# excel file
data <- read_excel("../00_data/MKmyData.xlsx") %>%
janitor::clean_names() %>%
mutate(age = as.numeric(age))
data
## # A tibble: 101 × 17
## column1 id_on_tag animal_name scientific_name tag_deployment_start
## <dbl> <chr> <chr> <chr> <chr>
## 1 1 Tommy-Tag Tommy Felis catus 2017-06-03T01:02:00.0000001…
## 2 2 Athena Athena Felis catus 2017-06-24T01:02:00.0000001…
## 3 3 Ares Ares Felis catus 2017-06-24T01:02:59.9999997…
## 4 4 Lola Lola Felis catus 2017-06-24T01:18:00.0000001…
## 5 5 Maverick Maverick Felis catus 2017-06-25T01:03:59.9999999…
## 6 6 Coco Coco Felis catus 2017-06-28T01:02:00.0000001…
## 7 7 Charlie Charlie Felis catus 2017-06-28T01:02:59.9999997…
## 8 8 Jago Jago Felis catus 2017-06-28T04:09:59.9999998…
## 9 9 Morpheus-Tag Morpheus Felis catus 2017-07-01T01:02:00.0000001…
## 10 10 Nettle-Tag Nettle Felis catus 2017-07-01T01:05:00.0000001…
## # ℹ 91 more rows
## # ℹ 12 more variables: tag_deployment_end <chr>, hunt <chr>,
## # number_prey_per_month <dbl>, reproductive_condition <chr>, sex <chr>,
## # hours_indoor_per_day <dbl>, number_of_cats_in_house <dbl>, dry_food <lgl>,
## # wet_food <lgl>, other_food <chr>, study_location <chr>, age <dbl>
The longer the number of hours indoor per day, the older the cat is # Plot data
ggplot(data = data) +
geom_point(mapping = aes(x = age, y = hours_indoor_per_day))
There seems to be preliminary evidence of no clear positive relationship between the number of hours indoor per day and the age of the cat.