R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

Including Plots

You can also embed plots, for example:

set.seed(1234)
data('iris')
View(iris)
randDat <- matrix(rnorm(50), nrow=5)
randDat
##            [,1]       [,2]        [,3]       [,4]       [,5]       [,6]
## [1,] -1.2070657  0.5060559 -0.47719270 -0.1102855  0.1340882 -1.4482049
## [2,]  0.2774292 -0.5747400 -0.99838644 -0.5110095 -0.4906859  0.5747557
## [3,]  1.0844412 -0.5466319 -0.77625389 -0.9111954 -0.4405479 -1.0236557
## [4,] -2.3456977 -0.5644520  0.06445882 -0.8371717  0.4595894 -0.0151383
## [5,]  0.4291247 -0.8900378  0.95949406  2.4158352 -0.6937202 -0.9359486
##            [,7]       [,8]       [,9]      [,10]
## [1,]  1.1022975 -1.1676193  1.4494963 -0.9685143
## [2,] -0.4755931 -2.1800396 -1.0686427 -1.1073182
## [3,] -0.7094400 -1.3409932 -0.8553646 -1.2519859
## [4,] -0.5012581 -0.2942939 -0.2806230 -0.5238281
## [5,] -1.6290935 -0.4658975 -0.9943401 -0.4968500
dist(randDat)  # Euclidean distance (default)  
##          1        2        3        4
## 2 4.261667                           
## 3 4.038030 2.060117                  
## 4 3.456732 3.726399 4.037978         
## 5 5.307253 4.415046 4.111230 4.814393
dist(randDat, method ='manhattan')  # manhattan distance
##           1         2         3         4
## 2 11.382197                              
## 3 10.016795  4.536827                    
## 4  9.887932  8.845512  8.829131          
## 5 14.683770 10.617871  9.091241 11.362705
dist(randDat, method = 'minkowski', p= 4)
##          1        2        3        4
## 2 2.899494                           
## 3 2.875467 1.653824                  
## 4 2.208297 2.814135 3.453336         
## 5 3.488531 3.192217 3.398721 3.643788
d <- dist(scale(iris[,-5]))
h <- hclust(d)
h
## 
## Call:
## hclust(d = d)
## 
## Cluster method   : complete 
## Distance         : euclidean 
## Number of objects: 150
plot(h)

plot(h, hang=-0.1, labels=iris[["Species"]], cex=0.5)

