Rows: 355 Columns: 42
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (12): Country, ISO2, ISO3, Indicator, Unit, Source, CTS_Code, CTS_Name, ...
dbl (30): ObjectId, F1985, F1986, F1987, F1990, F1991, F1992, F1993, F1994, ...
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
green_debt
# A tibble: 355 × 42
ObjectId Country ISO2 ISO3 Indicator Unit Source CTS_Code CTS_Name
<dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 1 Argentina AR ARG Green Bo… Bill… Refin… ECFFI Green B…
2 2 Australia AU AUS Green Bo… Bill… Refin… ECFFI Green B…
3 3 Austria AT AUT Green Bo… Bill… Refin… ECFFI Green B…
4 4 Austria AT AUT Sovereig… Bill… Refin… ECFF Green B…
5 5 Bangladesh BD BGD Green Bo… Bill… Refin… ECFFI Green B…
6 6 Belarus, Rep. … BY BLR Green Bo… Bill… Refin… ECFFI Green B…
7 7 Belarus, Rep. … BY BLR Sovereig… Bill… Refin… ECFF Green B…
8 8 Belgium BE BEL Green Bo… Bill… Refin… ECFFI Green B…
9 9 Belgium BE BEL Sovereig… Bill… Refin… ECFF Green B…
10 10 Bermuda BM BMU Green Bo… Bill… Refin… ECFFI Green B…
# ℹ 345 more rows
# ℹ 33 more variables: CTS_Full_Descriptor <chr>, Type_of_Issuer <chr>,
# Use_of_Proceed <chr>, Principal_Currency <chr>, F1985 <dbl>, F1986 <dbl>,
# F1987 <dbl>, F1990 <dbl>, F1991 <dbl>, F1992 <dbl>, F1993 <dbl>,
# F1994 <dbl>, F1999 <dbl>, F2000 <dbl>, F2002 <dbl>, F2003 <dbl>,
# F2004 <dbl>, F2007 <dbl>, F2008 <dbl>, F2009 <dbl>, F2010 <dbl>,
# F2011 <dbl>, F2012 <dbl>, F2013 <dbl>, F2014 <dbl>, F2015 <dbl>, …
# we want to compare these two indicatorsindicators_we_want <-c("Green Bond Issuances by Country", "Sovereign Green Bond Issuances")green_debt_subset <- green_debt |># from the janitor package -- makes variables snake_case so they are easier to work withclean_names() |># filter for the vector of indicators we defined abovefilter(indicator %in% indicators_we_want) |># "f\\d{4}" is a regular expression (regex) that searches for all columns that are f + four digits.# Ask ChatGPT to explain this to you.select(country, iso3, indicator, matches("f\\d{4}")) green_debt_subset
# A tibble: 107 × 32
country iso3 indicator f1985 f1986 f1987 f1990 f1991 f1992 f1993 f1994 f1999
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Argent… ARG Green Bo… NA NA NA NA NA NA NA NA NA
