000
##     RMA04             1.178    0.089   13.265    0.000
##     RMA05             1.141    0.087   13.057    0.000
##     RMA06             0.648    0.075    8.625    0.000
##     RMA07             1.104    0.085   13.062    0.000
##     RMA08             1.110    0.085   13.001    0.000
##     RMA09             1.030    0.084   12.257    0.000
##     RMA10             1.056    0.088   12.047    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.945    0.049   19.172    0.000
##     RCO04             0.794    0.044   18.100    0.000
##     RCO05             0.814    0.043   18.926    0.000
##     RCO06             0.837    0.045   18.409    0.000
##     RCO07             0.836    0.046   18.206    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.070    0.121    8.838    0.000
##     dominio           0.900    0.129    6.959    0.000
##     control           1.424    0.157    9.063    0.000
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.027    0.044   23.416    0.000
##     EN04              0.998    0.044   22.870    0.000
##     EN05              0.996    0.042   23.836    0.000
##     EN06              0.983    0.041   23.857    0.000
##     EN07              1.045    0.045   22.964    0.000
##     EN08              1.033    0.042   24.399    0.000
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.985    0.028   35.255    0.000
##     EVI03             0.996    0.048   20.570    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.905    0.034   26.515    0.000
##     EDE03             0.567    0.037   15.447    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.656    0.053   12.368    0.000
##   engagement =~                                       
##     vigor             1.000                           
##     dedicacion        1.216    0.061   20.023    0.000
##     absorcion         0.984    0.057   17.202    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia ~~                                          
##     engagement        1.616    0.222    7.269    0.000
##   recuperacion ~~                                     
##     engagement        0.893    0.152    5.888    0.000
##     energia           1.365    0.197    6.933    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.168    0.119    9.781    0.000
##    .RPD02             0.982    0.107    9.202    0.000
##    .RPD03             1.434    0.147    9.729    0.000
##    .RPD05             