Cuadros nuevos 22122013

load("~/Dropbox/odontologia/relevamiento/casnati/muestra_global/muestra_global.RData")
#
# load('C:/Users/usuario/Dropbox/odontologia/relevamiento/casnati/muestra_global/muestra_global.RData')

library(survey)
## 
## Attaching package: 'survey'
## 
## The following object(s) are masked from 'package:graphics':
## 
##     dotchart
tabla18 <- svyby(~Prev.lesio, ~INSE1, disenio.post, svymean, na.rm = TRUE, deff = FALSE)
round(ftable(tabla18) * 100, 1)
##                  Prev.lesiono Prev.lesiosi
## INSE1                                     
## 1-BAJO  svymean          87.0         13.0
##         SE                1.8          1.8
## 2-MEDIO svymean          92.4          7.6
##         SE                1.2          1.2
## 3-ALTO  svymean          99.5          0.5
##         SE                0.5          0.5
tabla19 <- svyby(~Prev.lesio, ~as.factor(tabaco.rec), disenio.post, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla19[, 2:4] * 100, 1)
##   Prev.lesiono Prev.lesiosi se.Prev.lesiono
## 0         89.6         10.4             1.2
## 1         92.0          8.0             2.0
round(confint(tabla19) * 100, 2)
##                2.5 % 97.5 %
## 0:Prev.lesiono 87.19  91.97
## 1:Prev.lesiono 88.16  95.84
## 0:Prev.lesiosi  8.03  12.81
## 1:Prev.lesiosi  4.16  11.84
svychisq(~Prev.lesio + tabaco.rec, disenio.post, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~Prev.lesio + tabaco.rec, disenio.post, statistic = "Wald") 
## F = 1.094, ndf = 1, ddf = 1475, p-value = 0.2958
tabla20 <- svyby(~Prev.lesio, ~as.factor(alcohol.rec), disenio.post, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla20[, 2:4] * 100, 1)
##   Prev.lesiono Prev.lesiosi se.Prev.lesiono
## 0         86.7         13.3             2.2
## 1         91.7          8.3             1.1
round(confint(tabla20) * 100, 2)
##                2.5 % 97.5 %
## 0:Prev.lesiono 82.50  90.99
## 1:Prev.lesiono 89.46  93.94
## 0:Prev.lesiosi  9.01  17.50
## 1:Prev.lesiosi  6.06  10.54
svychisq(~Prev.lesio + alcohol.rec, disenio.post, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~Prev.lesio + alcohol.rec, disenio.post, statistic = "Wald") 
## F = 4.024, ndf = 1, ddf = 1475, p-value = 0.04504
tabla21 <- svyby(~Prev.lesio, ~as.factor(frutas_verduras.rec1), disenio.post, 
    svymean, na.rm = TRUE, deff = TRUE)
round(tabla21[, 2:4] * 100, 1)
##     Prev.lesiono Prev.lesiosi se.Prev.lesiono
## >=5         91.1          8.9             3.4
## <5          90.1          9.9             1.1
round(confint(tabla21) * 100, 2)
##                  2.5 % 97.5 %
## >=5:Prev.lesiono 84.47  97.76
## <5:Prev.lesiono  88.01  92.26
## >=5:Prev.lesiosi  2.24  15.53
## <5:Prev.lesiosi   7.74  11.99
svychisq(~Prev.lesio + frutas_verduras.rec1, disenio.post, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~Prev.lesio + frutas_verduras.rec1, disenio.post, statistic = "Wald") 
## F = 0.0757, ndf = 1, ddf = 1475, p-value = 0.7833
tabla22 <- svyby(~Prev.lesio, ~as.factor(Sit_protesis.rec), disenio.post, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla22[, 2:4] * 100, 1)
##                Prev.lesiono Prev.lesiosi se.Prev.lesiono
## 0-Sin_prote            95.1          4.9             0.9
## 1-Resto                91.6          8.4             4.2
## 2-Completa-PPR         76.8         23.2             2.8
round(confint(tabla22) * 100, 2)
##                             2.5 % 97.5 %
## 0-Sin_prote:Prev.lesiono    93.29  96.93
## 1-Resto:Prev.lesiono        83.36  99.92
## 2-Completa-PPR:Prev.lesiono 71.27  82.27
## 0-Sin_prote:Prev.lesiosi     3.07   6.71
## 1-Resto:Prev.lesiosi         0.08  16.64
## 2-Completa-PPR:Prev.lesiosi 17.73  28.73
svychisq(~Prev.lesio + Sit_protesis.rec, disenio.post, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~Prev.lesio + Sit_protesis.rec, disenio.post, statistic = "Wald") 
## F = 17.94, ndf = 2, ddf = 1475, p-value = 1.996e-08
tabla23 <- svyby(~Prev.lesio, ~as.factor(perio.rec1), disenio.post, svymean, 
    na.rm = TRUE, deff = TRUE)
round(tabla23[, 2:4] * 100, 1)
##              Prev.lesiono Prev.lesiosi se.Prev.lesiono
## 1-sano               94.0          6.0             1.1
## 2-Enf.Perio          93.8          6.2             1.8
## 3-desdentada         76.0         24.0             3.2
round(confint(tabla23) * 100, 2)
##                           2.5 % 97.5 %
## 1-sano:Prev.lesiono       91.95  96.10
## 2-Enf.Perio:Prev.lesiono  90.22  97.36
## 3-desdentada:Prev.lesiono 69.65  82.35
## 1-sano:Prev.lesiosi        3.90   8.05
## 2-Enf.Perio:Prev.lesiosi   2.64   9.78
## 3-desdentada:Prev.lesiosi 17.65  30.35
svychisq(~Prev.lesio + perio.rec1, disenio.post, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~Prev.lesio + perio.rec1, disenio.post, statistic = "Wald") 
## F = 12.59, ndf = 2, ddf = 1475, p-value = 3.772e-06
modelo.multi1 <- svyglm(factor(Prev.lesio.rec) ~ tramo_eta + INSE1 + alcohol.rec + 
    perio.rec1 + muestra, design = disenio.post, family = quasibinomial())