c <- cutree(h,3)
c
##   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [38] 1 1 1 1 2 1 1 1 1 1 1 1 1 3 3 3 2 3 2 3 2 3 2 2 3 2 3 3 3 3 2 2 2 3 3 3 3
##  [75] 3 3 3 3 3 2 2 2 2 3 3 3 3 2 3 2 2 3 2 2 2 3 3 3 2 2 3 3 3 3 3 3 2 3 3 3 3
## [112] 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [149] 3 3
(cm <- table(c, iris$Species))
##    
## c   setosa versicolor virginica
##   1     49          0         0
##   2      1         21         2
##   3      0         29        48
Error <- 100*(1-sum(diag(cm))/sum(cm))
Error
## [1] 21.33333
library(cluster)
silhouette(c, d)
##        cluster neighbor   sil_width
##   [1,]       1        2  0.74381061
##   [2,]       1        2  0.52251215
##   [3,]       1        2  0.66073019
##   [4,]       1        2  0.58819251
##   [5,]       1        2  0.74002653
##   [6,]       1        2  0.63964608
##   [7,]       1        2  0.69599504
##   [8,]       1        2  0.73518521
##   [9,]       1        2  0.41172906
##  [10,]       1        2  0.60436547
##  [11,]       1        2  0.69419410
##  [12,]       1        2  0.72329651
##  [13,]       1        2  0.53223683
##  [14,]       1        2  0.49535416
##  [15,]       1        3  0.57762368
##  [16,]       1        3  0.46169664
##  [17,]       1        2  0.64765800
##  [18,]       1        2  0.73950603
##  [19,]       1        2  0.61735113
##  [20,]       1        2  0.69713933
##  [21,]       1        2  0.67059935
##  [22,]       1        2  0.70888740
##  [23,]       1        2  0.70027595
##  [24,]       1        2  0.63966308
##  [25,]       1        2  0.70331638
##  [26,]       1        2  0.49852786
##  [27,]       1        2  0.71129988
##  [28,]       1        2  0.73277924
##  [29,]       1        2  0.72073892
##  [30,]       1        2  0.65104081
##  [31,]       1        2  0.59701883
##  [32,]       1        2  0.66005618
##  [33,]       1        2  0.61396099
##  [34,]       1        3  0.56172259
##  [35,]       1        2  0.60158592
##  [36,]       1        2  0.66343730
##  [37,]       1        2  0.67907313
##  [38,]       1        2  0.73344514
##  [39,]       1        2  0.49893006
##  [40,]       1        2  0.73032162
##  [41,]       1        2  0.74223204
##  [42,]       2        1  0.11505796
##  [43,]       1        2  0.61310051
##  [44,]       1        2  0.67752577
##  [45,]       1        2  0.67266764
##  [46,]       1        2  0.51096571
##  [47,]       1        2  0.69769140
##  [48,]       1        2  0.64717198
##  [49,]       1        2  0.70772044
##  [50,]       1        2  0.70821522
##  [51,]       3        2  0.44810916
##  [52,]       3        2  0.42551507
##  [53,]       3        2  0.48113585
##  [54,]       2        3  0.60056798
##  [55,]       3        2  0.28909599
##  [56,]       2        3  0.25532064
##  [57,]       3        2  0.44163580
##  [58,]       2        3  0.58862119
##  [59,]       3        2  0.31165524
##  [60,]       2        3  0.47925063
##  [61,]       2        3  0.53533494
##  [62,]       3        2  0.13798259
##  [63,]       2        3  0.50489380
##  [64,]       3        2  0.19049376
##  [65,]       3        2 -0.29889737
##  [66,]       3        2  0.41447292
##  [67,]       3        2  0.01586865
##  [68,]       2        3  0.44246194
##  [69,]       2        3  0.34101152
##  [70,]       2        3  0.61849466
##  [71,]       3        2  0.37763392
##  [72,]       3        2 -0.13265959
##  [73,]       3        2 -0.10917695
##  [74,]       3        2 -0.04975816
##  [75,]       3        2  0.21535096
##  [76,]       3        2  0.37677150
##  [77,]       3        2  0.33076400
##  [78,]       3        2  0.51039252
##  [79,]       3        2  0.14817057
##  [80,]       2        3  0.55591487
##  [81,]       2        3  0.64017720
##  [82,]       2        3  0.63633810
##  [83,]       2        3  0.43828812
##  [84,]       3        2  0.05444339
##  [85,]       3        2 -0.08567781
##  [86,]       3        2  0.35396959
##  [87,]       3        2  0.46838922
##  [88,]       2        3  0.33877191
##  [89,]       3        2 -0.13113484
##  [90,]       2        3  0.60086588
##  [91,]       2        3  0.54141464
##  [92,]       3        2  0.25946590
##  [93,]       2        3  0.51105620
##  [94,]       2        3  0.59963069
##  [95,]       2        3  0.45426587
##  [96,]       3        2 -0.11025116
##  [97,]       3        2 -0.20236125
##  [98,]       3        2  0.12488131
##  [99,]       2        3  0.58669598
## [100,]       2        3  0.31751136
## [101,]       3        2  0.48030393
## [102,]       3        2  0.07781886
## [103,]       3        2  0.52818285
## [104,]       3        2  0.45479299
## [105,]       3        2  0.52765484
## [106,]       3        2  0.46070084
## [107,]       2        3  0.42297967
## [108,]       3        2  0.46821593
## [109,]       3        2  0.24408754
## [110,]       3        2  0.45830809
## [111,]       3        2  0.54054151
## [112,]       3        2  0.34990684
## [113,]       3        2  0.54864397
## [114,]       3        2 -0.14954119
## [115,]       3        2  0.24982270
## [116,]       3        2  0.52152482
## [117,]       3        2  0.52530621
## [118,]       3        2  0.40527772
## [119,]       3        2  0.35156138
## [120,]       2        3  0.35090417
## [121,]       3        2  0.54433023
## [122,]       3        2  0.07700160
## [123,]       3        2  0.40831945
## [124,]       3        2  0.26315229
## [125,]       3        2  0.54408598
## [126,]       3        2  0.51663483
## [127,]       3        2  0.30994750
## [128,]       3        2  0.41268004
## [129,]       3        2  0.44434621
## [130,]       3        2  0.48294810
## [131,]       3        2  0.44165933
## [132,]       3        2  0.39458828
## [133,]       3        2  0.44191565
## [134,]       3        2  0.28181352
## [135,]       3        2 -0.02944153
## [136,]       3        2  0.45534598
## [137,]       3        2  0.48077840
## [138,]       3        2  0.52641092
## [139,]       3        2  0.36551707
## [140,]       3        2  0.55583283
## [141,]       3        2  0.53460231
## [142,]       3        2  0.53372987
## [143,]       3        2  0.07781886
## [144,]       3        2  0.54363634
## [145,]       3        2  0.51463269
## [146,]       3        2  0.52659597
## [147,]       3        2  0.08512800
## [148,]       3        2  0.53286756
## [149,]       3        2  0.47143716
## [150,]       3        2  0.34701606
## attr(,"Ordered")
## [1] FALSE
## attr(,"call")
## silhouette.default(x = c, dist = d)
## attr(,"class")
## [1] "silhouette"
plot(silhouette(c, d))

d <- dist(scale(iris[,-5]))
methods <- c('complete', 'single', 'average')
avgS <- matrix( NA, ncol=3, nrow=5, dimnames=list(2:6, methods))
for (k in 2:6) {
  for (m in seq_along(methods)){
    h <- hclust(d, method = methods[m])
    c <- cutree(h,k)
    s <- silhouette(c,d)
    avgS[k-1, m]=mean(s[,3])
  }
}
avgS
##    complete    single   average
## 2 0.4408121 0.5817500 0.5817500
## 3 0.4496185 0.5046456 0.4802669
## 4 0.4106071 0.4067465 0.4067465
## 5 0.3520630 0.3424089 0.3746013
## 6 0.3106991 0.2018867 0.3248248
d <- dist(scale(iris[,-5]))
h <- hclust(d)
h
## 
## Call:
## hclust(d = d)
## 
## Cluster method   : complete 
## Distance         : euclidean 
## Number of objects: 150
plot(h)

plot(h, hang=-0.1, labels=iris[["Species"]], cex=0.5)

