This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggplot2)
library(dplyr)
data(mpg)
head(mpg)
## # A tibble: 6 × 11
## manufacturer model displ year cyl trans drv cty hwy fl class
## <chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>
## 1 audi a4 1.8 1999 4 auto(l5) f 18 29 p compa…
## 2 audi a4 1.8 1999 4 manual(m5) f 21 29 p compa…
## 3 audi a4 2 2008 4 manual(m6) f 20 31 p compa…
## 4 audi a4 2 2008 4 auto(av) f 21 30 p compa…
## 5 audi a4 2.8 1999 6 auto(l5) f 16 26 p compa…
## 6 audi a4 2.8 1999 6 manual(m5) f 18 26 p compa…
ggplot(data=mpg)+geom_point(mapping=aes(x=displ,y=hwy))
ggplot(data=mpg)+geom_point(mapping=aes(x=displ,y=cty))
ggplot(data=mpg)+geom_point(mapping=aes(x=displ,y=cyl))
ggplot(data=mpg)+geom_smooth(mapping=aes(x=displ,y=cyl))
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
ggplot(data=mpg)+geom_point(mapping=aes(x=displ,y=hwy))
ggplot(data=mpg)+geom_point(mapping=aes(x=displ,y=cty))
ggplot(data=mpg)+geom_point(mapping=aes(x=displ,y=cyl))
ggplot(data=mpg)+geom_smooth(mapping=aes(x=displ,y=cyl))
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
#### Geo_Smooth################
ggplot(data=mpg)+geom_smooth(mapping=aes(x=displ,y=cyl))
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
ggplot(data=mpg)+geom_smooth(mapping=aes(x=displ,y=hwy, linetype=drv))
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
ggplot(data=mpg)+geom_smooth(mapping=aes(x=displ,y=hwy, group=drv))
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
ggplot(data=mpg)+geom_smooth(mapping=aes(x=displ,y=hwy)) + geom_smooth(mapping=aes(x=displ, y=hwy))
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
#same as
ggplot(data=mpg, mapping=aes(x=displ,y=hwy)) + geom_point(mapping=aes(color=class)) + geom_smooth()
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
ggplot(data=mpg, mapping=aes(x=displ,y=hwy)) + geom_point(mapping=aes(color=class)) + geom_smooth(data=filter(mpg, class=="subcompact"), se=FALSE)
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
##ggplot(data=mpg, mapping=aes(x=displ,y=hwy)) + geom_point(mapping=aes(color=class)) + geom_smooth(data=dplyr::filter(mpg, class=="subcompact"), se=FALSE)
ggplot(data=mpg, mapping=aes(x=displ,y=hwy)) + geom_point(mapping=aes(color=class)) + geom_smooth(data=filter(mpg, class=="minivan"), se=FALSE)
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,
## : pseudoinverse used at 4.008
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,
## : neighborhood radius 0.708
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,
## : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,
## : There are other near singularities as well. 0.25
?diamonds
## starting httpd help server ... done
head(diamonds)
## # A tibble: 6 × 10
## carat cut color clarity depth table price x y z
## <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
## 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
## 3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
## 4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63
## 5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
## 6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
data(diamonds)
summary(diamonds)
