Zadanie 1
Zadanie: Definujte premennú x=2. Vypočítajte výrazy x^(8/3), logx(8),ln((10^(3x))/2) a zaokrúhlite ich na 3 desatinné miesta.
Riešenie:
x <- 2
r1 = round(x^(8/3),3)
r2 = round(log(8, base=x),3)
r3 = round(log((10^(3*x))/2),3)
cat("x^(8/3) =", r1,"\n")
## x^(8/3) = 6.35
## logx(8) = 3
## ln((10^(3*x))/2) = 13.122
Zadanie 2
Zadanie: Vyriešte sústavu rovníc
2x + 3y = 0
−x + y = 1
Riešenie:
## X: -0.6
## Y: 0.4
Zadanie3
Zadanie: Pomocou operácií s vektormi vypočítajte
súčet prvých 20 členov postupnosti.Zobrazte ju v grafe.
Riešenie:
## Suma prvych 20 cisel postupnosti: 28.73898
Zadanie 4
Zadanie: Načítajte súbor údajov mtcars z balíka datasets a uložte ho do premennej s názvom dat.
Riešenie:
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
Zadanie 5
Zadanie: Zobrazte štruktúru objektu dat a prvých 5 riadkov. Zoznámte sa s významom jednotlivých stĺpcov.
Riešenie:
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Zadanie 6
Zadanie: Preveďte premennú mpg na jednotky km/l a uložte ako novú premennú kml do toho istého objektu.
Riešenie:
# (1 Mile per gallon = 0.425143707 kilometers per liter)
cars_data$kml <- cars_data$mpg * 0.425143707
str(cars_data)
## 'data.frame': 32 obs. of 12 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
## $ kml : num 8.93 8.93 9.69 9.1 7.95 ...
Zadanie 7
Zadanie: Vytvorte logický vektor aut indikujúci, či ide o auto s automatickou prevodovkou a pomocou neho vypočítajte priemerný dojazd (v km na 1l paliva) automobilov zvlášť s automatickou a zvlášť s manuálnou prevodovkou.
Riešenie:
car <- cars_data$am == 0
c(
# Pocitame priemerne "Automat" and "Manual"
"Automat" = mean(cars_data$kml[car]),
"Manual" = mean(cars_data$kml[!car])
)
## Automat Manual
## 7.290096 10.370236
Zadanie 8
Zadanie: Zobrazte tabuľku všetkých áut s piatimi rýchlostnými stupňami a hmotnosťou do 3000 libier, ktorá obsahuje iba údaje o počte valcov, zdvihovom objeme a výkone motora.
Riešenie:
# subset(*dataset*, subset = *podmenky*, select = *vyber stlpcov*)
subset(cars_data, subset = gear == 5 & wt < 3, select = c(cyl, disp, hp))
## cyl disp hp
## Porsche 914-2 4 120.3 91
## Lotus Europa 4 95.1 113
## Ferrari Dino 6 145.0 175
Zadanie 9
Zadanie: Vytvorte funkciu na prevod jednotiek, ktorá bude mať 3 argumenty (s názvom)[s hodnotami]: prevádzanú hodnotu (x), imperiálnu jednotku (impunit)[míľa, galón, palec, libra], smer prevodu do SI (toSI)[TRUE,FALSE], pričom zodpovedajúcimi jednotkami v metrickej sústave SI budú km, l, dm, kg. (Využite pri tom funkciu switch a automatickú konverziu módu vektora toSI z logického na numerický.)
Riešenie:
# Funkcia na konverziu:
convert <- function(input_value, input_mode = c("mile","inch", "pound", "gallon"), toSI = TRUE) {
p <- toSI * 2 - 1
const <- switch(input_mode[1],
mile = 1.609, # mila
inch = 0.254, # palec
pound = 0.453, # libra
gallon = 3.785 # galon
)
input_value * const^p
}
# Vyzov funkcii(z "toSI" a bez neho):
convert(1.5, "gallon")
## [1] 5.6775
## [1] 0.3963012
Zadanie 10
Zadanie: Pomocou for cyklu skonvertujte hodnoty zdvihového objemu valcov z kubických palcov na litre. Pomocou funkcie sapply preveďte hmotnosť vozidiel na tony. Zachovajte pri tom pôvodné názvy premenných a použite funkciu na prevod jednotiek z predošlej úlohy (ak ste ju úspešne urobili).
Riešenie:
(Pomocou for):
# prazdny vektor
temp <- numeric(length = nrow(cars_data))
for (i in 1:nrow(cars_data)) {
temp[i] <- convert(cars_data[i,"disp"]^(1/3), "inch")^3
}
rm(i)
# Nas vysledok
temp
## [1] 2.621930 2.621930 1.769803 4.227863 5.899343 3.687089 5.899343 2.403982
## [9] 2.307299 2.746472 2.746472 4.519552 4.519552 4.519552 7.734694 7.538049
## [17] 7.210308 1.289662 1.240501 1.165120 1.968086 5.211086 4.981667 5.735472
## [25] 6.554826 1.294578 1.971364 1.558410 5.751859 2.376124 4.932506 1.982835
(Pomocou sapply):
## [1] 0.665480 0.730250 0.589280 0.816610 0.873760 0.878840 0.906780 0.810260
## [9] 0.800100 0.873760 0.873760 1.033780 0.947420 0.960120 1.333500 1.377696
## [17] 1.357630 0.558800 0.410210 0.466090 0.626110 0.894080 0.872490 0.975360
## [25] 0.976630 0.491490 0.543560 0.384302 0.805180 0.703580 0.906780 0.706120
Zadanie 11
Zadanie: Nastavte pracovný adresár a načítajte tabuľku údajov zo súboru mtcars.txt (uloženého v pracovnom adresári) do objektu typu data.frame. Dbajte pri tom na správne nastavenie parametrov importu ako počet riadkov neštrukturovaného popisu, prítomnosť názvu stĺpcov, oddelovací znak desatinných miest, znak oddelujúci stĺpce tabuľky a znak chýbajúcich hodnôt (NA). Porovnajte načítaný data frame s pôvodným dat.
Riešenie:
setwd("D:\\ImportantStuff\\MPM\\Analyza dat\\1")
mtcars_data <- read.table("mtcars.txt", header = TRUE, skip = 2, sep = "", dec = ",", na.strings = "?", fill = TRUE)
mtcars_data
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 NA 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 NA 1 4 2