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

#suppressMessages(library(compare))
# suppressWarnings( seeds_dataset <- read_delim("C:/GGTUAN/DREAMS/Yankee/TSU/MSc_TSU/Spring_2024/CS-583 Data Minning/seeds_dataset.txt", delim = "\t", escape_double = FALSE, col_names = FALSE, trim_ws =TRUE))

library(readr)
seeds_dataset <- read_table("C:/GGTUAN/DREAMS/Yankee/TSU/MSc_TSU/Spring_2024/CS-583 Data Minning/seeds_dataset.txt", 
    col_names = FALSE)
## 
## ── Column specification ────────────────────────────────────────────────────────
## cols(
##   X1 = col_double(),
##   X2 = col_double(),
##   X3 = col_double(),
##   X4 = col_double(),
##   X5 = col_double(),
##   X6 = col_double(),
##   X7 = col_double(),
##   X8 = col_double()
## )
View(seeds_dataset)
seeds_dataset
## # A tibble: 210 × 8
##       X1    X2    X3    X4    X5    X6    X7    X8
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1  15.3  14.8 0.871  5.76  3.31  2.22  5.22     1
##  2  14.9  14.6 0.881  5.55  3.33  1.02  4.96     1
##  3  14.3  14.1 0.905  5.29  3.34  2.70  4.82     1
##  4  13.8  13.9 0.896  5.32  3.38  2.26  4.80     1
##  5  16.1  15.0 0.903  5.66  3.56  1.36  5.18     1
##  6  14.4  14.2 0.895  5.39  3.31  2.46  4.96     1
##  7  14.7  14.5 0.880  5.56  3.26  3.59  5.22     1
##  8  14.1  14.1 0.891  5.42  3.30  2.7   5        1
##  9  16.6  15.5 0.875  6.05  3.46  2.04  5.88     1
## 10  16.4  15.2 0.888  5.88  3.50  1.97  5.53     1
## # ℹ 200 more rows
View(seeds_dataset)
sdf <- seeds_dataset[,-8]
View(sdf)
feature_name <- c('area', 'perimeter', 'compactness', 'length_of_kernel', 'width_of_kernel', 'asym_coeff', 'length_of_Kernel_groove')
colnames(sdf) <- feature_name
View(sdf)
head(sdf)
## # A tibble: 6 × 7
##    area perimeter compactness length_of_kernel width_of_kernel asym_coeff
##   <dbl>     <dbl>       <dbl>            <dbl>           <dbl>      <dbl>
## 1  15.3      14.8       0.871             5.76            3.31       2.22
## 2  14.9      14.6       0.881             5.55            3.33       1.02
## 3  14.3      14.1       0.905             5.29            3.34       2.70
## 4  13.8      13.9       0.896             5.32            3.38       2.26
## 5  16.1      15.0       0.903             5.66            3.56       1.36
## 6  14.4      14.2       0.895             5.39            3.31       2.46
## # ℹ 1 more variable: length_of_Kernel_groove <dbl>
summary(sdf)
##       area         perimeter      compactness     length_of_kernel
##  Min.   :10.59   Min.   :12.41   Min.   :0.8081   Min.   :4.899   
##  1st Qu.:12.27   1st Qu.:13.45   1st Qu.:0.8569   1st Qu.:5.262   
##  Median :14.36   Median :14.32   Median :0.8734   Median :5.524   
##  Mean   :14.85   Mean   :14.56   Mean   :0.8710   Mean   :5.629   
##  3rd Qu.:17.30   3rd Qu.:15.71   3rd Qu.:0.8878   3rd Qu.:5.980   
##  Max.   :21.18   Max.   :17.25   Max.   :0.9183   Max.   :6.675   
##  width_of_kernel   asym_coeff     length_of_Kernel_groove
##  Min.   :2.630   Min.   :0.7651   Min.   :4.519          
##  1st Qu.:2.944   1st Qu.:2.5615   1st Qu.:5.045          
##  Median :3.237   Median :3.5990   Median :5.223          
##  Mean   :3.259   Mean   :3.7002   Mean   :5.408          
##  3rd Qu.:3.562   3rd Qu.:4.7687   3rd Qu.:5.877          
##  Max.   :4.033   Max.   :8.4560   Max.   :6.550
is.na(sdf)
##         area perimeter compactness length_of_kernel width_of_kernel asym_coeff
##   [1,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##   [2,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##   [3,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##   [4,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##   [5,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##   [6,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##   [7,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##   [8,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##   [9,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [10,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [11,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [12,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [13,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [14,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [15,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [16,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [17,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [18,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [19,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [20,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [21,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [22,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [23,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [24,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [25,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [26,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [27,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [28,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [29,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [30,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [31,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [32,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [33,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [34,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [35,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [36,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [37,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [38,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [39,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [40,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [41,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [42,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [43,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [44,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [45,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [46,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [47,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [48,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [49,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [50,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [51,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [52,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [53,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [54,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [55,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [56,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [57,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [58,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [59,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [60,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [61,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [62,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [63,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [64,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [65,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [66,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [67,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [68,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [69,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [70,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [71,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [72,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [73,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [74,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [75,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [76,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [77,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [78,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [79,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [80,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [81,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [82,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [83,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [84,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [85,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [86,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [87,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [88,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [89,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [90,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [91,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [92,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [93,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [94,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [95,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [96,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [97,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [98,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##  [99,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [100,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [101,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [102,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [103,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [104,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [105,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [106,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [107,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [108,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [109,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [110,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [111,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [112,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [113,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [114,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [115,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [116,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [117,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [118,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [119,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [120,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [121,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [122,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [123,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [124,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [125,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [126,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [127,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [128,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [129,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [130,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [131,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [132,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [133,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [134,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [135,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [136,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [137,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [138,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [139,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [140,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [141,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [142,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [143,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [144,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [145,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [146,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [147,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [148,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [149,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [150,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [151,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [152,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [153,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [154,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [155,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [156,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [157,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [158,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [159,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [160,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [161,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [162,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [163,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [164,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [165,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [166,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [167,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [168,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [169,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [170,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [171,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [172,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [173,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [174,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [175,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [176,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [177,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [178,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [179,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [180,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [181,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [182,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [183,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [184,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [185,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [186,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [187,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [188,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [189,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [190,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [191,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [192,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [193,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [194,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [195,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [196,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [197,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [198,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [199,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [200,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [201,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [202,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [203,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [204,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [205,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [206,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [207,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [208,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [209,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
## [210,] FALSE     FALSE       FALSE            FALSE           FALSE      FALSE
##        length_of_Kernel_groove
##   [1,]                   FALSE
##   [2,]                   FALSE
##   [3,]                   FALSE
##   [4,]                   FALSE
##   [5,]                   FALSE
##   [6,]                   FALSE
##   [7,]                   FALSE
##   [8,]                   FALSE
##   [9,]                   FALSE
##  [10,]                   FALSE
##  [11,]                   FALSE
##  [12,]                   FALSE
##  [13,]                   FALSE
##  [14,]                   FALSE
##  [15,]                   FALSE
##  [16,]                   FALSE
##  [17,]                   FALSE
##  [18,]                   FALSE
##  [19,]                   FALSE
##  [20,]                   FALSE
##  [21,]                   FALSE
##  [22,]                   FALSE
##  [23,]                   FALSE
##  [24,]                   FALSE
##  [25,]                   FALSE
##  [26,]                   FALSE
##  [27,]                   FALSE
##  [28,]                   FALSE
##  [29,]                   FALSE
##  [30,]                   FALSE
##  [31,]                   FALSE
##  [32,]                   FALSE
##  [33,]                   FALSE
##  [34,]                   FALSE
##  [35,]                   FALSE
##  [36,]                   FALSE
##  [37,]                   FALSE
##  [38,]                   FALSE
##  [39,]                   FALSE
##  [40,]                   FALSE
##  [41,]                   FALSE
##  [42,]                   FALSE
##  [43,]                   FALSE
##  [44,]                   FALSE
##  [45,]                   FALSE
##  [46,]                   FALSE
##  [47,]                   FALSE
##  [48,]                   FALSE
##  [49,]                   FALSE
##  [50,]                   FALSE
##  [51,]                   FALSE
##  [52,]                   FALSE
##  [53,]                   FALSE
##  [54,]                   FALSE
##  [55,]                   FALSE
##  [56,]                   FALSE
##  [57,]                   FALSE
##  [58,]                   FALSE
##  [59,]                   FALSE
##  [60,]                   FALSE
##  [61,]                   FALSE
##  [62,]                   FALSE
##  [63,]                   FALSE
##  [64,]                   FALSE
##  [65,]                   FALSE
##  [66,]                   FALSE
##  [67,]                   FALSE
##  [68,]                   FALSE
##  [69,]                   FALSE
##  [70,]                   FALSE
##  [71,]                   FALSE
##  [72,]                   FALSE
##  [73,]                   FALSE
##  [74,]                   FALSE
##  [75,]                   FALSE
##  [76,]                   FALSE
##  [77,]                   FALSE
##  [78,]                   FALSE
##  [79,]                   FALSE
##  [80,]                   FALSE
##  [81,]                   FALSE
##  [82,]                   FALSE
##  [83,]                   FALSE
##  [84,]                   FALSE
##  [85,]                   FALSE
##  [86,]                   FALSE
##  [87,]                   FALSE
##  [88,]                   FALSE
##  [89,]                   FALSE
##  [90,]                   FALSE
##  [91,]                   FALSE
##  [92,]                   FALSE
##  [93,]                   FALSE
##  [94,]                   FALSE
##  [95,]                   FALSE
##  [96,]                   FALSE
##  [97,]                   FALSE
##  [98,]                   FALSE
##  [99,]                   FALSE
## [100,]                   FALSE
## [101,]                   FALSE
## [102,]                   FALSE
## [103,]                   FALSE
## [104,]                   FALSE
## [105,]                   FALSE
## [106,]                   FALSE
## [107,]                   FALSE
## [108,]                   FALSE
## [109,]                   FALSE
## [110,]                   FALSE
## [111,]                   FALSE
## [112,]                   FALSE
## [113,]                   FALSE
## [114,]                   FALSE
## [115,]                   FALSE
## [116,]                   FALSE
## [117,]                   FALSE
## [118,]                   FALSE
## [119,]                   FALSE
## [120,]                   FALSE
## [121,]                   FALSE
## [122,]                   FALSE
## [123,]                   FALSE
## [124,]                   FALSE
## [125,]                   FALSE
## [126,]                   FALSE
## [127,]                   FALSE
## [128,]                   FALSE
## [129,]                   FALSE
## [130,]                   FALSE
## [131,]                   FALSE
## [132,]                   FALSE
## [133,]                   FALSE
## [134,]                   FALSE
## [135,]                   FALSE
## [136,]                   FALSE
## [137,]                   FALSE
## [138,]                   FALSE
## [139,]                   FALSE
## [140,]                   FALSE
## [141,]                   FALSE
## [142,]                   FALSE
## [143,]                   FALSE
## [144,]                   FALSE
## [145,]                   FALSE
## [146,]                   FALSE
## [147,]                   FALSE
## [148,]                   FALSE
## [149,]                   FALSE
## [150,]                   FALSE
## [151,]                   FALSE
## [152,]                   FALSE
## [153,]                   FALSE
## [154,]                   FALSE
## [155,]                   FALSE
## [156,]                   FALSE
## [157,]                   FALSE
## [158,]                   FALSE
## [159,]                   FALSE
## [160,]                   FALSE
## [161,]                   FALSE
## [162,]                   FALSE
## [163,]                   FALSE
## [164,]                   FALSE
## [165,]                   FALSE
## [166,]                   FALSE
## [167,]                   FALSE
## [168,]                   FALSE
## [169,]                   FALSE
## [170,]                   FALSE
## [171,]                   FALSE
## [172,]                   FALSE
## [173,]                   FALSE
## [174,]                   FALSE
## [175,]                   FALSE
## [176,]                   FALSE
## [177,]                   FALSE
## [178,]                   FALSE
## [179,]                   FALSE
## [180,]                   FALSE
## [181,]                   FALSE
## [182,]                   FALSE
## [183,]                   FALSE
## [184,]                   FALSE
## [185,]                   FALSE
## [186,]                   FALSE
## [187,]                   FALSE
## [188,]                   FALSE
## [189,]                   FALSE
## [190,]                   FALSE
## [191,]                   FALSE
## [192,]                   FALSE
## [193,]                   FALSE
## [194,]                   FALSE
## [195,]                   FALSE
## [196,]                   FALSE
## [197,]                   FALSE
## [198,]                   FALSE
## [199,]                   FALSE
## [200,]                   FALSE
## [201,]                   FALSE
## [202,]                   FALSE
## [203,]                   FALSE
## [204,]                   FALSE
## [205,]                   FALSE
## [206,]                   FALSE
## [207,]                   FALSE
## [208,]                   FALSE
## [209,]                   FALSE
## [210,]                   FALSE
sdf <- na.omit(sdf)
summary(sdf)
##       area         perimeter      compactness     length_of_kernel
##  Min.   :10.59   Min.   :12.41   Min.   :0.8081   Min.   :4.899   
##  1st Qu.:12.27   1st Qu.:13.45   1st Qu.:0.8569   1st Qu.:5.262   
##  Median :14.36   Median :14.32   Median :0.8734   Median :5.524   
##  Mean   :14.85   Mean   :14.56   Mean   :0.8710   Mean   :5.629   
##  3rd Qu.:17.30   3rd Qu.:15.71   3rd Qu.:0.8878   3rd Qu.:5.980   
##  Max.   :21.18   Max.   :17.25   Max.   :0.9183   Max.   :6.675   
##  width_of_kernel   asym_coeff     length_of_Kernel_groove
##  Min.   :2.630   Min.   :0.7651   Min.   :4.519          
##  1st Qu.:2.944   1st Qu.:2.5615   1st Qu.:5.045          
##  Median :3.237   Median :3.5990   Median :5.223          
##  Mean   :3.259   Mean   :3.7002   Mean   :5.408          
##  3rd Qu.:3.562   3rd Qu.:4.7687   3rd Qu.:5.877          
##  Max.   :4.033   Max.   :8.4560   Max.   :6.550
sdf_scale <- scale(sdf)
View(sdf_scale)
summary(sdf_scale)
##       area           perimeter        compactness      length_of_kernel 
##  Min.   :-1.4632   Min.   :-1.6458   Min.   :-2.6619   Min.   :-1.6466  
##  1st Qu.:-0.8858   1st Qu.:-0.8494   1st Qu.:-0.5967   1st Qu.:-0.8267  
##  Median :-0.1693   Median :-0.1832   Median : 0.1037   Median :-0.2371  
##  Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000  
##  3rd Qu.: 0.8446   3rd Qu.: 0.8850   3rd Qu.: 0.7100   3rd Qu.: 0.7927  
##  Max.   : 2.1763   Max.   : 2.0603   Max.   : 2.0018   Max.   : 2.3619  
##  width_of_kernel     asym_coeff       length_of_Kernel_groove
##  Min.   :-1.6642   Min.   :-1.95210   Min.   :-1.8090        
##  1st Qu.:-0.8329   1st Qu.:-0.75734   1st Qu.:-0.7387        
##  Median :-0.0572   Median :-0.06731   Median :-0.3766        
##  Mean   : 0.0000   Mean   : 0.00000   Mean   : 0.0000        
##  3rd Qu.: 0.8026   3rd Qu.: 0.71068   3rd Qu.: 0.9541        
##  Max.   : 2.0502   Max.   : 3.16303   Max.   : 2.3234
sdf_scale_d <- dist(scale(sdf))
h_sdf<- hclust(sdf_scale_d)
plot(h_sdf)