2 Austra… AUS Green Bo… NA NA NA NA NA NA NA NA NA
3 Austria AUT Green Bo… NA NA NA NA NA NA NA NA NA
4 Austria AUT Sovereig… NA NA NA NA NA NA NA NA NA
5 Bangla… BGD Green Bo… NA NA NA NA NA NA NA NA NA
6 Belaru… BLR Green Bo… NA NA NA NA NA NA NA NA NA
7 Belaru… BLR Sovereig… NA NA NA NA NA NA NA NA NA
8 Belgium BEL Green Bo… NA NA NA NA NA NA NA NA NA
9 Belgium BEL Sovereig… NA NA NA NA NA NA NA NA NA
10 Bermuda BMU Green Bo… NA NA NA NA NA NA NA NA NA
# ℹ 97 more rows
# ℹ 20 more variables: f2000 <dbl>, f2002 <dbl>, f2003 <dbl>, f2004 <dbl>,
# f2007 <dbl>, f2008 <dbl>, f2009 <dbl>, f2010 <dbl>, f2011 <dbl>,
# f2012 <dbl>, f2013 <dbl>, f2014 <dbl>, f2015 <dbl>, f2016 <dbl>,
# f2017 <dbl>, f2018 <dbl>, f2019 <dbl>, f2020 <dbl>, f2021 <dbl>,
# f2022 <dbl>
# A tibble: 465 × 6
Region country iso3 indicator year issuance_bn_usd
<chr> <chr> <chr> <chr> <dbl> <dbl>
1 Latin America & Caribbean Argentina ARG Green Bond I… 2017 0.974
2 Latin America & Caribbean Argentina ARG Green Bond I… 2020 0.0500
3 Latin America & Caribbean Argentina ARG Green Bond I… 2021 0.916
4 Latin America & Caribbean Argentina ARG Green Bond I… 2022 0.207
5 East Asia & Pacific Australia AUS Green Bond I… 2014 0.526
6 East Asia & Pacific Australia AUS Green Bond I… 2015 0.413
7 East Asia & Pacific Australia AUS Green Bond I… 2016 0.531
8 East Asia & Pacific Australia AUS Green Bond I… 2017 2.53
9 East Asia & Pacific Australia AUS Green Bond I… 2018 2.22
10 East Asia & Pacific Australia AUS Green Bond I… 2019 1.98
# ℹ 455 more rows
# A tibble: 7 × 2
Region total_issuance_bn_usd
<chr> <dbl>
1 East Asia & Pacific 586.
2 Europe & Central Asia 1395.
3 Latin America & Caribbean 99.8
4 Middle East & North Africa 10.3
5 North America 239.
6 South Asia 15.0
7 Sub-Saharan Africa 16.2
ggplot(green_bonds_total_cumulative, aes(x =reorder(Region, total_issuance_bn_usd), y = total_issuance_bn_usd)) +geom_bar(stat ="identity", fill ="skyblue") +theme_minimal() +scale_y_continuous(labels = scales::label_dollar(suffix =" bn"), expand =expansion(add =c(0, 0))) +labs(title ="Cumulative Issuance of Green Bonds by Region",x ="Region",y ="Cumulative Issuance",caption ="Sophia Wang") +theme(plot.title =element_text(hjust =0.5),legend.position ="none", # Remove legend as fill color is now uniformaxis.text.x =element_text(angle =45, hjust =1))
Problem 2
green_debt |>clean_names()
# A tibble: 355 × 42
object_id country iso2 iso3 indicator unit source cts_code cts_name
<dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 1 Argentina AR ARG Green Bo… Bill… Refin… ECFFI Green B…
2 2 Australia AU AUS Green Bo… Bill… Refin… ECFFI Green B…
3 3 Austria AT AUT Green Bo… Bill… Refin… ECFFI Green B…
4 4 Austria AT AUT Sovereig… Bill… Refin… ECFF Green B…
5 5 Bangladesh BD BGD Green Bo… Bill… Refin… ECFFI Green B…
6 6 Belarus, Rep.… BY BLR Green Bo… Bill… Refin… ECFFI Green B…
7 7 Belarus, Rep.… BY BLR Sovereig… Bill… Refin… ECFF Green B…
8 8 Belgium BE BEL Green Bo… Bill… Refin… ECFFI Green B…
9 9 Belgium BE BEL Sovereig… Bill… Refin… ECFF Green B…
10 10 Bermuda BM BMU Green Bo… Bill… Refin… ECFFI Green B…
# ℹ 345 more rows
# ℹ 33 more variables: cts_full_descriptor <chr>, type_of_issuer <chr>,
# use_of_proceed <chr>, principal_currency <chr>, f1985 <dbl>, f1986 <dbl>,
# f1987 <dbl>, f1990 <dbl>, f1991 <dbl>, f1992 <dbl>, f1993 <dbl>,
# f1994 <dbl>, f1999 <dbl>, f2000 <dbl>, f2002 <dbl>, f2003 <dbl>,
# f2004 <dbl>, f2007 <dbl>, f2008 <dbl>, f2009 <dbl>, f2010 <dbl>,
# f2011 <dbl>, f2012 <dbl>, f2013 <dbl>, f2014 <dbl>, f2015 <dbl>, …
# A tibble: 98 × 15
ObjectId Country ISO2 ISO3 Indicator Unit Source CTS_Code CTS_Name
<dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 347 World <NA> WLD Green Bond Issua… Bill… Refin… ECFFI Green B…
