set.seed(1234)
randDat <-matrix(rnorm(50), nrow = 5)
randDat
##            [,1]       [,2]        [,3]       [,4]       [,5]       [,6]
## [1,] -1.2070657  0.5060559 -0.47719270 -0.1102855  0.1340882 -1.4482049
## [2,]  0.2774292 -0.5747400 -0.99838644 -0.5110095 -0.4906859  0.5747557
## [3,]  1.0844412 -0.5466319 -0.77625389 -0.9111954 -0.4405479 -1.0236557
## [4,] -2.3456977 -0.5644520  0.06445882 -0.8371717  0.4595894 -0.0151383
## [5,]  0.4291247 -0.8900378  0.95949406  2.4158352 -0.6937202 -0.9359486
##            [,7]       [,8]       [,9]      [,10]
## [1,]  1.1022975 -1.1676193  1.4494963 -0.9685143
## [2,] -0.4755931 -2.1800396 -1.0686427 -1.1073182
## [3,] -0.7094400 -1.3409932 -0.8553646 -1.2519859
## [4,] -0.5012581 -0.2942939 -0.2806230 -0.5238281
## [5,] -1.6290935 -0.4658975 -0.9943401 -0.4968500
dist(randDat) 
##          1        2        3        4
## 2 4.261667                           
## 3 4.038030 2.060117                  
## 4 3.456732 3.726399 4.037978         
## 5 5.307253 4.415046 4.111230 4.814393
# Euclidean distance (default)> 
dist(randDat, method = "manhattan")
##           1         2         3         4
## 2 11.382197                              
## 3 10.016795  4.536827                    
## 4  9.887932  8.845512  8.829131          
## 5 14.683770 10.617871  9.091241 11.362705
dist(randDat, method = "minkowski", p= 4)
##          1        2        3        4
## 2 2.899494                           
## 3 2.875467 1.653824                  
## 4 2.208297 2.814135 3.453336         
## 5 3.488531 3.192217 3.398721 3.643788
d<-dist(scale(iris[, -5]))
h<-hclust(d)
plot (h)

plot (h, hang =  -0.1, labels = iris[["species"]],cex=0.5)

#cex is to reduce front
c<-cutree(h,3)
c
##   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [38] 1 1 1 1 2 1 1 1 1 1 1 1 1 3 3 3 2 3 2 3 2 3 2 2 3 2 3 3 3 3 2 2 2 3 3 3 3
##  [75] 3 3 3 3 3 2 2 2 2 3 3 3 3 2 3 2 2 3 2 2 2 3 3 3 2 2 3 3 3 3 3 3 2 3 3 3 3
## [112] 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [149] 3 3
(cm<- table(c, iris$Species))
##    
## c   setosa versicolor virginica
##   1     49          0         0
##   2      1         21         2
##   3      0         29        48
Error<-100*(1-sum(diag(cm))/sum(cm))
Error
## [1] 21.33333
library(cluster)
silhouette(c, d)
##        cluster neighbor   sil_width
##   [1,]       1        2  0.74381061
##   [2,]       1        2  0.52251215
##   [3,]       1        2  0.66073019
##   [4,]       1        2  0.58819251
##   [5,]       1        2  0.74002653
##   [6,]       1        2  0.63964608
##   [7,]       1        2  0.69599504
##   [8,]       1        2  0.73518521
##   [9,]       1        2  0.41172906
##  [10,]       1        2  0.60436547
##  [11,]       1        2  0.69419410
##  [12,]       1        2  0.72329651
##  [13,]       1        2  0.53223683
##  [14,]       1        2  0.49535416
##  [15,]       1        3  0.57762368
##  [16,]       1        3  0.46169664
##  [17,]       1        2  0.64765800
##  [18,]       1        2  0.73950603
##  [19,]       1        2  0.61735113
##  [20,]       1        2  0.69713933
##  [21,]       1        2  0.67059935
##  [22,]       1        2  0.70888740
##  [23,]       1        2  0.70027595
##  [24,]       1        2  0.63966308
##  [25,]       1        2  0.70331638
##  [26,]       1        2  0.49852786
##  [27,]       1        2  0.71129988
##  [28,]       1        2  0.73277924
##  [29,]       1        2  0.72073892
##  [30,]       1        2  0.65104081
##  [31,]       1        2  0.59701883
##  [32,]       1        2  0.66005618
##  [33,]       1        2  0.61396099
##  [34,]       1        3  0.56172259
##  [35,]       1        2  0.60158592
##  [36,]       1        2  0.66343730
##  [37,]       1        2  0.67907313
##  [38,]       1        2  0.73344514
##  [39,]       1        2  0.49893006
##  [40,]       1        2  0.73032162
##  [41,]       1        2  0.74223204
##  [42,]       2        1  0.11505796
##  [43,]       1        2  0.61310051
##  [44,]       1        2  0.67752577
##  [45,]       1        2  0.67266764
##  [46,]       1        2  0.51096571
##  [47,]       1        2  0.69769140
##  [48,]       1        2  0.64717198
##  [49,]       1        2  0.70772044
##  [50,]       1        2  0.70821522
##  [51,]       3        2  0.44810916
##  [52,]       3        2  0.42551507
##  [53,]       3        2  0.48113585
##  [54,]       2        3  0.60056798
##  [55,]       3        2  0.28909599
##  [56,]       2        3  0.25532064
##  [57,]       3        2  0.44163580
##  [58,]       2        3  0.58862119
##  [59,]       3        2  0.31165524
##  [60,]       2        3  0.47925063
##  [61,]       2        3  0.53533494
##  [62,]       3        2  0.13798259
##  [63,]       2        3  0.50489380
##  [64,]       3        2  0.19049376
##  [65,]       3        2 -0.29889737
##  [66,]       3        2  0.41447292
##  [67,]       3        2  0.01586865
##  [68,]       2        3  0.44246194
##  [69,]       2        3  0.34101152
##  [70,]       2        3  0.61849466
##  [71,]       3        2  0.37763392
##  [72,]       3        2 -0.13265959
##  [73,]       3        2 -0.10917695
##  [74,]       3        2 -0.04975816
##  [75,]       3        2  0.21535096
##  [76,]       3        2  0.37677150
##  [77,]       3        2  0.33076400