## carat cut color clarity depth
## Min. :0.2000 Fair : 1610 D: 6775 SI1 :13065 Min. :43.00
## 1st Qu.:0.4000 Good : 4906 E: 9797 VS2 :12258 1st Qu.:61.00
## Median :0.7000 Very Good:12082 F: 9542 SI2 : 9194 Median :61.80
## Mean :0.7979 Premium :13791 G:11292 VS1 : 8171 Mean :61.75
## 3rd Qu.:1.0400 Ideal :21551 H: 8304 VVS2 : 5066 3rd Qu.:62.50
## Max. :5.0100 I: 5422 VVS1 : 3655 Max. :79.00
## J: 2808 (Other): 2531
## table price x y
## Min. :43.00 Min. : 326 Min. : 0.000 Min. : 0.000
## 1st Qu.:56.00 1st Qu.: 950 1st Qu.: 4.710 1st Qu.: 4.720
## Median :57.00 Median : 2401 Median : 5.700 Median : 5.710
## Mean :57.46 Mean : 3933 Mean : 5.731 Mean : 5.735
## 3rd Qu.:59.00 3rd Qu.: 5324 3rd Qu.: 6.540 3rd Qu.: 6.540
## Max. :95.00 Max. :18823 Max. :10.740 Max. :58.900
##
## z
## Min. : 0.000
## 1st Qu.: 2.910
## Median : 3.530
## Mean : 3.539
## 3rd Qu.: 4.040
## Max. :31.800
##
summary(diamonds$cut)
## Fair Good Very Good Premium Ideal
## 1610 4906 12082 13791 21551
summary(diamonds$carat)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.2000 0.4000 0.7000 0.7979 1.0400 5.0100
view(diamonds)
val <- c(46,34,87,22,91)
mean(val)
## [1] 56
mean(diamonds$price)
## [1] 3932.8
summary(diamonds$price)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 326 950 2401 3933 5324 18823
##x=carrat vs y=price
ggplot(data=diamonds)+geom_point(mapping=aes(x=carat,y=price))
ggplot(data=diamonds, mapping=aes(x=carat,y=price)) + geom_point(mapping = aes(color=cut))
hist(diamonds$carat, main="Histogram of Diamond Carat Weight", xlab = "Carat")
hist(diamonds$price, main="Histogram of Diamond Price", xlab = "Price")
sd(diamonds$carat)
## [1] 0.4740112
sd(diamonds$price)
## [1] 3989.44
var(diamonds$carat)
## [1] 0.2246867
var(diamonds$price)
## [1] 15915629
ggplot(data=diamonds) + stat_count(mapping = aes(x=cut))
##Introduce proportion to make all sum to 1
ggplot(data=diamonds) + stat_count(mapping = aes(x=cut, y=..prop.., group=0.1))
## Warning: The dot-dot notation (`..prop..`) was deprecated in ggplot2 3.4.0.
## ℹ Please use `after_stat(prop)` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
ggplot(data=diamonds) + stat_summary(mapping = aes(x=cut, y=depth),
fun.min=min,
fun.max=max,
fun=median
)
# Colour border alone
ggplot(data=diamonds) + stat_count(mapping = aes(x=cut, color=cut))
ggplot(data=diamonds) + geom_bar(mapping = aes(x=cut, color=cut))
# Color all fill
ggplot(data=diamonds) + stat_count(mapping = aes(x=cut, fill=cut))
ggplot(data=diamonds) + geom_bar(mapping = aes(x=cut, fill=cut))
ggplot(data=diamonds) + stat_count(mapping = aes(x=cut, fill=clarity))
ggplot(data=diamonds) + geom_bar(mapping = aes(x=cut, fill=clarity))
ggplot(data=diamonds) + geom_bar(mapping = aes(x=cut, fill=color))
ggplot(data=diamonds) + geom_bar(mapping = aes(x=cut, fill=clarity), position = "dodge")
ggplot(data=diamonds) + geom_bar(mapping = aes(x=cut, fill=color), position = "dodge")
###Using maps
#nz <- map_data("nz")
#ng <- map_data("ng")
#ggplot(nz, aes(long, lat, group=group)) + geom_polygon(fill="white", color="black")
#install.packages('naijR')
#?map_data
library(naijR)
map_ng()
map_ng(lgas())
map_ng(states(gpz = "sw"), show.text = TRUE, col = 4)
kk <- "Kebbi"
##map_ng(kk, col = 6, title = paste(kk, "State"))
map_ng("Lagos", col = 6, title = paste(kk, "State"))
ng <- map_ng()
#ng <- map_data("Nigeria")
#ggplot(ng, aes(long, lat, group=group)) + geom_polygon(fill="white", color="black")
#ng