plot(h_sdf, hang=-0.1, labels=sdf[["Species"]], cex=0.5)
seeds_dataset
## # A tibble: 210 × 8
##       X1    X2    X3    X4    X5    X6    X7    X8
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1  15.3  14.8 0.871  5.76  3.31  2.22  5.22     1
##  2  14.9  14.6 0.881  5.55  3.33  1.02  4.96     1
##  3  14.3  14.1 0.905  5.29  3.34  2.70  4.82     1
##  4  13.8  13.9 0.896  5.32  3.38  2.26  4.80     1
##  5  16.1  15.0 0.903  5.66  3.56  1.36  5.18     1
##  6  14.4  14.2 0.895  5.39  3.31  2.46  4.96     1
##  7  14.7  14.5 0.880  5.56  3.26  3.59  5.22     1
##  8  14.1  14.1 0.891  5.42  3.30  2.7   5        1
##  9  16.6  15.5 0.875  6.05  3.46  2.04  5.88     1
## 10  16.4  15.2 0.888  5.88  3.50  1.97  5.53     1
## # ℹ 200 more rows
plot(h_sdf, hang=-0.1, labels= seeds_dataset$x8, cex=0.5)  ### okay
## Warning: Unknown or uninitialised column: `x8`.

plot(h_sdf, hang=-0.1, labels= seeds_dataset[["x8"]], cex=0.5)   ###okay

seeds_dataset_noNa <- na.omit(seeds_dataset)





#feature_name <- c('area', 'perimeter', 'compactness', 'length_of_kernel', 'width_of_kernel', 'asym_coeff', 'length_of_Kernel_groove', 'type_of_sed')