##  [78,]       3        2  0.51039252
##  [79,]       3        2  0.14817057
##  [80,]       2        3  0.55591487
##  [81,]       2        3  0.64017720
##  [82,]       2        3  0.63633810
##  [83,]       2        3  0.43828812
##  [84,]       3        2  0.05444339
##  [85,]       3        2 -0.08567781
##  [86,]       3        2  0.35396959
##  [87,]       3        2  0.46838922
##  [88,]       2        3  0.33877191
##  [89,]       3        2 -0.13113484
##  [90,]       2        3  0.60086588
##  [91,]       2        3  0.54141464
##  [92,]       3        2  0.25946590
##  [93,]       2        3  0.51105620
##  [94,]       2        3  0.59963069
##  [95,]       2        3  0.45426587
##  [96,]       3        2 -0.11025116
##  [97,]       3        2 -0.20236125
##  [98,]       3        2  0.12488131
##  [99,]       2        3  0.58669598
## [100,]       2        3  0.31751136
## [101,]       3        2  0.48030393
## [102,]       3        2  0.07781886
## [103,]       3        2  0.52818285
## [104,]       3        2  0.45479299
## [105,]       3        2  0.52765484
## [106,]       3        2  0.46070084
## [107,]       2        3  0.42297967
## [108,]       3        2  0.46821593
## [109,]       3        2  0.24408754
## [110,]       3        2  0.45830809
## [111,]       3        2  0.54054151
## [112,]       3        2  0.34990684
## [113,]       3        2  0.54864397
## [114,]       3        2 -0.14954119
## [115,]       3        2  0.24982270
## [116,]       3        2  0.52152482
## [117,]       3        2  0.52530621
## [118,]       3        2  0.40527772
## [119,]       3        2  0.35156138
## [120,]       2        3  0.35090417
## [121,]       3        2  0.54433023
## [122,]       3        2  0.07700160
## [123,]       3        2  0.40831945
## [124,]       3        2  0.26315229
## [125,]       3        2  0.54408598
## [126,]       3        2  0.51663483
## [127,]       3        2  0.30994750
## [128,]       3        2  0.41268004
## [129,]       3        2  0.44434621
## [130,]       3        2  0.48294810
## [131,]       3        2  0.44165933
## [132,]       3        2  0.39458828
## [133,]       3        2  0.44191565
## [134,]       3        2  0.28181352
## [135,]       3        2 -0.02944153
## [136,]       3        2  0.45534598
## [137,]       3        2  0.48077840
## [138,]       3        2  0.52641092
## [139,]       3        2  0.36551707
## [140,]       3        2  0.55583283
## [141,]       3        2  0.53460231
## [142,]       3        2  0.53372987
## [143,]       3        2  0.07781886
## [144,]       3        2  0.54363634
## [145,]       3        2  0.51463269
## [146,]       3        2  0.52659597
## [147,]       3        2  0.08512800
## [148,]       3        2  0.53286756
## [149,]       3        2  0.47143716
## [150,]       3        2  0.34701606
## attr(,"Ordered")
## [1] FALSE
## attr(,"call")
## silhouette.default(x = c, dist = d)
## attr(,"class")
## [1] "silhouette"
plot(silhouette(c, d))

set.seed(1234)
d<-dist(scale(iris[,-5]))
methds<-c('complete', 'single', 'average')
avgs<-matrix(NA,ncol=3,nrow = 5, dimnames = list(2:6,methds))
for (k in 2:6){
  for (m in seq_along(methds)){
    h<-hclust(d,meth=methds[m])
    c<- cutree(h,k)
    s<-silhouette(c,d)
    avgs[k-1,m]=mean(s[,3])
  
  }
}
avgs
##    complete    single   average
## 2 0.4408121 0.5817500 0.5817500
## 3 0.4496185 0.5046456 0.4802669
## 4 0.4106071 0.4067465 0.4067465
## 5 0.3520630 0.3424089 0.3746013
## 6 0.3106991 0.2018867 0.3248248
seeds_dataset <- read.delim("/Users/makindeoye/Downloads/seeds_dataset.txt")
 View(seeds_dataset)
 sdf<- seeds_dataset[,-8]
 View (sdf)
 sdf
##     X15.26 X14.84 X0.871 X5.763 X3.312 X2.221 X5.22
## 1   14.880  14.57 0.8811 5.5540  3.333 1.0180 4.956
## 2   14.290  14.09 0.9050 5.2910  3.337 2.6990 4.825
## 3   13.840  13.94 0.8955 5.3240  3.379 2.2590 4.805
## 4   16.140  14.99 0.9034 5.6580  3.562 1.3550 5.175
## 5   14.380  14.21 0.8951 5.3860  3.312 2.4620 4.956
## 6   14.690  14.49 0.8799 5.5630  3.259 3.5860 5.219
## 7   14.110  14.10 0.8911 5.4200  3.302 2.7000    NA
## 8       NA   1.00     NA     NA     NA     NA    NA
## 9   16.630  15.46 0.8747 6.0530  3.465 2.0400 5.877
## 10  16.440  15.25 0.8880 5.8840  3.505 1.9690 5.533
## 11  15.260  14.85 0.8696 5.7140  3.242 4.5430 5.314
## 12  14.030  14.16 0.8796 5.4380  3.201 1.7170 5.001
## 13  13.890  14.02 0.8880 5.4390  3.199 3.9860 4.738
## 14  13.780  14.06 0.8759 5.4790  3.156 3.1360 4.872
## 15  13.740  14.05 0.8744 5.4820  3.114 2.9320 4.825
## 16  14.590  14.28 0.8993 5.3510  3.333 4.1850 4.781
## 17  13.990  13.83 0.9183 5.1190  3.383 5.2340 4.781
## 18  15.690  14.75 0.9058 5.5270  3.514 1.5990 5.046
## 19  14.700  14.21 0.9153 5.2050  3.466 1.7670 4.649
## 20  12.720  13.57 0.8686 5.2260  3.049 4.1020 4.914
## 21  14.160  14.40 0.8584 5.6580  3.129 3.0720 5.176
## 22  14.110  14.26 0.8722 5.5200  3.168 2.6880 5.219
## 23  15.880  14.90 0.8988 5.6180  3.507 0.7651 5.091
## 24  12.080  13.23 0.8664 5.0990  2.936 1.4150 4.961
## 25  15.010  14.76 0.8657 5.7890  3.245 1.7910 5.001
## 26  16.190  15.16 0.8849 5.8330  3.421 0.9030 5.307
## 27  13.020  13.76 0.8641 5.3950  3.026 3.3730 4.825
## 28  12.740  13.67 0.8564 5.3950  2.956 2.5040 4.869
## 29  14.110  14.18 0.8820 5.5410  3.221 2.7540 5.038
## 30  13.450  14.02 