
R Script “Panel” para obtener Indicadores del Banco Mundial
(5 puntos)
library(WDI)
library(wbstats)
library(tidyverse)
## -- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
## v dplyr 1.1.0 v readr 2.1.2
## v forcats 1.0.0 v stringr 1.5.0
## v ggplot2 3.4.1 v tibble 3.1.8
## v lubridate 1.9.3 v tidyr 1.3.0
## v purrr 1.0.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
gdp_data <- wb_data(country=c("MX","EC","CA"), indicator = "NY.GDP.PCAP.CD", start_date=2013, end_date=2023)
gdp_data
## # A tibble: 30 x 9
## iso2c iso3c country date NY.GDP.PCAP.CD unit obs_status footnote
## <chr> <chr> <chr> <dbl> <dbl> <chr> <chr> <chr>
## 1 CA CAN Canada 2013 52635. <NA> <NA> <NA>
## 2 CA CAN Canada 2014 50956. <NA> <NA> <NA>
## 3 CA CAN Canada 2015 43596. <NA> <NA> <NA>
## 4 CA CAN Canada 2016 42316. <NA> <NA> <NA>
## 5 CA CAN Canada 2017 45129. <NA> <NA> <NA>
## 6 CA CAN Canada 2018 46549. <NA> <NA> <NA>
## 7 CA CAN Canada 2019 46374. <NA> <NA> <NA>
## 8 CA CAN Canada 2020 43562. <NA> <NA> <NA>
## 9 CA CAN Canada 2021 52515. <NA> <NA> <NA>
## 10 CA CAN Canada 2022 55522. <NA> <NA> <NA>
## # i 20 more rows
## # i 1 more variable: last_updated <date>
panel <- select(gdp_data,country,date,NY.GDP.PCAP.CD)
panel
## # A tibble: 30 x 3
## country date NY.GDP.PCAP.CD
## <chr> <dbl> <dbl>
## 1 Canada 2013 52635.
## 2 Canada 2014 50956.
## 3 Canada 2015 43596.
## 4 Canada 2016 42316.
## 5 Canada 2017 45129.
## 6 Canada 2018 46549.
## 7 Canada 2019 46374.
## 8 Canada 2020 43562.
## 9 Canada 2021 52515.
## 10 Canada 2022 55522.
## # i 20 more rows
Ejercicio 2. Conjunto de Datos de Panel con Indicadores del Banco
Mundial (15 puntos)
climate_change <- wb_data(country=c("MX","NO","FI","SE","DK"), indicator=c("EN.ATM.CO2E.KT","EG.FEC.RNEW.ZS","SP.URB.TOTL.IN.ZS","AG.LND.AGRI.ZS"), start_date=2010, end_date = 2020)