0.972    0.109    8.938    0.000
##    .RPD06             1.837    0.184    9.980    0.000
##    .RPD07             1.165    0.124    9.377    0.000
##    .RPD08             1.486    0.153    9.740    0.000
##    .RPD09             1.037    0.115    9.036    0.000
##    .RPD10             1.046    0.116    8.984    0.000
##    .RRE02             0.623    0.067    9.252    0.000
##    .RRE03             0.647    0.072    8.976    0.000
##    .RRE04             0.492    0.056    8.829    0.000
##    .RRE05             0.384    0.047    8.202    0.000
##    .RRE06             0.880    0.097    9.122    0.000
##    .RRE07             0.930    0.098    9.460    0.000
##    .RRE10             1.136    0.113   10.087    0.000
##    .RMA02             1.741    0.175    9.935    0.000
##    .RMA03             1.499    0.156    9.594    0.000
##    .RMA04             0.857    0.098    8.785    0.000
##    .RMA05             0.903    0.101    8.983    0.000
##    .RMA06             1.626    0.158   10.280    0.000
##    .RMA07             0.844    0.094    8.979    0.000
##    .RMA08             0.882    0.098    9.031    0.000
##    .RMA09             1.090    0.115    9.498    0.000
##    .RMA10             1.257    0.131    9.592    0.000
##    .RCO02             0.977    0.104    9.391    0.000
##    .RCO03             0.493    0.058    8.475    0.000
##    .RCO04             0.468    0.052    9.017    0.000
##    .RCO05             0.393    0.046    8.621    0.000
##    .RCO06             0.479    0.054    8.883    0.000
##    .RCO07             0.505    0.056    8.972    0.000
##    .EN01              0.696    0.072    9.660    0.000
##    .EN02              0.443    0.049    9.063    0.000
##    .EN04              0.473    0.051    9.236    0.000
##    .EN05              0.378    0.042    8.907    0.000
##    .EN06              0.366    0.041    8.899    0.000
##    .EN07              0.507    0.055    9.209    0.000
##    .EN08              0.353    0.041    8.658    0.000
##    .EVI01             0.199    0.039    5.056    0.000
##    .EVI02             0.224    0.040    5.637    0.000
##    .EVI03             1.211    0.124    9.770    0.000
##    .EDE01             0.352    0.064    5.529    0.000
##    .EDE02             0.509    0.067    7.646    0.000
##    .EDE03             0.874    0.088    9.945    0.000
##    .EAB01             0.379    0.128    2.953    0.003
##    .EAB02             1.149    0.121    9.491    0.000
##    .desapego          0.953    0.149    6.397    0.000
##    .relajacion        0.514    0.085    6.027    0.000
##    .dominio           1.191    0.200    5.956    0.000
##    .control           0.693    0.125    5.534    0.000
##     recuperacion      0.972    0.199    4.892    0.000
##     energia           2.816    0.327    8.605    0.000
##    .vigor             0.536    0.084    6.413    0.000
##    .dedicacion        0.099    0.087    1.131    0.258
##    .absorcion         0.469    0.138    3.392    0.001
##     engagement        2.300    0.284    8.099    0.000
lavaanPlot(fit5,coef=TRUE,cov=TRUE)
LS0tDQp0aXRsZTogIlN0cnVjdHVyYWwgRXF1YXRpb24gTW9kZWxpbmciDQphdXRob3I6ICJYaW1lbmEgU29sw61zIg0KZGF0ZTogIjIwMjQtMDItMjIiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiB0cnVlDQogICAgdG9jX2RlcHRoOiAzDQogICAgbnVtYmVyX3NlY3Rpb25zOiBUUlVFDQogICAgdG9jX2Zsb2F0OiB0cnVlDQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KLS0tDQoNCiFbXShDOlxcVXNlcnNcXHhzaV9zXFxEb3dubG9hZHNcXHNlbSBpbWFnZS5wbmcpDQoNCiMgVGVvcsOtYQ0KDQpMb3MgKipNb2RlbG9zIGRlIEVjdWFjaW9uZXMgRXN0cnVjdHVyYWxlcyAoU0VNKSoqIGVzIHVuYSB0w6ljbmljYSBkZSBhbsOhbGlzaXMgZGUgZXN0YWTDrXN0aWNhIG11bHRpdmFyaWFkYSwgcXVlIHBlcm1pdGUgYW5hbGl6YXIgcGF0cm9uZXMgY29tcGxlam9zIGRlIHJlbGFjaW9uZXMgZW50cmUgdmFyaWFibGVzLCByZWFsaXphciBjb21wYXJhY2lvbmVzIGVudHJlIGUgaW50cmFncnVwb3MsIHkgdmFsaWRhciBtb2RlbG9zIHRlw7NyaWNvcyB5IGVtcMOtcmljb3MuDQoNCiMgRWplbXBsbyAxLiBFc3R1ZGlvIGRlIEhvbHppbmdlciB5IFN3aW5lZm9yZCAoMTkzOSkNCg0KIyMgQ29udGV4dG8NCg0KSG9semluZ2VyIHkgU3dpbmVmb3JkIHJlYWxpemFyb24gZXjDoW1lbmVzIGRlIGhhYmlsaWRhZCBtZW50YWwgYSBhZG9sZXNjZW50ZXMgZGUgN8KwIHkgOMKwIGdyYWRvIGRlIGRvcyBlc2N1ZWxhcyAoUGFzdGV1ciB5IEdyYW5kLVdoaXRlKS4NCg0KTGEgYmFzZSBkZSBkYXRvcyBlc3TDoSBpbmNsdWlkYSBjb21vIHBhcXVldGUgZW4gUiwgZSBpbmNsdXllIGxhcyBzaWd1aWVudGVzIGNvbHVtbmFzOg0KDQotICAgaWQ6IGlkZW50aWZpY2Fkb3JcDQotICAgc2V4OiBnw6luZXJvICgxPW1hbGUsIDI9ZmVtYWxlKVwNCi0gICB4MTogUGVyY2VwY2nDs24gdmlzdWFsXA0KLSAgIHgyOiBKdWVnbyBjb24gY3Vib3NcDQotICAgeDM6IEp1ZWdvIGNvbiBwYXN0aWxsYXMvZXNwYWNpYWxcDQotICAgeDQ6IENvbXByZW5zacOzbiBkZSBww6FycmFmb3NcDQotICAgeDU6IENvbXBsZXRhciBvcmFjaW9uZXNcDQotICAgeDY6IFNpZ25pZmljYWRvIGRlIHBhbGFicmFzXA0KLSAgIHg3OiBTdW1hcyBhY2VsZXJhZGFzXA0KLSAgIHg4OiBDb250ZW8gYWNlbGVyYWRvIGRlIHB1bnRvc1wNCi0gICB4OTogRGlzY3JpbWluYWNpw7NuIGFjZWxlcmFkYSBkZSBtYXnDunNjdWxhcyByZWN0YXMgeSBjdXJ2YXMNCg0KU2UgYnVzY2EgaWRlbnRpZmljYXIgbGFzIHJlbGFjaW9uZXMgZW50cmUgbGFzIGhhYmlsaWRhZGVzIHZpc3VhbCAoeDEsIHgyLCB4MyksIHRleHR1YWwgKHg0LCB4NSwgeDYpIHkgdmVsb2NpZGFkICh4NywgeDgsIHg5KSBkZSBsb3MgYWRvbGVzY2VudGVzLg0KDQojIyBJbnN0YWxhciBwYXF1ZXRlcyB5IGxsYW1hciBsaWJyZXLDrWFzDQoNCmBgYHtyLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KIyBMYXZhYW4gPSBMYXRlbnQgdmFyaWFibGUgYW5hbHlzaXMgKG5vIHNlIG9ic2VydmEsIHNlIGluZmllcmUpDQpsaWJyYXJ5KGxhdmFhbikNCmxpYnJhcnkobGF2YWFuUGxvdCkNCmBgYA0KDQojIyBJbXBvcnRhciBsYSBiYXNlIGRlIGRhdG9zDQoNCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQpkZjEgPC0gSG9semluZ2VyU3dpbmVmb3JkMTkzOQ0KYGBgDQoNCiMjIEVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3MNCg0KYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCnN1bW1hcnkoZGYxKQ0Kc3RyKGRmMSkNCmBgYA0KDQojIyBUaXBvcyBkZSBGw7NybXVsYXMNCg0KMS4gIFJlZ3Jlc2nDs24gKFx+KSBWYXJpYWJsZSBxdWUgZGVwZW5kZSBkZSBvdHJhcy5cDQoyLiAgVmFyaWFibGVzIGxhdGVudGVzICg9XH4pIE5vIHNlIG9ic2VydmEsIHNlIGluZmllcmUuXA0KMy4gIFZhcmlhbnphcyB5IGNvdmFyaWFuemFzIChcflx+KSBSZWxhY2lvbmVzIGVudHJlIHZhcmlhYmxlcyBsYXRlbnRlcyB5IG9ic2VydmFkYXMgKHZhcmlhbnphIGVudHJlIHPDrSBtaXNtYSwgY292YXJpYW56YSBlbnRyZSBvdHJhcykuXA0KNC4gIEludGVyY2VwdG8gKFx+MSkgVmFsb3IgZXNwZXJhZG8gY3VhbmRvIGxhcyBkZW3DoXMgdmFyaWFibGVzIHNvbiBjZXJvLg0KDQojIyBFc3RydWN0dXJhciBlbCBtb2RlbG8NCg0KYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCm1vZGVsbzEgPC0gJyAjIFJlZ3Jlc2lvbmVzDQogICAgICAgICAgICMgVmFyaWFibGVzIGxhdGVudGVzDQogICAgICAgICAgIHZpc3VhbCA9fiB4MSsgeDIgKyB4Mw0KICAgICAgICAgICB0ZXh0dWFsID1+IHg0ICsgeDUgKyB4Ng0KICAgICAgICAgICB2ZWxvY2lkYWQgPX4geDcgKyB4OCArIHg5DQogICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YXMNCiAgICAgICAgICAgIyBJbnRlcmNlcHRvDQogICAgICAgICAgICcNCmBgYA0KDQojIyBHZW5lcmFyIGVsIEFuw6FsaXNpcyBGYWN0b3JpYWwgQ29uZmlybWF0b3JpbyAoQ0ZBKQ0KDQpgYGB7cn0NCmZpdCA8LSBjZmEobW9kZWxvMSxkZjEpDQpzdW1tYXJ5KGZpdCkNCmxhdmFhblBsb3QoZml0LGNvZWY9VFJVRSxjb3Y9VFJVRSkNCmBgYA0KDQoNCg0KDQojIEVqZXJjaWNpbyAyOiBEZW1vY3JhY2lhIFBvbMOtdGljYSBlIEluZHVzdHJpYWxpemFjacOzbg0KDQojIyBDb250ZXh0bw0KTGEgYmFzZSBkZSBkYXRvcyBjb250aWVuZSBkaXN0aW50YXMgbWVkaWNpb25lcyBzb2JyZSBsYSBkZW1vY3JhY2lhIHBvbMOtdGljYSBlIGluZHVzdHJpYWxpemFjacOzbiBlbiBwYcOtc2VzIGVuIGRlc2Fycm9sbG8gZHVyYW50ZSAxOTYwIHkgMTk2NS4gIA0KDQpMYSB0YWJsYSBpbmNsdXllIGxvcyBzaWd1aWVudGVzIGRhdG9zOg0KDQoqIHkxOiBDYWxpZmljYWNpb25lcyBzb2JyZSBsaWJlcnRhZCBkZSBwcmVuc2EgZW4gMTk2MCAgDQoqIHkyOiBMaWJlcnRhZCBkZSBsYSBvcG9zaWNpw7NuIMOzbMOtdGljYSBlbiAxOTYwICANCiogeTM6IEltcGFyY2lhbGlkYWQgZGUgZWxlY2Npb25lcyBlbiAxOTYwICANCiogeTQ6IEVmaWNhY2lhIGRlIGxhIGxlZ2lzbGF0dXJhIGVsZWN0YSBlbiAxOTYwDQoqIHk1OiBDYWxpZmljYWNpb25lcyBzb2JyZSBsaWJlcnRhZCBkZSBwcmVuc2EgZW4gMTk2NSAgDQoqIHk2OiBMaWJlcnRhZCBkZSBsYSBvcG9zaWNpw7NuIMOzbMOtdGljYSBlbiAxOTY1ICANCiogeTc6IEltcGFyY2lhbGlkYWQgZGUgZWxlY2Npb25lcyBlbiAxOTY1ICANCiogeTg6IEVmaWNhY2lhIGRlIGxhIGxlZ2lzbGF0dXJhIGVsZWN0YSBlbiAxOTY1ICANCiogeDE6IFBJQiBwZXIgY8OhcGl0YSBlbiAxOTYwDQoqIHgyOiBDb25zdW1vIGRlIGVuZXJnw61hIGluYW5pbWFkYSBwZXIgY8OhcGl0YSBlbiAxOTYwICANCiogeDM6IFBvcmNlbnRhamUgZGUgbGEgZnVlcnphIGxhYm9yYWwgZW4gbGEgaW5kdXN0cmlhIGVuIDE5NjANCg0KDQojIyBJbXBvcnRhciBsYSBiYXNlIGRlIGRhdG9zDQoNCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQpkZjIgPC0gUG9saXRpY2FsRGVtb2NyYWN5DQpgYGANCg0KDQojIyBFbnRlbmRlciBsYSBiYXNlIGRlIGRhdG9zDQoNCmBgYHtyfQ0Kc3VtbWFyeShkZjIpDQpzdHIoZGYyKQ0KYGBgDQoNCg0KDQojIyBFc3RydWN0dXJhciBlbCBtb2RlbG8NCg0KYGBge3J9DQptb2RlbG8yIDwtICcgIyBSZWdyZXNpb25lcw0KICAgICAgICAgICBJbmR1c3RyaWFsNjAgfiBEZW1vY3JhY2lhNjANCiAgICAgICAgICAgIyBWYXJpYWJsZXMgbGF0ZW50ZXMNCiAgICAgICAgICAgRGVtb2NyYWNpYTYwID1+IHkxICsgeTIgKyB5MyArIHk0DQogICAgICAgICAgIERlbW9jcmFjaWE2NSA9fiB5NSArIHk2ICsgeTcgKyB5OA0KICAgICAgICAgICBJbmR1c3RyaWFsNjAgPX4geDEgKyB4MiArIHgzDQogICAgICAgICAgIEluZHVzdHJpYWw2NSA9fiBEZW1vY3JhY2lhNjUNCiAgICAgICAgICAgIyBWYXJpYW56YXMgeSBDb3Zhcmlhbnphcw0KICAgICAgICAgICAjIEludGVyY2VwdG8NCiAgICAgICAgICAgJw0KYGBgDQoNCiMjIEdlbmVyYXIgZWwgQW7DoWxpc2lzIEZhY3RvcmlhbCBDb25maXJtYXRvcmlvIChDRkEpDQoNCmBgYHtyfQ0KZml0MiA8LSBjZmEobW9kZWxvMixkZjIpDQpzdW1tYXJ5KGZpdDIpDQpsYXZhYW5QbG90KGZpdDIsY29lZj1UUlVFLGNvdj1UUlVFKQ0KYGBgDQoNCg0KDQojIEFjdGl2aWRhZCAzLiBCaWVuZXN0YXIgZGUgbG9zIENvbGFib3JhZG9yZXMNCg0KDQojIyBDb250ZXh0bw0KDQpVbm8gZGUgbG9zIHJldG9zIG3DoXMgaW1wb3J0YW50ZXMgZGUgbGFzIG9yZ2FuaXphY2lvbmVzIGVzIGVudGVuZGVyIGVsIGVzdGFkbyB5IGJpZW5lc3RhciBkZSBsb3MgY29sYWJvcmFkb3JlcywgeWEgcXVlIHB1ZWRlIGltcGFjdGFyIGRpcmVjdGFtZW50ZSBlbiBlbCBkZXNlbXBlw7FvIHkgZWwgbG9ncm8gZGUgbG9zIG9iamV0aXZvcy4gDQoNCg0KIyMgUGFydGUgMS4gRXhwZXJpZW5jaWFzIGRlIHJlY3VwZXJhY2nDs24NCg0KDQojIyMgSW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyw61hcw0KDQpgYGB7ciwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCiMgTGF2YWFuID0gTGF0ZW50IHZhcmlhYmxlIGFuYWx5c2lzIChubyBzZSBvYnNlcnZhLCBzZSBpbmZpZXJlKQ0KbGlicmFyeShsYXZhYW4pDQpsaWJyYXJ5KGxhdmFhblBsb3QpDQpsaWJyYXJ5KHJlYWR4bCkNCmBgYA0KDQojIyMgSW1wb3J0YXIgbGEgYmFzZSBkZSBkYXRvcw0KDQpgYGB7cn0NCmRmMyA8LSByZWFkX2V4Y2VsKCdEYXRvc19TRU1fRW5nLnhsc3gnKQ0KYGBgDQoNCiMjIyBFbnRlbmRlciBsYSBiYXNlIGRlIGRhdG9zDQoNCmBgYHtyfQ0Kc3VtbWFyeShkZjMpDQpzdHIoZGYzKQ0KYGBgDQoNCiMjIyBUaXBvcyBkZSBGw