0.8604 5.5160  3.065 3.5310 5.097
## 31  13.160  13.82 0.8662 5.4540  2.975 0.8551 5.056
## 32  15.490  14.94 0.8724 5.7570  3.371 3.4120 5.228
## 33  14.090  14.41 0.8529 5.7170  3.186 3.9200 5.299
## 34  13.940  14.17 0.8728 5.5850  3.150 2.1240 5.012
## 35  15.050  14.68 0.8779 5.7120  3.328 2.1290 5.360
## 36  16.120  15.00     NA 0.9000     NA 5.7090 3.485
## 37   5.443   1.00     NA     NA     NA     NA    NA
## 38  16.200  15.27 0.8734 5.8260  3.464 2.8230 5.527
## 39  17.080  15.38 0.9079 5.8320  3.683 2.9560 5.484
## 40  14.800  14.52 0.8823 5.6560  3.288 3.1120 5.309
## 41  14.280  14.17 0.8944 5.3970  3.298 6.6850 5.001
## 42  13.540  13.85 0.8871 5.3480  3.156 2.5870 5.178
## 43  13.500  13.85 0.8852 5.3510  3.158 2.2490 5.176
## 44  13.160  13.55 0.9009 5.1380  3.201 2.4610 4.783
## 45  15.500  14.86 0.8820 5.8770  3.396 4.7110 5.528
## 46  15.110  14.54 0.8986 5.5790  3.462 3.1280 5.180
## 47  13.800  14.04 0.8794 5.3760  3.155 1.5600 4.961
## 48  15.360  14.76 0.8861 5.7010  3.393 1.3670 5.132
## 49  14.990  14.56 0.8883 5.5700  3.377 2.9580 5.175
## 50  14.790  14.52 0.8819 5.5450  3.291 2.7040 5.111
## 51  14.860  14.67 0.8676 5.6780  3.258 2.1290 5.351
## 52  14.430  14.40 0.8751 5.5850  3.272 3.9750 5.144
## 53  15.780  14.91 0.8923 5.6740  3.434 5.5930 5.136
## 54  14.490  14.61 0.8538 5.7150  3.113 4.1160 5.396
## 55  14.330  14.28 0.8831 5.5040  3.199 3.3280 5.224
## 56  14.520  14.60 0.8557 5.7410  3.113 1.4810 5.487
## 57  15.030  14.77 0.8658 5.7020  3.212 1.9330 5.439
## 58  14.460  14.35 0.8818 5.3880  3.377 2.8020 5.044
## 59  14.920  14.43 0.9006 5.3840  3.412 1.1420 5.088
## 60  15.380  14.77 0.8857 5.6620  3.419 1.9990 5.222
## 61  12.110  13.47 0.8392 5.1590  3.032 1.5020 4.519
## 62  11.420  12.86 0.8683 5.0080  2.850 2.7000    NA
## 63   1.000     NA     NA     NA     NA     NA    NA
## 64  11.230  12.63 0.8840 4.9020  2.879 2.2690 4.703
## 65  12.360  13.19 0.8923 5.0760  3.042 3.2200 4.605
## 66  13.220  13.84 0.8680 5.3950  3.070 4.1570 5.088
## 67  12.780  13.57 0.8716 5.2620  3.026 1.1760 4.782
## 68  12.880  13.50 0.8879 5.1390  3.119 2.3520 4.607
## 69  14.340  14.37 0.8726 5.6300  3.190 1.3130 5.150
## 70  14.010  14.29 0.8625 5.6090  3.158 2.2170 5.132
## 71  14.370  14.39 0.8726 5.5690  3.153 1.4640 5.300
## 72   1.000     NA     NA     NA     NA     NA    NA
## 73  12.730  13.75 0.8458 5.4120  2.882 3.5330 5.067
## 74  17.630  15.98 0.8673 6.1910  3.561 4.0760 6.060
## 75  16.840  15.67 0.8623 5.9980  3.484 4.6750 5.877
## 76  17.260  15.73 0.8763 5.9780  3.594 4.5390 5.791
## 77  19.110  16.26 0.9081 6.1540  3.930 2.9360 6.079
## 78  16.820  15.51 0.8786 6.0170  3.486 4.0040 5.841
## 79  16.770  15.62 0.8638 5.9270  3.438 4.9200 5.795
## 80  17.320  15.91 0.8599 6.0640  3.403 3.8240 5.922
## 81  20.710  17.23 0.8763 6.5790  3.814 4.4510 6.451
## 82  18.940  16.49 0.8750 6.4450  3.639 5.0640 6.362
## 83  17.120  15.55 0.8892 5.8500  3.566 2.8580 5.746
## 84  16.530  15.34 0.8823 5.8750  3.467 5.5320 5.880
## 85  18.720  16.19 0.8977 6.0060  3.857 5.3240 5.879
## 86  20.200  16.89 0.8894 6.2850  3.864 5.1730 6.187
## 87  19.570  16.74 0.8779 6.3840  3.772 1.4720 6.273
## 88  19.510  16.71 0.8780 6.3660  3.801 2.9620 6.185
## 89  18.270  16.09 0.8870 6.1730  3.651 2.4430 6.197
## 90  18.880  16.26 0.8969 6.0840  3.764 1.6490 6.109
## 91  18.980  16.66 0.8590 6.5490  3.670 3.6910 6.498
## 92  21.180  17.21 0.8989 6.5730  4.033 5.7800 6.231
## 93  20.880  17.05 0.9031 6.4500  4.032 5.0160 6.321
## 94  20.100  16.99 0.8746 6.5810  3.785 1.9550 6.449
## 95  18.760  16.20 0.8984 6.1720  3.796 3.1200 6.053
## 96  18.810  16.29 0.8906 6.2720  3.693 3.2370 6.053
## 97  18.590  16.05 0.9066 6.0370  3.860 6.0010 5.877
## 98  18.360  16.52 0.8452 6.6660  3.485 4.9330 6.448
## 99  16.870  15.65 0.8648 6.1390  3.463 3.6960 5.967
## 100 19.310  16.59 0.8815 6.3410  3.810 3.4770 6.238
## 101 18.980  16.57 0.8687 6.4490  3.552 2.1440 6.453
## 102 18.170  16.26 0.8637 6.2710  3.512 2.8530 6.273
## 103 18.720  16.34 0.8810 6.2190  3.684 2.1880 6.097
## 104 16.410  15.25 0.8866 5.7180  3.525 4.2170 5.618
## 105 17.990  15.86 0.8992 5.8900  3.694 2.0680 5.837
## 106 19.460  16.50 0.8985 6.1130  3.892 4.3080 6.009
## 107 19.180  16.63 0.8717 6.3690  3.681 3.3570 6.229
## 108 18.950  16.42 0.8829 6.2480  3.755 3.3680 6.148
## 109 18.830  16.29 0.8917 6.0370  3.786 2.5530 5.879
## 110 18.850  16.17 0.9056 6.1520  3.806 2.8430 6.200
## 111  2.000     NA     NA     NA     NA     NA    NA
## 112 17.630  15.86 0.8800 6.0330  3.573 3.7470 5.929
## 113 19.940  16.92 0.8752 6.6750  3.763 3.2520 6.550
## 114 18.550  16.22 0.8865 6.1530  3.674 1.7380 5.894
## 115 18.450  16.12 0.8921 6.1070  3.769 2.2350 5.794
## 116 19.380  16.72 0.8716 6.3030  3.791 3.6780 5.965
## 117 19.130  16.31 0.9035 6.1830  3.902 2.1090 5.924
## 118 19.140  16.61 0.8722 6.2590  3.737 6.6820 6.053
## 119 20.970  17.25 0.8859 6.5630  3.991 4.6770 6.316
## 120 19.060  16.45 0.8854 6.4160  3.719 2.2480 6.163
## 121 18.960  16.20 0.9077 6.0510  3.897 4.3340 5.750
## 122 19.150  16.45 0.8890 6.2450  3.815 3.0840 6.185
## 123 18.890  16.23 0.9008 6.2270  3.769 3.6390 5.966
## 124 20.030  16.90 0.8811 6.4930  3.857 3.0630 6.320
## 125 20.240  16.91 0.8897 6.3150  3.962 5.9010 6.188
## 126 18.140  16.12 0.8772 6.0590  3.563 3.6190 6.011
## 127 16.170  15.38 