2 347 World <NA> WLD Green Bond Issua… Bill… Refin… ECFFI Green B…
3 347 World <NA> WLD Green Bond Issua… Bill… Refin… ECFFI Green B…
4 347 World <NA> WLD Green Bond Issua… Bill… Refin… ECFFI Green B…
5 347 World <NA> WLD Green Bond Issua… Bill… Refin… ECFFI Green B…
6 347 World <NA> WLD Green Bond Issua… Bill… Refin… ECFFI Green B…
7 347 World <NA> WLD Green Bond Issua… Bill… Refin… ECFFI Green B…
8 347 World <NA> WLD Green Bond Issua… Bill… Refin… ECFFI Green B…
9 347 World <NA> WLD Green Bond Issua… Bill… Refin… ECFFI Green B…
10 347 World <NA> WLD Green Bond Issua… Bill… Refin… ECFFI Green B…
# ℹ 88 more rows
# ℹ 6 more variables: CTS_Full_Descriptor <chr>, Type_of_Issuer <chr>,
# Use_of_Proceed <chr>, Principal_Currency <chr>, year <dbl>,
# issuance_bn_usd <dbl>
# A tibble: 7 × 2
Type_of_Issuer total_issuance
<chr> <dbl>
1 Banks 444.
2 International Organization 188.
3 Local and state Government 39.3
4 Nonfinancial corporations 659.
5 Other financial corporations 408.
6 Sovereign 266.
7 State owned entities 282.
ggplot(green_debt_issuer, aes(x =reorder(Type_of_Issuer, total_issuance ), y = total_issuance )) +geom_bar(stat ="identity", fill ="steelblue") +theme_minimal() +scale_y_continuous(labels = scales::label_dollar(suffix =" bn"), expand =expansion(add =c(0, 0))) +labs(title ="Cumulative Issuance of Green Bonds by Issuer",x ="Issuer",y ="Cumulative Issuance",caption ="Sophia Wang") +theme(plot.title =element_text(hjust =0.5),legend.position ="none", axis.text.x =element_text(angle =45, hjust =1))
# A tibble: 138 × 42
object_id country iso2 iso3 indicator unit source cts_code cts_name
<dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 209 World <NA> WLD Cumulative Gree… Share Refin… ECFF Green B…
2 210 World <NA> WLD Cumulative Gree… Bill… Refin… ECFF Green B…
3 211 World <NA> WLD Cumulative Gree… Share Refin… ECFF Green B…
4 212 World <NA> WLD Cumulative Gree… Bill… Refin… ECFF Green B…
5 213 World <NA> WLD Cumulative Gree… Share Refin… ECFF Green B…
6 214 World <NA> WLD Cumulative Gree… Bill… Refin… ECFF Green B…
7 215 World <NA> WLD Cumulative Gree… Share Refin… ECFF Green B…
8 216 World <NA> WLD Cumulative Gree… Bill… Refin… ECFF Green B…
9 217 World <NA> WLD Cumulative Gree… Share Refin… ECFF Green B…
10 218 World <NA> WLD Cumulative Gree… Bill… Refin… ECFF Green B…
# ℹ 128 more rows
# ℹ 33 more variables: cts_full_descriptor <chr>, type_of_issuer <chr>,
# use_of_proceed <chr>, principal_currency <chr>, f1985 <dbl>, f1986 <dbl>,
# f1987 <dbl>, f1990 <dbl>, f1991 <dbl>, f1992 <dbl>, f1993 <dbl>,
# f1994 <dbl>, f1999 <dbl>, f2000 <dbl>, f2002 <dbl>, f2003 <dbl>,
# f2004 <dbl>, f2007 <dbl>, f2008 <dbl>, f2009 <dbl>, f2010 <dbl>,
# f2011 <dbl>, f2012 <dbl>, f2013 <dbl>, f2014 <dbl>, f2015 <dbl>, …
Use of Proceeds: This analysis reveals the primary sectors or projects financed by green bonds, such as renewable energy projects, which can indicate where investors are focusing their sustainable investment efforts.
# A tibble: 100 × 42
object_id country iso2 iso3 indicator unit source cts_code cts_name
<dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 109 World <NA> WLD Cumulative Gree… Share Refin… ECFF Green B…
2 110 World <NA> WLD Cumulative Gree… Bill… Refin… ECFF Green B…
3 111 World <NA> WLD Cumulative Gree… Share Refin… ECFF Green B…
4 112 World <NA> WLD Cumulative Gree… Bill… Refin… ECFF Green B…
5 113 World <NA> WLD Cumulative Gree… Share Refin… ECFF Green B…
6 114 World <NA> WLD Cumulative Gree… Bill… Refin… ECFF Green B…
7 115 World <NA> WLD Cumulative Gree… Share Refin… ECFF Green B…
8 116 World <NA> WLD Cumulative Gree… Bill… Refin… ECFF Green B…
9 117 World <NA> WLD Cumulative Gree… Share Refin… ECFF Green B…
10 118 World <NA> WLD Cumulative Gree… Bill… Refin… ECFF Green B…
# ℹ 90 more rows
# ℹ 33 more variables: cts_full_descriptor <chr>, type_of_issuer <chr>,
# use_of_proceed <chr>, principal_currency <chr>, f1985 <dbl>, f1986 <dbl>,
# f1987 <dbl>, f1990 <dbl>, f1991 <dbl>, f1992 <dbl>, f1993 <dbl>,
# f1994 <dbl>, f1999 <dbl>, f2000 <dbl>, f2002 <dbl>, f2003 <dbl>,
# f2004 <dbl>, f2007 <dbl>, f2008 <dbl>, f2009 <dbl>, f2010 <dbl>,
# f2011 <dbl>, f2012 <dbl>, f2013 <dbl>, f2014 <dbl>, f2015 <dbl>, …
Currency of Issuance: By examining the currency in which green bonds are issued over time, you can identify any shifts in market preferences or economic factors influencing these decisions. For instance, an increase in issuance in emerging market currencies could indicate growing interest in sustainable projects in those regions.
The echo: false option disables the printing of code (only output is displayed).