
Instalar paquetes y cargar librerías
# install.packages("forecast")
library(forecast)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
# install.packages("tidyverse")
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Importar la base de datos
df <- read.csv("C:\\Users\\raulc\\OneDrive\\Escritorio\\population.csv")
Entender la base de datos
summary(df)
## state year population
## Length:6020 Min. :1900 Min. : 43000
## Class :character 1st Qu.:1930 1st Qu.: 901483
## Mode :character Median :1960 Median : 2359000
## Mean :1960 Mean : 3726003
## 3rd Qu.:1990 3rd Qu.: 4541883
## Max. :2019 Max. :39512223
str(df)
## 'data.frame': 6020 obs. of 3 variables:
## $ state : chr "AK" "AK" "AK" "AK" ...
## $ year : int 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 ...
## $ population: int 135000 158000 189000 205000 215000 222000 224000 231000 224000 224000 ...
Serie de Tiempo 1: Texas
df_texas <- df %>% filter(state == "TX")
ts_texas <- ts(df_texas$population, start=1900, frequency=1) # Serie de Tiempo Anual
# ts_texas <- ts(df_texas$population, start=c(1900,4), frequency=4) # Serie de Tiempo Trimestral
# ts_texas <- ts(df_texas$population, start=c(1900,8), frequency=12) # Serie de Tiempo Mensual
arima_texas <- auto.arima(ts_texas)
arima_texas
## Series: ts_texas
## ARIMA(0,2,2)
##
## Coefficients:
## ma1 ma2
## -0.5950 -0.1798
## s.e. 0.0913 0.0951
##
## sigma^2 = 1.031e+10: log likelihood = -1527.14
## AIC=3060.28 AICc=3060.5 BIC=3068.6
summary(arima_texas)
## Series: ts_texas
## ARIMA(0,2,2)
##
## Coefficients:
## ma1 ma2
## -0.5950 -0.1798
## s.e. 0.0913 0.0951
##
## sigma^2 = 1.031e+10: log likelihood = -1527.14
## AIC=3060.28 AICc=3060.5 BIC=3068.6
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set 12147.62 99818.31 59257.39 0.1046163 0.5686743 0.2672197
## ACF1
## Training set -0.02136734
pronostico_texas <- forecast(arima_texas, level=c(95), h=51)
pronostico_texas
## Point Forecast Lo 95 Hi 95
## 2020 29398472 29199487 29597457
## 2021 29806827 29463665 30149990
## 2022 30215183 29742956 30687410
## 2023 30623538 30024100 31222977
## 2024 31031894 30303359 31760429
## 2025 31440249 30579246 32301253
## 2026 31848605 30851090 32846119
## 2027 32256960 31118581 33395339
## 2028 32665316 31381587 33949044
## 2029 33073671 31640070 34507272
## 2030 33482027 31894047 35070007
## 2031 33890382 32143561 35637204
## 2032 34298738 32388674 36208801
## 2033 34707093 32629456 36784730
## 2034 35115449 32865983 37364914
## 2035 35523804 33098330 37949278
## 2036 35932160 33326573 38537746
## 2037 36340515 33550788 39130242
## 2038 36748871 33771046 39726695
## 2039 37157226 33987418 40327034
## 2040 37565581 34199972 40931191
## 2041 37973937 