0.8588 5.7620  3.387 4.2860 5.703
## 128 18.430  15.97 0.9077 5.9800  3.771 2.9840 5.905
## 129 15.990  14.89 0.9064 5.3630  3.582 3.3360 5.144
## 130 18.750  16.18 0.8999 6.1110  3.869 4.1880 5.992
## 131 18.650  16.41 0.8698 6.2850  3.594 4.3910 6.102
## 132 17.980  15.85 0.8993 5.9790  3.687 2.2570 5.919
## 133 20.160  17.03 0.8735 6.5130  3.773 1.9100 6.185
## 134 17.550  15.66 0.8991 5.7910  3.690 5.3660 5.661
## 135 18.300  15.89 0.9108 5.9790  3.755 2.8370 5.962
## 136 18.940  16.32 0.8942 6.1440  3.825 2.9080 5.949
## 137 15.380  14.90 0.8706 5.8840  3.268 4.4620 5.795
## 138 16.160  15.33 0.8644 5.8450  3.395 4.2660 5.795
## 139 15.560  14.89 0.8823 5.7760  3.408 4.9720 5.847
## 140 15.380  14.66 0.8990 5.4770  3.465 3.6000    NA
## 141  2.000     NA     NA     NA     NA     NA    NA
## 142 17.360  15.76 0.8785 6.1450  3.574 3.5260 5.971
## 143 15.570  15.15 0.8527 5.9200  3.231 2.6400 5.879
## 144 15.600  15.11 0.8580 5.8320  3.286 2.7250 5.752
## 145 16.230  15.18 0.8850 5.8720  3.472 3.7690 5.922
## 146 13.070  13.92 0.8480 5.4720  2.994 5.3040 5.395
## 147 13.320  13.94 0.8613 5.5410  3.073 7.0350 5.440
## 148 13.340  13.95 0.8620 5.3890  3.074 5.9950 5.307
## 149 12.220  13.32 0.8652 5.2240  2.967 5.4690 5.221
## 150 11.820  13.40 0.8274 5.3140  2.777 4.4710 5.178
## 151 11.210  13.13 0.8167 5.2790  2.687 6.1690 5.275
## 152 11.430  13.13 0.8335 5.1760  2.719 2.2210 5.132
## 153 12.490  13.46 0.8658 5.2670  2.967 4.4210 5.002
## 154 12.700  13.71 0.8491 5.3860  2.911 3.2600 5.316
## 155 10.790  12.93 0.8107 5.3170  2.648 5.4620 5.194
## 156 11.830  13.23 0.8496 5.2630  2.840 5.1950 5.307
## 157 12.010  13.52 0.8249 5.4050  2.776 6.9920 5.270
## 158 12.260  13.60 0.8333 5.4080  2.833 4.7560 5.360
## 159 11.180  13.04 0.8266 5.2200  2.693 3.3320 5.001
## 160 11.360  13.05 0.8382 5.1750  2.755 4.0480 5.263
## 161 11.190  13.05 0.8253 5.2500  2.675 5.8130 5.219
## 162 11.340  12.87 0.8596 5.0530  2.849 3.3470 5.003
## 163 12.130  13.73 0.8081 5.3940  2.745 4.8250 5.220
## 164 11.750  13.52 0.8082 5.4440  2.678 4.3780 5.310
## 165 11.490  13.22 0.8263 5.3040  2.695 5.3880 5.310
## 166 12.540  13.67 0.8425 5.4510  2.879 3.0820 5.491
## 167 12.020  13.33 0.8503 5.3500  2.810 4.2710 5.308
## 168 12.050  13.41 0.8416 5.2670  2.847 4.9880 5.046
## 169 12.550  13.57 0.8558 5.3330  2.968 4.4190 5.176
## 170 11.140  12.79 0.8558 5.0110  2.794 6.3880 5.049
## 171 12.100  13.15 0.8793 5.1050  2.941 2.2010 5.056
## 172 12.440  13.59 0.8462 5.3190  2.897 4.9240 5.270
## 173 12.150  13.45 0.8443 5.4170  2.837 3.6380 5.338
## 174 11.350  13.12 0.8291 5.1760  2.668 4.3370 5.132
## 175 11.240  13.00     NA 0.8359  5.090 2.7150 3.521
## 176  3.000     NA     NA     NA     NA     NA    NA
## 177 11.020  13.00     NA 0.8189  5.325 2.7010 6.735
## 178  3.000     NA     NA     NA     NA     NA    NA
## 179 11.550  13.10 0.8455 5.1670  2.845 6.7150 4.956
## 180 11.270  12.97 0.8419 5.0880  2.763 4.3090 5.000
## 181  3.000     NA     NA     NA     NA     NA    NA
## 182 11.400  13.08 0.8375 5.1360  2.763 5.5880 5.089
## 183 10.830  12.96 0.8099 5.2780  2.641 5.1820 5.185
## 184 10.800  12.57 0.8590 4.9810  2.821 4.7730 5.063
## 185 11.260  13.01 0.8355 5.1860  2.710 5.3350 5.092
## 186 10.740  12.73 0.8329 5.1450  2.642 4.7020 4.963
## 187 11.480  13.05 0.8473 5.1800  2.758 5.8760 5.002
## 188 12.210  13.47 0.8453 5.3570  2.893 1.6610 5.178
## 189 11.410  12.95 0.8560 5.0900  2.775 4.9570 4.825
## 190 12.460  13.41 0.8706 5.2360  3.017 4.9870 5.147
## 191 12.190  13.36 0.8579 5.2400  2.909 4.8570 5.158
## 192 11.650  13.07 0.8575 5.1080  2.850 5.2090 5.135
## 193 12.890  13.77 0.8541 5.4950  3.026 6.1850 5.316
## 194 11.560  13.31 0.8198 5.3630  2.683 4.0620 5.182
## 195 11.810  13.45 0.8198 5.4130  2.716 4.8980 5.352
## 196 10.910  12.80 0.8372 5.0880  2.675 4.1790 4.956
## 197 11.230  12.82 0.8594 5.0890  2.821 7.5240 4.957
## 198 10.590  12.41 0.8648 4.8990  2.787 4.9750 4.794
## 199 10.930  12.80 0.8390 5.0460  2.717 5.3980 5.045
## 200 11.270  12.86 0.8563 5.0910  2.804 3.9850 5.001
## 201 11.870  13.02 0.8795 5.1320  2.953 3.5970 5.132
## 202 10.820  12.83 0.8256 5.1800  2.630 4.8530 5.089
## 203 12.110  13.27 0.8639 5.2360  2.975 4.1320 5.012
## 204 12.800  13.47 0.8860 5.1600  3.126 4.8730 4.914
## 205 12.790  13.53 0.8786 5.2240  3.054 5.4830 4.958
## 206 13.370  13.78 0.8849 5.3200  3.128 4.6700 5.091
## 207 12.620  13.67 0.8481 5.4100  2.911 3.3060 5.231
## 208 12.760  13.38 0.8964 5.0730  3.155 2.8280 4.830
## 209 12.380  13.44 0.8609 5.2190  2.989 5.4720 5.045
## 210 12.670  13.32 0.8977 4.9840  3.135 2.3000    NA
## 211  3.000     NA     NA     NA     NA     NA    NA
## 212 11.180  12.72 0.8680 5.0090  2.810 4.0510 4.828
## 213 12.700  13.41 0.8874 5.1830  3.091 8.4560 5.000
## 214  3.000     NA     NA     NA     NA     NA    NA
## 215 12.370  13.47 0.8567 5.2040  2.960 3.9190 5.001
## 216 12.190  13.20 0.8783 5.1370  2.981 3.6310 4.870
## 217 11.230  12.88 0.8511 5.1400  2.795 4.3250 5.003
## 218 13.200  13.66 0.8883 5.2360  3.232 8.3150 5.056
## 219 11.840  13.21 0.8521 5.1750  2.836 3.5980 5.044
## 220 12.300  13.34 0.8684 5.2430  2.974 5.6370 5.063
 feature_name<-c('area', 'perimeter', 'compactness', 'lenght_of_Kernel', 'width.of.kernel','asymentry.coefficient', 'lenght.of.kernel.groove')
 colnames(sdf)<- feature_name
 str(sdf)