climate_change
## # A tibble: 55 x 8
## iso2c iso3c country date AG.LND.AGRI.ZS EG.FEC.RNEW.ZS EN.ATM.CO2E.KT
## <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 DK DNK Denmark 2010 65.6 21.2 48125.
## 2 DK DNK Denmark 2011 67.2 23.8 43098
## 3 DK DNK Denmark 2012 65.6 26.9 38216.
## 4 DK DNK Denmark 2013 65.7 27.0 39961.
## 5 DK DNK Denmark 2014 66.3 30.2 35820
## 6 DK DNK Denmark 2015 65.8 32.5 33705.
## 7 DK DNK Denmark 2016 65.6 32.0 35340.
## 8 DK DNK Denmark 2017 65.8 35.0 33184
## 9 DK DNK Denmark 2018 65.8 34.6 33133.
## 10 DK DNK Denmark 2019 65.6 37.3 29696.
## # i 45 more rows
## # i 1 more variable: SP.URB.TOTL.IN.ZS <dbl>
climate_change_clean <- select(climate_change,country,date,EN.ATM.CO2E.KT,EG.FEC.RNEW.ZS,SP.URB.TOTL.IN.ZS,AG.LND.AGRI.ZS)
climate_change_clean
## # A tibble: 55 x 6
## country date EN.ATM.CO2E.KT EG.FEC.RNEW.ZS SP.URB.TOTL.IN.ZS AG.LND.AGRI.ZS
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Denmark 2010 48125. 21.2 86.8 65.6
## 2 Denmark 2011 43098 23.8 87.0 67.2
## 3 Denmark 2012 38216. 26.9 87.1 65.6
## 4 Denmark 2013 39961. 27.0 87.3 65.7
## 5 Denmark 2014 35820 30.2 87.4 66.3
## 6 Denmark 2015 33705. 32.5 87.5 65.8
## 7 Denmark 2016 35340. 32.0 87.6 65.6
## 8 Denmark 2017 33184 35.0 87.8 65.8
## 9 Denmark 2018 33133. 34.6 87.9 65.8
## 10 Denmark 2019 29696. 37.3 88.0 65.6
## # i 45 more rows
LS0tDQp0aXRsZTogIlIgU2NyaXB0IFBhbmVsIHkgRWplcmNpY2lvIDIiDQphdXRob3I6ICJHdWlsbGVybW8gQ8OhemFyZXMgQ3J1eiINCmRhdGU6ICIyMDI0LTAyLTEzIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQotLS0NCg0KIVtdKGh0dHBzOi8vbWVkaWEuZ2lwaHkuY29tL21lZGlhL1FwVlVNUlVKR29rZnFYeWZhMS9naXBoeS5naWY/Y2lkPTc5MGI3NjExaGphMmVoZGJvdGZzbjgwdXN4bnQ4aTVhdXhyMWdxMzZ6d2kzc3l4ZSZlcD12MV9naWZzX3NlYXJjaCZyaWQ9Z2lwaHkuZ2lmJmN0PWcpDQoNCg0KIyAqUiBTY3JpcHQqICJQYW5lbCIgcGFyYSBvYnRlbmVyIEluZGljYWRvcmVzIGRlbCBCYW5jbyBNdW5kaWFsICg1IHB1bnRvcykNCg0KYGBge3J9DQpsaWJyYXJ5KFdESSkNCmxpYnJhcnkod2JzdGF0cykNCmxpYnJhcnkodGlkeXZlcnNlKQ0KYGBgDQoNCmBgYHtyfQ0KZ2RwX2RhdGEgPC0gd2JfZGF0YShjb3VudHJ5PWMoIk1YIiwiRUMiLCJDQSIpLCBpbmRpY2F0b3IgPSAiTlkuR0RQLlBDQVAuQ0QiLCBzdGFydF9kYXRlPTIwMTMsIGVuZF9kYXRlPTIwMjMpDQpnZHBfZGF0YQ0KYGBgDQoNCmBgYHtyfQ0KcGFuZWwgPC0gc2VsZWN0KGdkcF9kYXRhLGNvdW50cnksZGF0ZSxOWS5HRFAuUENBUC5DRCkNCnBhbmVsDQpgYGANCg0KIyBFamVyY2ljaW8gMi4gQ29uanVudG8gZGUgRGF0b3MgZGUgUGFuZWwgY29uIEluZGljYWRvcmVzIGRlbCBCYW5jbyBNdW5kaWFsICgxNSBwdW50b3MpDQoNCmBgYHtyfQ0KY2xpbWF0ZV9jaGFuZ2UgPC0gd2JfZGF0YShjb3VudHJ5PWMoIk1YIiwiTk8iLCJGSSIsIlNFIiwiREsiKSwgaW5kaWNhdG9yPWMoIkVOLkFUTS5DTzJFLktUIiwiRUcuRkVDLlJORVcuWlMiLCJTUC5VUkIuVE9UTC5JTi5aUyIsIkFHLkxORC5BR1JJLlpTIiksIHN0YXJ0X2RhdGU9MjAxMCwgZW5kX2RhdGUgPSAyMDIwKQ0KYGBgDQoNCmBgYHtyfQ0KY2xpbWF0ZV9jaGFuZ2UNCmBgYA0KDQpgYGB7cn0NCmNsaW1hdGVfY2hhbmdlX2NsZWFuIDwtIHNlbGVjdChjbGltYXRlX2NoYW5nZSxjb3VudHJ5LGRhdGUsRU4uQVRNLkNPMkUuS1QsRUcuRkVDLlJORVcuWlMsU1AuVVJCLlRPVEwuSU4uWlMsQUcuTE5ELkFHUkkuWlMpDQpjbGltYXRlX2NoYW5nZV9jbGVhbg0KYGBgDQoNCg==