34408774 41539100
## 2042 38382292 34613887 42150698
## 2043 38790648 34815371 42765925
## 2044 39199003 35013284 43384723
## 2045 39607359 35207682 44007036
## 2046 40015714 35398618 44632810
## 2047 40424070 35586145 45261995
## 2048 40832425 35770311 45894540
## 2049 41240781 35951163 46530399
## 2050 41649136 36128748 47169524
## 2051 42057492 36303110 47811874
## 2052 42465847 36474290 48457405
## 2053 42874203 36642330 49106076
## 2054 43282558 36807269 49757848
## 2055 43690914 36969145 50412683
## 2056 44099269 37127994 51070544
## 2057 44507625 37283853 51731396
## 2058 44915980 37436755 52395205
## 2059 45324336 37586734 53061937
## 2060 45732691 37733822 53731560
## 2061 46141047 37878050 54404044
## 2062 46549402 38019447 55079357
## 2063 46957758 38158044 55757471
## 2064 47366113 38293868 56438358
## 2065 47774469 38426948 57121989
## 2066 48182824 38557310 57808338
## 2067 48591180 38684979 58497380
## 2068 48999535 38809982 59189088
## 2069 49407891 38932343 59883438
## 2070 49816246 39052086 60580406
plot(pronostico_texas, main = "Población en Texas")

LS0tDQp0aXRsZTogIkFjdGl2aWRhZCBJbnRlZ3JhZG9yYSINCmF1dGhvcjogIlJhdWwgQ2FudHUgLSBBMDEwODc2ODMiDQpkYXRlOiAiMjAyNC0wMi0yMSINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiBUUlVFDQogICAgdG9jX2Zsb2F0OiBUUlVFDQogICAgY29kZV9kb3dubG9hZDogVFJVRQ0KICAgIHRoZW1lOiBjb3Ntbw0KLS0tDQoNCiFbXShDOlxcVXNlcnNcXHJhdWxjXFxPbmVEcml2ZVxcRXNjcml0b3Jpb1xccG9ibGFjaW9uLmdpZikNCg0KIyBJbnN0YWxhciBwYXF1ZXRlcyB5IGNhcmdhciBsaWJyZXLDrWFzDQpgYGB7cn0NCiMgaW5zdGFsbC5wYWNrYWdlcygiZm9yZWNhc3QiKQ0KbGlicmFyeShmb3JlY2FzdCkNCiMgaW5zdGFsbC5wYWNrYWdlcygidGlkeXZlcnNlIikNCmxpYnJhcnkodGlkeXZlcnNlKQ0KYGBgDQoNCiMgSW1wb3J0YXIgbGEgYmFzZSBkZSBkYXRvcw0KYGBge3J9DQpkZiA8LSByZWFkLmNzdigiQzpcXFVzZXJzXFxyYXVsY1xcT25lRHJpdmVcXEVzY3JpdG9yaW9cXHBvcHVsYXRpb24uY3N2IikNCmBgYA0KDQojIEVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3MNCmBgYHtyfQ0Kc3VtbWFyeShkZikNCnN0cihkZikNCmBgYA0KDQojIFNlcmllIGRlIFRpZW1wbyAxOiBUZXhhcw0KYGBge3J9DQpkZl90ZXhhcyA8LSBkZiAlPiUgZmlsdGVyKHN0YXRlID09ICJUWCIpDQp0c190ZXhhcyA8LSB0cyhkZl90ZXhhcyRwb3B1bGF0aW9uLCBzdGFydD0xOTAwLCBmcmVxdWVuY3k9MSkgIyBTZXJpZSBkZSBUaWVtcG8gQW51YWwNCiMgdHNfdGV4YXMgPC0gdHMoZGZfdGV4YXMkcG9wdWxhdGlvbiwgc3RhcnQ9YygxOTAwLDQpLCBmcmVxdWVuY3k9NCkgIyBTZXJpZSBkZSBUaWVtcG8gVHJpbWVzdHJhbA0KIyB0c190ZXhhcyA8LSB0cyhkZl90ZXhhcyRwb3B1bGF0aW9uLCBzdGFydD1jKDE5MDAsOCksIGZyZXF1ZW5jeT0xMikgIyBTZXJpZSBkZSBUaWVtcG8gTWVuc3VhbA0KYXJpbWFfdGV4YXMgPC0gYXV0by5hcmltYSh0c190ZXhhcykNCmFyaW1hX3RleGFzDQpzdW1tYXJ5KGFyaW1hX3RleGFzKQ0KcHJvbm9zdGljb190ZXhhcyA8LSBmb3JlY2FzdChhcmltYV90ZXhhcywgbGV2ZWw9Yyg5NSksIGg9NTEpDQpwcm9ub3N0aWNvX3RleGFzDQpwbG90KHByb25vc3RpY29fdGV4YXMsIG1haW4gPSAiUG9ibGFjacOzbiBlbiBUZXhhcyIpDQpgYGANCg0K