## 'data.frame':    220 obs. of  7 variables:
##  $ area                   : num  14.9 14.3 13.8 16.1 14.4 ...
##  $ perimeter              : num  14.6 14.1 13.9 15 14.2 ...
##  $ compactness            : num  0.881 0.905 0.895 0.903 0.895 ...
##  $ lenght_of_Kernel       : num  5.55 5.29 5.32 5.66 5.39 ...
##  $ width.of.kernel        : num  3.33 3.34 3.38 3.56 3.31 ...
##  $ asymentry.coefficient  : num  1.02 2.7 2.26 1.35 2.46 ...
##  $ lenght.of.kernel.groove: num  4.96 4.83 4.8 5.17 4.96 ...
 summary(sdf)
##       area         perimeter      compactness     lenght_of_Kernel
##  Min.   : 1.00   Min.   : 1.00   Min.   :0.8081   Min.   :0.8189  
##  1st Qu.:12.11   1st Qu.:13.43   1st Qu.:0.8576   1st Qu.:5.2430  
##  Median :14.11   Median :14.28   Median :0.8740   Median :5.5160  
##  Mean   :14.29   Mean   :14.43   Mean   :0.8713   Mean   :5.5630  
##  3rd Qu.:17.10   3rd Qu.:15.70   3rd Qu.:0.8878   3rd Qu.:5.9800  
##  Max.   :21.18   Max.   :17.25   Max.   :0.9183   Max.   :6.6750  
##  NA's   :1       NA's   :9       NA's   :14       NA's   :11      
##  width.of.kernel asymentry.coefficient lenght.of.kernel.groove
##  Min.   :2.630   Min.   :0.7651        Min.   :3.485          
##  1st Qu.:2.955   1st Qu.:2.6400        1st Qu.:5.045          
##  Median :3.244   Median :3.6000        Median :5.228          
##  Mean   :3.281   Mean   :3.7006        Mean   :5.408          
##  3rd Qu.:3.568   3rd Qu.:4.7730        3rd Qu.:5.879          
##  Max.   :5.325   Max.   :8.4560        Max.   :6.735          
##  NA's   :12      NA's   :11            NA's   :15
 is.na(sdf)
##         area perimeter compactness lenght_of_Kernel width.of.kernel
##   [1,] FALSE     FALSE       FALSE            FALSE           FALSE
##   [2,] FALSE     FALSE       FALSE            FALSE           FALSE
##   [3,] FALSE     FALSE       FALSE            FALSE           FALSE
##   [4,] FALSE     FALSE       FALSE            FALSE           FALSE
##   [5,] FALSE     FALSE       FALSE            FALSE           FALSE
##   [6,] FALSE     FALSE       FALSE            FALSE           FALSE
##   [7,] FALSE     FALSE       FALSE            FALSE           FALSE
##   [8,]  TRUE     FALSE        TRUE             TRUE            TRUE
##   [9,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [10,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [11,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [12,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [13,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [14,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [15,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [16,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [17,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [18,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [19,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [20,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [21,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [22,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [23,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [24,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [25,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [26,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [27,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [28,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [29,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [30,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [31,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [32,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [33,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [34,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [35,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [36,] FALSE     FALSE        TRUE            FALSE            TRUE
##  [37,] FALSE     FALSE        TRUE             TRUE            TRUE
##  [38,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [39,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [40,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [41,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [42,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [43,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [44,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [45,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [46,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [47,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [48,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [49,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [50,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [51,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [52,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [53,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [54,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [55,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [56,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [57,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [58,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [59,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [60,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [61,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [62,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [63,] FALSE      TRUE        TRUE             TRUE            TRUE
##  [64,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [65,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [66,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [67,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [68,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [69,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [70,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [71,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [72,] FALSE      TRUE        TRUE             TRUE            TRUE
##  [73,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [74,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [75,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [76,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [77,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [78,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [79,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [80,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [81,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [82,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [83,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [84,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [85,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [86,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [87,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [88,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [89,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [90,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [91,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [92,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [93,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [94,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [95,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [96,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [97,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [98,] FALSE     FALSE       FALSE            FALSE           FALSE
##  [99,] FALSE     FALSE       FALSE            FALSE           FALSE
## [100,] FALSE     FALSE       FALSE            FALSE           FALSE
## [101,] FALSE     FALSE       FALSE            FALSE           FALSE
## [102,] FALSE     FALSE       FALSE            FALSE           FALSE
## [103,] FALSE     FALSE       FALSE            FALSE           FALSE
## [104,] FALSE     FALSE       