summary(modelo.multi1)
## 
## Call:
## svyglm(formula = factor(Prev.lesio.rec) ~ tramo_eta + INSE1 + 
##     alcohol.rec + perio.rec1 + muestra, design = disenio.post, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio, ~mue_eta_sex, tabla.pob)
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              -2.240      0.313   -7.15  1.4e-12 ***
## tramo_etaE2               0.781      0.335    2.33   0.0200 *  
## tramo_etaE3               0.411      0.437    0.94   0.3471    
## INSE12-MEDIO             -0.546      0.253   -2.16   0.0312 *  
## INSE13-ALTO              -3.103      1.053   -2.95   0.0033 ** 
## alcohol.rec1             -0.207      0.250   -0.83   0.4089    
## perio.rec12-Enf.Perio    -0.282      0.362   -0.78   0.4362    
## perio.rec13-desdentada    1.189      0.394    3.02   0.0026 ** 
## muestraMon               -0.556      0.250   -2.23   0.0262 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.056)
## 
## Number of Fisher Scoring iterations: 7
confint(modelo.multi1)
##                          2.5 %   97.5 %
## (Intercept)            -2.8539 -1.62570
## tramo_etaE2             0.1237  1.43817
## tramo_etaE3            -0.4456  1.26779
## INSE12-MEDIO           -1.0430 -0.04989
## INSE13-ALTO            -5.1669 -1.03992
## alcohol.rec1           -0.6976  0.28392
## perio.rec12-Enf.Perio  -0.9903  0.42705
## perio.rec13-desdentada  0.4160  1.96170
## muestraMon             -1.0460 -0.06653
exp(modelo.multi1$coefficients)
##            (Intercept)            tramo_etaE2            tramo_etaE3 
##                 0.1065                 2.1835                 1.5085 
##           INSE12-MEDIO            INSE13-ALTO           alcohol.rec1 
##                 0.5790                 0.0449                 0.8132 
##  perio.rec12-Enf.Perio perio.rec13-desdentada             muestraMon 
##                 0.7546                 3.2834                 0.5733
reporte.multi <- data.frame(modelo.multi1$coefficients, exp(modelo.multi1$coefficients), 
    exp(confint(modelo.multi1)))
colnames(reporte.multi) <- c("coef", "OR", "LIIC_OR", "LSIC_OR")
round(reporte.multi, 3)
##                          coef    OR LIIC_OR LSIC_OR
## (Intercept)            -2.240 0.106   0.058   0.197
## tramo_etaE2             0.781 2.184   1.132   4.213
## tramo_etaE3             0.411 1.508   0.640   3.553
## INSE12-MEDIO           -0.546 0.579   0.352   0.951
## INSE13-ALTO            -3.103 0.045   0.006   0.353
## alcohol.rec1           -0.207 0.813   0.498   1.328
## perio.rec12-Enf.Perio  -0.282 0.755   0.371   1.533
## perio.rec13-desdentada  1.189 3.283   1.516   7.111
## muestraMon             -0.556 0.573   0.351   0.936