#feature_name <- c('area', 'perimeter', 'compactness', 'length_of_kernel', 'width_of_kernel', 'asym_coeff', 'length_of_Kernel_groove')
c <- cutree(h_sdf,3)
c
##   [1] 1 1 1 1 1 1 1 1 2 1 1 1 3 1 1 3 3 1 1 3 1 1 1 3 1 1 3 3 1 3 3 1 1 1 1 1 1
##  [38] 1 1 3 1 1 3 2 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 3 3 3 3 3 3 3 1 1 1 3 2 2 2 2
##  [75] 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [112] 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 3 3 3 3 3 3 3 3
## [149] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [186] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
length(c)
## [1] 210
dim(seeds_dataset_noNa)
## [1] 210   8
#(cm <- table(c, iris$Species))
(cm <- table(c, seeds_dataset_noNa$X8 ))
##    
## c    1  2  3
##   1 48  4  0
##   2  2 66  0
##   3 20  0 70
Error <- 100*(1-sum(diag(cm))/sum(cm))
Error
## [1] 12.38095
library(cluster)
silhouette(c, sdf_scale_d)
##        cluster neighbor     sil_width
##   [1,]       1        2  0.5708880032
##   [2,]       1        3  0.5513374299
##   [3,]       1        3  0.4273358436
##   [4,]       1        3  0.4476413482
##   [5,]       1        2  0.4496837367
##   [6,]       1        3  0.5228626070
##   [7,]       1        3  0.4780097001
##   [8,]       1        3  0.5117642064
##   [9,]       2        1  0.0998030537
##  [10,]       1        2  0.2553247601
##  [11,]       1        3  0.3006419050
##  [12,]       1        3  0.5037811817
##  [13,]       3        1 -0.2366110187
##  [14,]       1        3  0.3257994331
##  [15,]       1        3  0.3045873031
##  [16,]       3        1 -0.3122477498
##  [17,]       3        1 -0.1295257365
##  [18,]       1        2  0.5211934668
##  [19,]       1        3  0.4026803962
##  [20,]       3        1  0.2351776958
##  [21,]       1        3  0.3124965970
##  [22,]       1        3  0.4702915442
##  [23,]       1        2  0.4871269382
##  [24,]       3        1 -0.0043995530
##  [25,]       1        3  0.5141723504
##  [26,]       1        2  0.4196318430
##  [27,]       3        1  0.0562098679
##  [28,]       3        1  0.0463464506
##  [29,]       1        3  0.5175188640
##  [30,]       3        1 -0.0772613665
##  [31,]       3        1 -0.2862191237
##  [32,]       1        2  0.4779300777
##  [33,]       1        3  0.1646250415
##  [34,]       1        3  0.4753008493
##  [35,]       1        2  0.5821581447
##  [36,]       1        2  0.3976522347
##  [37,]       1        2  0.2560816840
##  [38,]       1        2  0.0489838917
##  [39,]       1        3  0.5623264264
##  [40,]       3        1  0.0222249087
##  [41,]       1        3  0.4089719035
##  [42,]       1        3  0.4269682702
##  [43,]       3        1 -0.2797469693
##  [44,]       2        1 -0.1615491593
##  [45,]       1        2  0.5460344475
##  [46,]       1        3  0.4404518575
##  [47,]       1        2  0.5803837327
##  [48,]       1        3  0.5927701753
##  [49,]       1        3  0.5887350916
##  [50,]       1        3  0.5478773169
##  [51,]       1        3  0.3703040634
##  [52,]       3        1 -0.2720869248
##  [53,]       1        3  0.1503208973
##  [54,]       1        3  0.4695352547
##  [55,]       1        3  0.3949009865
##  [56,]       1        3  0.5193091638
##  [57,]       1        3  0.5270083716
##  [58,]       1        3  0.5425860205
##  [59,]       1        2  0.5938947940
##  [60,]       3        1  0.1021970837
##  [61,]       3        1  0.2466578948
##  [62,]       3        1  0.1341520070
##  [63,]       3        1  0.0221905126
##  [64,]       3        1  0.0855077596
##  [65,]       3        1 -0.2009863509
##  [66,]       3        1 -0.1664131790
##  [67,]       1        3  0.5259319254
##  [68,]       1        3  0.4230410683
##  [69,]       1        3  0.5159107956
##  [70,]       3        1  0.2976041799
##  [71,]       2        1  0.4782399534
##  [72,]       2        1  0.2974514127
##  [73,]       2        1  0.3446733744
##  [74,]       2        1  0.4837186307
##  [75,]       2        1  0.2819886843
##  [76,]       2        1  0.2261411672
##  [77,]       2        1  0.3210750709
##  [78,]       2        1  0.5419712231
##  [79,]       2        1  0.5363053405
##  [80,]       1        2 -0.1176390610
##  [81,]       2        1  0.2241673067
##  [82,]       2        1  0.4437462363
##  [83,]       2        1  0.5426936126
##  [84,]       2        1  0.4674239982
##  [85,]       2        1  0.5743868417
##  [86,]       2        1  0.4967618856
##  [87,]       2        1  0.4115980382
##  [88,]       2        1  0.5142299006
##  [89,]       2        1  0.4805409132
##  [90,]       2        1  0.5086735154
##  [91,]       2        1  0.4946807021
##  [92,]       2        1  0.5322161297
##  [93,]       2        1  0.5615034611
##  [94,]       2        1  0.3869749975
##  [95,]       2        1  0.4212735014
##  [96,]       2        1  0.3438504075
##  [97,]       2        1  0.5937597741
##  [98,]       2        1  0.4775367774
##  [99,]       2        1  0.4729201149
## [100,]       2        1  0.4954428823
## [101,]       2        1 -0.0692255063
## [102,]       2        1  0.2372055747
## [103,]       2        1  0.5316623147
## [104,]       2        