FALSE            FALSE           FALSE
## [105,] FALSE     FALSE       FALSE            FALSE           FALSE
## [106,] FALSE     FALSE       FALSE            FALSE           FALSE
## [107,] FALSE     FALSE       FALSE            FALSE           FALSE
## [108,] FALSE     FALSE       FALSE            FALSE           FALSE
## [109,] FALSE     FALSE       FALSE            FALSE           FALSE
## [110,] FALSE     FALSE       FALSE            FALSE           FALSE
## [111,] FALSE      TRUE        TRUE             TRUE            TRUE
## [112,] FALSE     FALSE       FALSE            FALSE           FALSE
## [113,] FALSE     FALSE       FALSE            FALSE           FALSE
## [114,] FALSE     FALSE       FALSE            FALSE           FALSE
## [115,] FALSE     FALSE       FALSE            FALSE           FALSE
## [116,] FALSE     FALSE       FALSE            FALSE           FALSE
## [117,] FALSE     FALSE       FALSE            FALSE           FALSE
## [118,] FALSE     FALSE       FALSE            FALSE           FALSE
## [119,] FALSE     FALSE       FALSE            FALSE           FALSE
## [120,] FALSE     FALSE       FALSE            FALSE           FALSE
## [121,] FALSE     FALSE       FALSE            FALSE           FALSE
## [122,] FALSE     FALSE       FALSE            FALSE           FALSE
## [123,] FALSE     FALSE       FALSE            FALSE           FALSE
## [124,] FALSE     FALSE       FALSE            FALSE           FALSE
## [125,] FALSE     FALSE       FALSE            FALSE           FALSE
## [126,] FALSE     FALSE       FALSE            FALSE           FALSE
## [127,] FALSE     FALSE       FALSE            FALSE           FALSE
## [128,] FALSE     FALSE       FALSE            FALSE           FALSE
## [129,] FALSE     FALSE       FALSE            FALSE           FALSE
## [130,] FALSE     FALSE       FALSE            FALSE           FALSE
## [131,] FALSE     FALSE       FALSE            FALSE           FALSE
## [132,] FALSE     FALSE       FALSE            FALSE           FALSE
## [133,] FALSE     FALSE       FALSE            FALSE           FALSE
## [134,] FALSE     FALSE       FALSE            FALSE           FALSE
## [135,] FALSE     FALSE       FALSE            FALSE           FALSE
## [136,] FALSE     FALSE       FALSE            FALSE           FALSE
## [137,] FALSE     FALSE       FALSE            FALSE           FALSE
## [138,] FALSE     FALSE       FALSE            FALSE           FALSE
## [139,] FALSE     FALSE       FALSE            FALSE           FALSE
## [140,] FALSE     FALSE       FALSE            FALSE           FALSE
## [141,] FALSE      TRUE        TRUE             TRUE            TRUE
## [142,] FALSE     FALSE       FALSE            FALSE           FALSE
## [143,] FALSE     FALSE       FALSE            FALSE           FALSE
## [144,] FALSE     FALSE       FALSE            FALSE           FALSE
## [145,] FALSE     FALSE       FALSE            FALSE           FALSE
## [146,] FALSE     FALSE       FALSE            FALSE           FALSE
## [147,] FALSE     FALSE       FALSE            FALSE           FALSE
## [148,] FALSE     FALSE       FALSE            FALSE           FALSE
## [149,] FALSE     FALSE       FALSE            FALSE           FALSE
## [150,] FALSE     FALSE       FALSE            FALSE           FALSE
## [151,] FALSE     FALSE       FALSE            FALSE           FALSE
## [152,] FALSE     FALSE       FALSE            FALSE           FALSE
## [153,] FALSE     FALSE       FALSE            FALSE           FALSE
## [154,] FALSE     FALSE       FALSE            FALSE           FALSE
## [155,] FALSE     FALSE       FALSE            FALSE           FALSE
## [156,] FALSE     FALSE       FALSE            FALSE           FALSE
## [157,] FALSE     FALSE       FALSE            FALSE           FALSE
## [158,] FALSE     FALSE       FALSE            FALSE           FALSE
## [159,] FALSE     FALSE       FALSE            FALSE           FALSE
## [160,] FALSE     FALSE       FALSE            FALSE           FALSE
## [161,] FALSE     FALSE       FALSE            FALSE           FALSE
## [162,] FALSE     FALSE       FALSE            FALSE           FALSE
## [163,] FALSE     FALSE       FALSE            FALSE           FALSE
## [164,] FALSE     FALSE       FALSE            FALSE           FALSE
## [165,] FALSE     FALSE       FALSE            FALSE           FALSE
## [166,] FALSE     FALSE       FALSE            FALSE           FALSE
## [167,] FALSE     FALSE       FALSE            FALSE           FALSE
## [168,] FALSE     FALSE       FALSE            FALSE           FALSE
## [169,] FALSE     FALSE       FALSE            FALSE           FALSE
## [170,] FALSE     FALSE       FALSE            FALSE           FALSE
## [171,] FALSE     FALSE       FALSE            FALSE           FALSE
## [172,] FALSE     FALSE       FALSE            FALSE           FALSE
## [173,] FALSE     FALSE       FALSE            FALSE           FALSE
## [174,] FALSE     FALSE       FALSE            FALSE           FALSE
## [175,] FALSE     FALSE        TRUE            FALSE           FALSE
## [176,] FALSE      TRUE        TRUE             TRUE            TRUE
## [177,] FALSE     FALSE        TRUE            FALSE           FALSE
## [178,] FALSE      TRUE        TRUE             TRUE            TRUE
## [179,] FALSE     FALSE       FALSE            FALSE           FALSE
## [180,] FALSE     FALSE       FALSE            FALSE           FALSE
## [181,] FALSE      TRUE        TRUE             TRUE            TRUE
## [182,] FALSE     FALSE       FALSE            FALSE           FALSE
## [183,] FALSE     FALSE       FALSE            FALSE           FALSE
## [184,] FALSE     FALSE       FALSE            FALSE           FALSE
## [185,] FALSE     FALSE       FALSE            FALSE           FALSE
## [186,] FALSE     FALSE       FALSE            FALSE           FALSE
## [187,] FALSE     FALSE       FALSE            FALSE           FALSE
## [188,] FALSE     FALSE       FALSE            FALSE           FALSE
## [189,] FALSE     FALSE       FALSE            FALSE           FALSE
## [190,] FALSE     FALSE       FALSE            FALSE           FALSE
## [191,] FALSE     FALSE       FALSE            FALSE           FALSE
## [192,] FALSE     FALSE       FALSE            FALSE           FALSE
## [193,] FALSE     FALSE       FALSE            FALSE           FALSE
## [194,] FALSE     FALSE       FALSE            FALSE           FALSE
## [195,] FALSE     FALSE       FALSE            FALSE           FALSE
## [196,] FALSE     FALSE       FALSE            FALSE           FALSE
## [197,] FALSE     FALSE       FALSE            FALSE           FALSE
## [198,] FALSE     FALSE       FALSE            FALSE           FALSE
## [199,] FALSE     FALSE       FALSE            FALSE           FALSE
## [200,] FALSE     FALSE       FALSE            FALSE           FALSE
## [201,] FALSE     FALSE       FALSE            FALSE           FALSE
## [202,] FALSE     FALSE       FALSE            FALSE           FALSE
## [203,] FALSE     FALSE       FALSE            FALSE           FALSE
## [204,] FALSE     FALSE       FALSE            FALSE           FALSE
## [205,] FALSE     FALSE       FALSE            FALSE           FALSE
## [206,] FALSE     FALSE       FALSE            FALSE           FALSE
## [207,] FALSE     FALSE       FALSE            FALSE           FALSE
## [208,] FALSE     FALSE       FALSE            FALSE           FALSE
## [209,] FALSE     FALSE       FALSE            FALSE           FALSE
## [210,] FALSE     FALSE       FALSE            FALSE           FALSE
## [211,] FALSE      TRUE        TRUE             TRUE            TRUE
## [212,] FALSE     FALSE       FALSE            FALSE           FALSE
## [213,] FALSE     FALSE       FALSE            FALSE           FALSE
## [214,] FALSE      TRUE        