7NybXVsYXMNCg0KMS4gIFJlZ3Jlc2nDs24gKH4pIFZhcmlhYmxlIHF1ZSBkZXBlbmRlIGRlIG90cmFzLlwNCjIuICBWYXJpYWJsZXMgbGF0ZW50ZXMgKD1+KSBObyBzZSBvYnNlcnZhLCBzZSBpbmZpZXJlLlwNCjMuICBWYXJpYW56YXMgeSBjb3ZhcmlhbnphcyAofn4pIFJlbGFjaW9uZXMgZW50cmUgdmFyaWFibGVzIGxhdGVudGVzIHkgb2JzZXJ2YWRhICh2YXJpYW56YSBlbnRyZSBzw60gbWlzbWEsIGNvdmFyaWFuemEgZW50cmUgb3RyYXMpLlwNCjQuICBJbnRlcmNlcHRvICh+MSkgVmFsb3IgZXNwZXJhZG8gY3VhbmRvIGxhcyBkZW3DoXMgdmFyaWFibGVzIHNvbiBjZXJvLg0KDQojIyMgRXN0cnVjdHVyYXIgZWwgbW9kZWxvDQoNCmBgYHtyfQ0KbW9kZWxvMyA8LSAnICMgUmVncmVzaW9uZXMNCiAgICAgICAgICAgIyBWYXJpYWJsZXMgbGF0ZW50ZXMNCiAgICAgICAgICAgZGVzYXBlZ28gPX4gUlBEMDEgKyBSUEQwMiArIFJQRDAzICsgUlBEMDUgKyBSUEQwNiArIFJQRDA3ICsgUlBEMDggKyBSUEQwOSArIFJQRDEwDQogICAgICAgICAgIHJlbGFqYWNpb24gPX4gUlJFMDIgKyBSUkUwMyArIFJSRTA0ICsgUlJFMDUgKyBSUkUwNiArIFJSRTA3ICsgUlJFMTANCiAgICAgICAgICAgZG9taW5pbyA9fiBSTUEwMiArIFJNQTAzICsgUk1BMDQgKyBSTUEwNSArIFJNQTA2ICsgUk1BMDcgKyBSTUEwOCArIFJNQTA5ICsgUk1BMTANCiAgICAgICAgICAgY29udHJvbCA9fiBSQ08wMiArIFJDTzAzICsgUkNPMDQgKyBSQ08wNSArIFJDTzA2ICsgUkNPMDcNCiAgICAgICAgICAgcmVjdXBlcmFjaW9uID1+IGRlc2FwZWdvICsgcmVsYWphY2lvbiArIGRvbWluaW8gKyBjb250cm9sDQogICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YXMNCiAgICAgICAgICAgIyBJbnRlcmNlcHRvDQogICAgICAgICAgICcNCmBgYA0KDQojIyMgR2VuZXJhciBlbCBBbsOhbGlzaXMgRmFjdG9yaWFsIENvbmZpcm1hdG9yaW8gKENGQSkNCg0KYGBge3J9DQpmaXQzIDwtIGNmYShtb2RlbG8zLGRmMykNCnN1bW1hcnkoZml0MykNCmxhdmFhblBsb3QoZml0Myxjb2VmPVRSVUUsY292PVRSVUUpDQpgYGANCg0KDQpgYGB7cn0NCm1vZGVsb19kZXB1cmFkbzMgPC0gJyAjIFJlZ3Jlc2lvbmVzDQogICAgICAgICAgICMgVmFyaWFibGVzIGxhdGVudGVzDQogICAgICAgICAgIGRlc2FwZWdvID1+IFJQRDAxICsgUlBEMDIgKyBSUEQwMyArIFJQRDA1ICsgUlBEMDcgKyBSUEQwOCArIFJQRDA5ICsgUlBEMTANCiAgICAgICAgICAgcmVsYWphY2lvbiA9fiBSUkUwMiArIFJSRTAzICsgUlJFMDQgKyBSUkUwNSArIFJSRTA2ICsgUlJFMDcNCiAgICAgICAgICAgZG9taW5pbyA9fiBSTUEwMiArIFJNQTAzICsgUk1BMDQgKyBSTUEwNSArIFJNQTA3ICsgUk1BMDggKyBSTUEwOSArIFJNQTEwDQogICAgICAgICAgIGNvbnRyb2wgPX4gUkNPMDIgKyBSQ08wMyArIFJDTzA1ICsgUkNPMDYgKyBSQ08wNw0KICAgICAgICAgICByZWN1cGVyYWNpb24gPX4gZGVzYXBlZ28gKyByZWxhamFjaW9uICsgZG9taW5pbyArIGNvbnRyb2wNCiAgICAgICAgICAgIyBWYXJpYW56YXMgeSBDb3Zhcmlhbnphcw0KICAgICAgICAgICAjIEludGVyY2VwdG8NCiAgICAgICAgICAgJw0KYGBgDQoNCg0KIyMjIEdlbmVyYXIgZWwgQW7DoWxpc2lzIEZhY3RvcmlhbCBDb25maXJtYXRvcmlvIChDRkEpDQoNCmBgYHtyfQ0KZml0ZGVwdXJhZG8gPC0gY2ZhKG1vZGVsb19kZXB1cmFkbzMsZGYzKQ0Kc3VtbWFyeShmaXRkZXB1cmFkbykNCmxhdmFhblBsb3QoZml0ZGVwdXJhZG8sY29lZj1UUlVFLGNvdj1UUlVFKQ0KYGBgDQoNCg0KIyMgUGFydGUgMi4gRW5lcmfDrWEgUmVjdXBlcmFkYQ0KDQojIyMgRXN0cnVjdHVyYXIgZWwgbW9kZWxvDQoNCmBgYHtyfQ0KbW9kZWxvNCA8LSAnICMgUmVncmVzaW9uZXMNCiAgICAgICAgICAgIyBWYXJpYWJsZXMgbGF0ZW50ZXMNCiAgICAgICAgICAgZW5lcmdpYSA9fiBFTjAxICsgRU4wMiArIEVOMDQgKyBFTjA1ICsgRU4wNiArIEVOMDcgKyBFTjA4DQogICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YXMNCiAgICAgICAgICAgIyBJbnRlcmNlcHRvDQogICAgICAgICAgICcNCmBgYA0KDQoNCiMjIyBHZW5lcmFyIGVsIEFuw6FsaXNpcyBGYWN0b3JpYWwgQ29uZmlybWF0b3JpbyAoQ0ZBKQ0KDQpgYGB7cn0NCmZpdDQgPC0gY2ZhKG1vZGVsbzQsZGYzKQ0Kc3VtbWFyeShmaXQ0KQ0KbGF2YWFuUGxvdChmaXQ0LGNvZWY9VFJVRSxjb3Y9VFJVRSkNCmBgYA0KDQoNCkRlc3B1w6lzIGRlIGV2YWx1YXIgbG9zIHZhbG9yZXMgZXN0aW1hdGl2b3MsIGxvcyBlcnJvcmVzIGVzdMOhbmRhciB5IGVsIHAtdmFsdWUsIGRldGVybWluYW1vcyBpbm5lY2VzYXJpbyBkZXB1cmFyIGVsIG1vZGVsby4NCg0KDQojIyBQYXJ0ZSAzLiBFbmdhZ2VtZW50IGxhYm9yYWwNCg0KIyMjIEVzdHJ1Y3R1cmFyIGVsIG1vZGVsbw0KDQpgYGB7cn0NCm1vZGVsbzUgPC0gJyAjIFJlZ3Jlc2lvbmVzDQoNCiAgICAgICAgICAgIyBWYXJpYWJsZXMgbGF0ZW50ZXMgMQ0KICAgICAgICAgICBkZXNhcGVnbyA9fiBSUEQwMSArIFJQRDAyICsgUlBEMDMgKyBSUEQwNSArIFJQRDA2ICsgUlBEMDcgKyBSUEQwOCArIFJQRDA5ICsgUlBEMTANCiAgICAgICAgICAgcmVsYWphY2lvbiA9fiBSUkUwMiArIFJSRTAzICsgUlJFMDQgKyBSUkUwNSArIFJSRTA2ICsgUlJFMDcgKyBSUkUxMA0KICAgICAgICAgICBkb21pbmlvID1+IFJNQTAyICsgUk1BMDMgKyBSTUEwNCArIFJNQTA1ICsgUk1BMDYgKyBSTUEwNyArIFJNQTA4ICsgUk1BMDkgKyBSTUExMA0KICAgICAgICAgICBjb250cm9sID1+IFJDTzAyICsgUkNPMDMgKyBSQ08wNCArIFJDTzA1ICsgUkNPMDYgKyBSQ08wNw0KICAgICAgICAgICByZWN1cGVyYWNpb24gPX4gZGVzYXBlZ28gKyByZWxhamFjaW9uICsgZG9taW5pbyArIGNvbnRyb2wNCiAgICAgICAgICAgDQogICAgICAgICAgICMgVmFyaWFibGVzIGxhdGVudGVzIDINCiAgICAgICAgICAgZW5lcmdpYSA9fiBFTjAxICsgRU4wMiArIEVOMDQgKyBFTjA1ICsgRU4wNiArIEVOMDcgKyBFTjA4DQogICAgICAgICAgIA0KICAgICAgICAgICAjIFZhcmlhYmxlcyBsYXRlbnRlcyAzDQogICAgICAgICAgIHZpZ29yID1+IEVWSTAxICsgRVZJMDIgKyBFVkkwMw0KICAgICAgICAgICBkZWRpY2FjaW9uID1+IEVERTAxICsgRURFMDIgKyBFREUwMw0KICAgICAgICAgICBhYnNvcmNpb24gPX4gRUFCMDEgKyBFQUIwMg0KICAgICAgICAgICBlbmdhZ2VtZW50ID1+IHZpZ29yICsgZGVkaWNhY2lvbiArIGFic29yY2lvbg0KICAgICAgICAgICANCiAgICAgICAgICAgIyBWYXJpYW56YXMgeSBDb3Zhcmlhbnphcw0KICAgICAgICAgICBlbmdhZ2VtZW50IH5+IGVuZXJnaWEgKyByZWN1cGVyYWNpb24NCiAgICAgICAgICAgDQogICAgICAgICAgICMgSW50ZXJjZXB0bw0KICAgICAgICAgICANCiAgICAgICAgICAgJw0KYGBgDQoNCg0KIyMjIEdlbmVyYXIgZWwgQW7DoWxpc2lzIEZhY3RvcmlhbCBDb25maXJtYXRvcmlvIChDRkEpDQoNCmBgYHtyfQ0KZml0NSA8LSBzZW0obW9kZWxvNSxkZjMpDQpzdW1tYXJ5KGZpdDUpDQpsYXZhYW5QbG90KGZpdDUsY29lZj1UUlVFLGNvdj1UUlVFKQ0KYGBgDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0K