1  0.5707311614
## [105,]       2        1  0.5872369759
## [106,]       2        1  0.4515703335
## [107,]       2        1  0.4983143952
## [108,]       2        1  0.4307701879
## [109,]       2        1  0.5341102823
## [110,]       2        1  0.3785986201
## [111,]       2        1  0.3886582666
## [112,]       2        1  0.5521397857
## [113,]       2        1  0.4295468267
## [114,]       2        1  0.4332311723
## [115,]       2        1  0.5336141787
## [116,]       2        1  0.5251697647
## [117,]       2        1  0.4197739388
## [118,]       2        1  0.5783066756
## [119,]       2        1  0.5276427019
## [120,]       2        1  0.5662081617
## [121,]       2        1  0.5008421893
## [122,]       2        1  0.4876610086
## [123,]       2        1 -0.0267368434
## [124,]       2        1  0.3884321721
## [125,]       1        2  0.4309253661
## [126,]       2        1  0.5155528325
## [127,]       2        1  0.5373082268
## [128,]       2        1  0.3247475559
## [129,]       2        1  0.4900463848
## [130,]       2        1  0.2317571049
## [131,]       2        1  0.3676929030
## [132,]       2        1  0.5180926895
## [133,]       2        1 -0.0754852688
## [134,]       2        1  0.0691871882
## [135,]       2        1  0.0137552131
## [136,]       1        2  0.4286063147
## [137,]       2        1  0.4423549179
## [138,]       2        1 -0.1226423362
## [139,]       2        1 -0.2235059057
## [140,]       1        2 -0.1540272750
## [141,]       3        1  0.3158453660
## [142,]       3        1  0.2467671255
## [143,]       3        1  0.2744926848
## [144,]       3        1  0.4059126422
## [145,]       3        1  0.4661186158
## [146,]       3        1  0.4514644402
## [147,]       3        1  0.3028132193
## [148,]       3        1  0.3442362359
## [149,]       3        1  0.2175771229
## [150,]       3        1  0.4471965016
## [151,]       3        1  0.4810772611
## [152,]       3        1  0.4118995970
## [153,]       3        1  0.4252937325
## [154,]       3        1  0.4202421482
## [155,]       3        1  0.4769400906
## [156,]       3        1  0.4864433718
## [157,]       3        1  0.3830792251
## [158,]       3        1  0.3920490914
## [159,]       3        1  0.3827127580
## [160,]       3        1  0.4795564798
## [161,]       3        1  0.1981658926
## [162,]       3        1  0.4265960579
## [163,]       3        1  0.4962130434
## [164,]       3        1  0.3669196759
## [165,]       3        1  0.4724656500
## [166,]       3        1 -0.0034370858
## [167,]       3        1  0.4411256462
## [168,]       3        1  0.3471599381
## [169,]       3        1  0.4903780696
## [170,]       3        1  0.4522132318
## [171,]       3        1  0.4422876736
## [172,]       3        1  0.4661690803
## [173,]       3        1  0.5075275367
## [174,]       3        1  0.5184285428
## [175,]       3        1  0.4466629485
## [176,]       3        1  0.4789372355
## [177,]       3        1  0.5209540594
## [178,]       3        1  0.5058041718
## [179,]       3        1  0.5077734930
## [180,]       3        1  0.0722845805
## [181,]       3        1  0.4911937030
## [182,]       3        1  0.3331614491
## [183,]       3        1  0.4485734870
## [184,]       3        1  0.4915578531
## [185,]       3        1  0.3300907114
## [186,]       3        1  0.4298523974
## [187,]       3        1  0.4322862771
## [188,]       3        1  0.4958703414
## [189,]       3        1  0.4112608115
## [190,]       3        1  0.4427003759
## [191,]       3        1  0.5194278329
## [192,]       3        1  0.4630642693
## [193,]       3        1  0.2075514297
## [194,]       3        1  0.4965669789
## [195,]       3        1  0.3616632288
## [196,]       3        1  0.1548766557
## [197,]       3        1  0.2721793689
## [198,]       3        1 -0.0008233976
## [199,]       3        1  0.2448603677
## [200,]       3        1 -0.1638794672
## [201,]       3        1  0.4241468931
## [202,]       3        1 -0.1591315217
## [203,]       3        1  0.4053643847
## [204,]       3        1  0.2376742978
## [205,]       3        1  0.3679439949
## [206,]       3        1  0.2009448064
## [207,]       3        1  0.4988773653
## [208,]       3        1  0.1918069368
## [209,]       3        1  0.4184880233
## [210,]       3        1  0.3932539376
## attr(,"Ordered")
## [1] FALSE
## attr(,"call")
## silhouette.default(x = c, dist = sdf_scale_d)
## attr(,"class")
## [1] "silhouette"
plot(silhouette(c, sdf_scale_d))

set.seed(1234)
d <- dist(scale(iris[,-5]))
sdf_scale_d <- dist(scale(sdf))
methods <- c('complete', 'single', 'average')
avgS <- matrix( NA, ncol=3, nrow=5, dimnames=list(2:6, methods))
for (k in 2:6) {
  for (m in seq_along(methods)){
    h <- hclust(sdf_scale_d, method = methods[m])
    c <- cutree(h_sdf,k)
    s <- silhouette(c,sdf_scale_d)
    avgS[k-1, m]=mean(s[,3])
  }
}

avgS
##    complete    single   average
## 2 0.4519948 0.4519948 0.4519948
## 3 0.3501985 0.3501985 0.3501985
## 4 0.3148568 0.3148568 0.3148568
## 5 0.2937202 0.2937202 0.2937202
## 6 0.2173803 0.2173803 0.2173803
### Meaning 2 ranks/categories of complete single or average are the best