TRUE             TRUE            TRUE
## [215,] FALSE     FALSE       FALSE            FALSE           FALSE
## [216,] FALSE     FALSE       FALSE            FALSE           FALSE
## [217,] FALSE     FALSE       FALSE            FALSE           FALSE
## [218,] FALSE     FALSE       FALSE            FALSE           FALSE
## [219,] FALSE     FALSE       FALSE            FALSE           FALSE
## [220,] FALSE     FALSE       FALSE            FALSE           FALSE
##        asymentry.coefficient lenght.of.kernel.groove
##   [1,]                 FALSE                   FALSE
##   [2,]                 FALSE                   FALSE
##   [3,]                 FALSE                   FALSE
##   [4,]                 FALSE                   FALSE
##   [5,]                 FALSE                   FALSE
##   [6,]                 FALSE                   FALSE
##   [7,]                 FALSE                    TRUE
##   [8,]                  TRUE                    TRUE
##   [9,]                 FALSE                   FALSE
##  [10,]                 FALSE                   FALSE
##  [11,]                 FALSE                   FALSE
##  [12,]                 FALSE                   FALSE
##  [13,]                 FALSE                   FALSE
##  [14,]                 FALSE                   FALSE
##  [15,]                 FALSE                   FALSE
##  [16,]                 FALSE                   FALSE
##  [17,]                 FALSE                   FALSE
##  [18,]                 FALSE                   FALSE
##  [19,]                 FALSE                   FALSE
##  [20,]                 FALSE                   FALSE
##  [21,]                 FALSE                   FALSE
##  [22,]                 FALSE                   FALSE
##  [23,]                 FALSE                   FALSE
##  [24,]                 FALSE                   FALSE
##  [25,]                 FALSE                   FALSE
##  [26,]                 FALSE                   FALSE
##  [27,]                 FALSE                   FALSE
##  [28,]                 FALSE                   FALSE
##  [29,]                 FALSE                   FALSE
##  [30,]                 FALSE                   FALSE
##  [31,]                 FALSE                   FALSE
##  [32,]                 FALSE                   FALSE
##  [33,]                 FALSE                   FALSE
##  [34,]                 FALSE                   FALSE
##  [35,]                 FALSE                   FALSE
##  [36,]                 FALSE                   FALSE
##  [37,]                  TRUE                    TRUE
##  [38,]                 FALSE                   FALSE
##  [39,]                 FALSE                   FALSE
##  [40,]                 FALSE                   FALSE
##  [41,]                 FALSE                   FALSE
##  [42,]                 FALSE                   FALSE
##  [43,]                 FALSE                   FALSE
##  [44,]                 FALSE                   FALSE
##  [45,]                 FALSE                   FALSE
##  [46,]                 FALSE                   FALSE
##  [47,]                 FALSE                   FALSE
##  [48,]                 FALSE                   FALSE
##  [49,]                 FALSE                   FALSE
##  [50,]                 FALSE                   FALSE
##  [51,]                 FALSE                   FALSE
##  [52,]                 FALSE                   FALSE
##  [53,]                 FALSE                   FALSE
##  [54,]                 FALSE                   FALSE
##  [55,]                 FALSE                   FALSE
##  [56,]                 FALSE                   FALSE
##  [57,]                 FALSE                   FALSE
##  [58,]                 FALSE                   FALSE
##  [59,]                 FALSE                   FALSE
##  [60,]                 FALSE                   FALSE
##  [61,]                 FALSE                   FALSE
##  [62,]                 FALSE                    TRUE
##  [63,]                  TRUE                    TRUE
##  [64,]                 FALSE                   FALSE
##  [65,]                 FALSE                   FALSE
##  [66,]                 FALSE                   FALSE
##  [67,]                 FALSE                   FALSE
##  [68,]                 FALSE                   FALSE
##  [69,]                 FALSE                   FALSE
##  [70,]                 FALSE                   FALSE
##  [71,]                 FALSE                   FALSE
##  [72,]                  TRUE                    TRUE
##  [73,]                 FALSE                   FALSE
##  [74,]                 FALSE                   FALSE
##  [75,]                 FALSE                   FALSE
##  [76,]                 FALSE                   FALSE
##  [77,]                 FALSE                   FALSE
##  [78,]                 FALSE                   FALSE
##  [79,]                 FALSE                   FALSE
##  [80,]                 FALSE                   FALSE
##  [81,]                 FALSE                   FALSE
##  [82,]                 FALSE                   FALSE
##  [83,]                 FALSE                   FALSE
##  [84,]                 FALSE                   FALSE
##  [85,]                 FALSE                   FALSE
##  [86,]                 FALSE                   FALSE
##  [87,]                 FALSE                   FALSE
##  [88,]                 FALSE                   FALSE
##  [89,]                 FALSE                   FALSE
##  [90,]                 FALSE                   FALSE
##  [91,]                 FALSE                   FALSE
##  [92,]                 FALSE                   FALSE
##  [93,]                 FALSE                   FALSE
##  [94,]                 FALSE                   FALSE
##  [95,]                 FALSE                   FALSE
##  [96,]                 FALSE                   FALSE
##  [97,]                 FALSE                   FALSE
##  [98,]                 FALSE                   FALSE
##  [99,]                 FALSE                   FALSE
## [100,]                 FALSE                   FALSE
## [101,]                 FALSE                   FALSE
## [102,]                 FALSE                   FALSE
## [103,]                 FALSE                   FALSE
## [104,]                 FALSE                   FALSE
## [105,]                 FALSE                   FALSE
## [106,]                 FALSE                   FALSE
## [107,]                 FALSE                   FALSE
## [108,]                 FALSE                   FALSE
## [109,]                 FALSE                   FALSE
## [110,]                 FALSE                   FALSE
## [111,]                  TRUE                    TRUE
## [112,]                 FALSE                   FALSE
## [113,]                 FALSE                   FALSE
## [114,]                 FALSE                   FALSE
## [115,]                 FALSE                   FALSE
## [116,]                 FALSE                   FALSE
## [117,]                 FALSE                   FALSE
## [118,]                 FALSE                   FALSE
## [119,]                 FALSE                   FALSE
## [120,]                 FALSE                   FALSE
## [121,]                 FALSE                   FALSE
## [122,]                 FALSE                   FALSE
## [123,]                 FALSE                   FALSE
## [124,]                 FALSE                   FALSE
## [125,]                 FALSE                   FALSE
## [126,]                 FALSE                   FALSE
## [127,]                 FALSE                   FALSE
## [128,]                 FALSE                   FALSE
## [129,]                 FALSE                   FALSE
## [130,]                 FALSE                   FALSE
## [131,]                 FALSE                   FALSE
## [132,]                 FALSE                   FALSE
## [133,]                 FALSE                   FALSE
## [134,]                 FALSE                   FALSE
## [135,]                 FALSE                   FALSE
## [136,]                 FALSE                   FALSE
## [137,]                 FALSE                   FALSE
## [138,]                 FALSE                   FALSE
## [139,]                 FALSE                   FALSE
## [140,]                 FALSE                    TRUE
## [141,]                  TRUE                    TRUE
## [142,]                 FALSE                   FALSE
## [143,]                 FALSE                   FALSE
## [144,]                 FALSE                   FALSE
## [145,]                 FALSE                   FALSE
## [146,]                 FALSE                   FALSE
## [147,]                 FALSE                   FALSE
## [148,]                 FALSE                   FALSE
## [149,]                 FALSE                   FALSE
## [150,]                 FALSE                   FALSE
## [151,]                 FALSE                   FALSE
## [152,]                 FALSE                   FALSE
## [153,]                 FALSE                   FALSE
## [154,]                 FALSE                   FALSE
## [155,]                 FALSE                   FALSE
## [156,]                 FALSE                   FALSE
## [157,]                 FALSE                   FALSE
## [158,]                 FALSE                   FALSE
## [159,]                 FALSE                   FALSE
## [160,]                 FALSE                   FALSE
## [161,]                 FALSE                   FALSE
## [162,]                 FALSE                   FALSE
## [163,]                 FALSE                   FALSE
## [164,]                 FALSE                   FALSE
## [165,]                 FALSE                   FALSE
## [166,]                 FALSE                   FALSE
## [167,]                 FALSE                   FALSE
## [168,]                 FALSE                   FALSE
## [169,]                 FALSE                   FALSE
## [170,]                 FALSE                   FALSE
## [171,]                 FALSE                   FALSE
## [172,]                 FALSE                   FALSE
## [173,]                 FALSE                   FALSE
## [174,]                 FALSE                   FALSE
## [175,]                 FALSE                   FALSE
## [176,]                  TRUE                    TRUE
## [177,]                 FALSE                   FALSE
## [178,]                  TRUE                    TRUE
## [179,]                 FALSE                   FALSE
## [180,]                 FALSE                   FALSE
## [181,]                  TRUE                    TRUE
## [182,]                 FALSE                   FALSE
## [183,]                 FALSE                   FALSE
## [184,]                 FALSE                   FALSE
## [185,]                 FALSE                   FALSE
## [186,]                 FALSE                   FALSE
## [187,]                 FALSE                   FALSE
## [188,]                 FALSE                   FALSE
## [189,]                 FALSE                   FALSE
## [190,]                 FALSE                   FALSE
## [191,]                 FALSE                   FALSE
## [192,]                 FALSE                   FALSE
## [193,]                 FALSE                   FALSE
## [194,]                 FALSE                   FALSE
## [195,]                 FALSE                   FALSE
## [196,]                 FALSE                   FALSE
## [197,]                 FALSE                   FALSE
## [198,]                 FALSE                   FALSE
## [199,]                 FALSE                   FALSE
## [200,]                 FALSE                   FALSE
## [201,]                 FALSE                   FALSE
## [202,]                 FALSE                   FALSE
## [203,]                 FALSE                   FALSE
## [204,]                 FALSE                   FALSE
## [205,]                 FALSE                   FALSE
## [206,]                 FALSE                   FALSE
## [207,]                 FALSE                   FALSE
## [208,]                 FALSE                   FALSE
## [209,]                 FALSE                   FALSE
## [210,]                 FALSE                    TRUE
## [211,]                  TRUE                    TRUE
## [212,]                 FALSE                   FALSE
## [213,]                 FALSE                   FALSE
## [214,]                  TRUE                    TRUE
## [215,]                 FALSE                   FALSE
## [216,]                 FALSE                   FALSE
## [217,]                 FALSE                   FALSE
## [218,]                 FALSE                   FALSE
## [219,]                 FALSE                   FALSE
## [220,]                 FALSE                   FALSE
 sdf<-na.omit(sdf)
 sdf_scale<-scale(sdf)
 summary(sdf_scale)
##       area           perimeter        compactness      lenght_of_Kernel 
##  Min.   :-1.4741   Min.   :-1.6584   Min.   :-2.6858   Min.   :-1.6660  
##  1st Qu.:-0.8848   1st Qu.:-0.8568   1st Qu.:-0.5997   1st Qu.:-0.8450  
##  Median :-0.1810   Median :-0.1732   Median : 0.1077   Median :-0.2220  
##  Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000  
##  3rd Qu.: 0.8875   3rd Qu.: 0.9444   3rd Qu.: 0.6902   3rd Qu.: 0.8195  
##  Max.   : 2.1439   Max.   : 2.0278   Max.   : 2.0249   Max.   : 2.3287  
##  width.of.kernel    asymentry.coefficient lenght.of.kernel.groove
##  Min.   :-1.67149   Min.   :-1.96257      Min.   :-1.8263        
##  1st Qu.:-0.81804   1st Qu.:-0.74280      1st Qu.:-0.7605        
##  Median :-0.07136   Median :-0.05537      Median :-0.3873        
##  Mean   : 0.00000   Mean   : 0.00000      Mean   : 0.0000        
##  3rd Qu.: 0.79395   3rd Qu.: 0.72728      3rd Qu.: 0.9281        
##  Max.   : 2.02700   Max.   : 3.14933      Max.   : 2.2870
 d<-dist(sdf_scale)
 h<-hclust(d)
 plot(h)

 plot(h, hang = 0.1, labels = seeds_dataset[["v8"]],cex = 0.5)

 c<-cutree(h,3)
 c
##   1   2   3   4   5   6   9  10  11  12  13  14  15  16  17  18  19  20  21  22 
##   1   1   1   1   1   1   1   1   2   2   1   2   2   1   2   1   1   2   2   2 
##  23  24  25  26  27  28  29  30  31  32  33  34  35  38  39  40  41  42  43  44 
##   1   2   2   1   2   2   1   2   2   1   2   2   2   1   1   1   2   2   2   2 
##  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  64  65  66 
##   1   1   2   1   1   1   2   1   2   2   1   2   2   1   1   1   2   2   2   2 
##  67  68  69  70  71  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87 
##   2   2   2   2   2   2   3   1   1   3   1   1   1   3   3   1   1   3   3   3 
##  88  89  90  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105 106 107 
##   3   3   3   3   3   3   3   3   3   3   3   1   3   3   3   3   1   3   3   3 
## 108 109 110 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 
##   3   3   3   1   3   3   3   3   3   3   3   3   3   3   3   3   3   1   1   3 
## 129 130 131 132 133 134 135 136 137 138 139 142 143 144 145 146 147 148 149 150 
##   1   3   3   3   3   3   3   3   1   1   1   1   1   1   1   2   2   2   2   2 
## 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 
##   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2 
## 171 172 173 174 179 180 182 183 184 185 186 187 188 189 190 191 192 193 194 195 
##   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2 
## 196 197 198 199 200 201 202 203 204 205 206 207 208 209 212 213 215 216 217 218 
##   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2 
## 219 220 
##   2   2
 #

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.