Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
The tables above provides the distributions of respondents in terms of sex, year level, and strand. It can be seen that there are 58 females and 42 males; 24 of which are from ABM, 23 from GAS, 37 from HUMSS, and 16 from STEM.
Call:
lm(formula = `Background Knowledge` ~ Vocabulary, data = Data)
Coefficients:
(Intercept) Vocabulary
1.4028 0.5336
From this, we may deduce that the data fail to satisfy two assumptions – Linearity and Homogeneity of Variance.
Loading required package: carData
Attaching package: 'car'
The following object is masked from 'package:dplyr':
recode
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ forcats 1.0.0 ✔ readr 2.1.5
✔ ggplot2 3.4.4 ✔ stringr 1.5.1
✔ lubridate 1.9.3 ✔ tibble 3.2.1
✔ purrr 1.0.2 ✔ tidyr 1.3.1
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
✖ car::recode() masks dplyr::recode()
✖ purrr::some() masks car::some()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Attaching package: 'rstatix'
The following object is masked from 'package:stats':
filter
Shapiro-Wilk normality test
data: Data$`Background Knowledge`
W = 0.97339, p-value = 0.04043
Since p-value = 0.04043 < 0.05, it is conclusive that we reject the null hypothesis. That is, we cannot assume normality.
Warning in leveneTest.default(y = y, group = group, ...): group coerced to
factor.
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 0.2384 0.6265
98
The p-value is greater than the 0.05 level of significance. Thus, the homogeneity assumption of the variance is met.
Attaching package: 'gplots'
The following object is masked from 'package:stats':
lowess
Warning in plot.xy(xy.coords(x, y), type = type, ...): "frame" is not a
graphical parameter
Warning in axis(1, at = 1:length(means), labels = legends, ...): "frame" is not
a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, ...): "frame" is not a
graphical parameter
# A tibble: 2 × 11
Sex variable n min max median iqr mean sd se ci
<fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 FEMALE Background Know… 58 2 4 3 0.938 3 0.56 0.074 0.147
2 MALE Background Know… 42 1.5 4 2.88 0.75 2.83 0.604 0.093 0.188
The mean of female and male is 3.000 and 2.827, respectively.
# A tibble: 1 × 6
.y. n statistic df p method
* <chr> <int> <dbl> <int> <dbl> <chr>
1 Background Knowledge 100 1.40 1 0.237 Kruskal-Wallis
Based on the p-value, there is no significant difference on the Background Knowledge when grouped according to sex.
Shapiro-Wilk normality test
data: Data$Vocabulary
W = 0.96332, p-value = 0.006982
Since p-value = 0.006982 < 0.05, it is conclusive that we reject the null hypothesis. That is, we cannot assume normality.
Warning in leveneTest.default(y = y, group = group, ...): group coerced to
factor.
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 0.5562 0.4576
98
The p-value is greater than the 0.05 level of significance. Thus, the homogeneity assumption of the variance is met.
Warning in plot.xy(xy.coords(x, y), type = type, ...): "frame" is not a
graphical parameter
Warning in axis(1, at = 1:length(means), labels = legends, ...): "frame" is not
a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, ...): "frame" is not a
graphical parameter
# A tibble: 2 × 11
Sex variable n min max median iqr mean sd se ci
<fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 FEMALE Vocabulary 58 1.75 4 2.75 0.75 2.86 0.554 0.073 0.146
2 MALE Vocabulary 42 1.75 4 2.75 0.75 2.85 0.595 0.092 0.185
The mean of female and male is 2.862 and 2.851, respectively.
# A tibble: 1 × 6
.y. n statistic df p method
* <chr> <int> <dbl> <int> <dbl> <chr>
1 Vocabulary 100 0.000609 1 0.98 Kruskal-Wallis
Based on the p-value, there is no significant difference on the Vocabulary when grouped according to sex.
Shapiro-Wilk normality test
data: Data$`Background Knowledge`
W = 0.97339, p-value = 0.04043
Since p-value = 0.04043 < 0.05, it is conclusive that we reject the null hypothesis. That is, we cannot assume normality.
Warning in leveneTest.default(y = y, group = group, ...): group coerced to
factor.
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 3 1.233 0.302
96
The p-value is greater than the 0.05 level of significance. Thus, the homogeneity assumption of the variance is met.
Warning in plot.xy(xy.coords(x, y), type = type, ...): "frame" is not a
graphical parameter
Warning in axis(1, at = 1:length(means), labels = legends, ...): "frame" is not
a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, ...): "frame" is not a
graphical parameter
# A tibble: 4 × 11
Strand variable n min max median iqr mean sd se ci
<fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 STEM Background Know… 16 1.5 4 3.12 1 2.95 0.759 0.19 0.405
2 ABM Background Know… 24 2 4 3 0.625 2.98 0.566 0.116 0.239
3 HUMSS Background Know… 37 1.75 4 2.75 1 2.78 0.555 0.091 0.185
4 GAS Background Know… 23 2.25 4 3 0.625 3.10 0.469 0.098 0.203
The mean of STEM, ABM, HUMSS, and GAS is 2.953, 2.979, 2.777, and 3.098, respectively.
# A tibble: 1 × 6
.y. n statistic df p method
* <chr> <int> <dbl> <int> <dbl> <chr>
1 Background Knowledge 100 4.99 3 0.173 Kruskal-Wallis
Based on the p-value, there is no significant difference was observed between the group pairs.
# A tibble: 6 × 9
.y. group1 group2 n1 n2 statistic p p.adj p.adj.signif
* <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <chr>
1 Background Know… STEM ABM 16 24 -0.285 0.776 1 ns
2 Background Know… STEM HUMSS 16 37 -1.47 0.143 0.855 ns
3 Background Know… STEM GAS 16 23 0.316 0.752 1 ns
4 Background Know… ABM HUMSS 24 37 -1.32 0.186 1 ns
5 Background Know… ABM GAS 24 23 0.668 0.504 1 ns
6 Background Know… HUMSS GAS 37 23 2.04 0.0413 0.248 ns
There is significant difference between HUMMS and GAS.
Shapiro-Wilk normality test
data: Data$Vocabulary
W = 0.96332, p-value = 0.006982
Since p-value = 0.006982 < 0.05, it is conclusive that we reject the null hypothesis. That is, we cannot assume normality.
Warning in leveneTest.default(y = y, group = group, ...): group coerced to
factor.
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 3 0.5704 0.6359
96
The p-value is greater than the 0.05 level of significance. Thus, the homogeneity assumption of the variance is met.
Warning in plot.xy(xy.coords(x, y), type = type, ...): "frame" is not a
graphical parameter
Warning in axis(1, at = 1:length(means), labels = legends, ...): "frame" is not
a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, ...): "frame" is not a
graphical parameter
# A tibble: 4 × 11
Strand variable n min max median iqr mean sd se ci
<fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 STEM Vocabulary 16 1.75 3.5 3.25 0.812 2.97 0.531 0.133 0.283
2 ABM Vocabulary 24 2 3.75 2.75 0.562 2.78 0.496 0.101 0.21
3 HUMSS Vocabulary 37 1.75 4 2.75 0.75 2.82 0.609 0.1 0.203
4 GAS Vocabulary 23 2 4 2.75 0.75 2.91 0.615 0.128 0.266
The mean of STEM, ABM, HUMSS, and GAS is 2.969, 2.781, 2.824, and 2.913, respectively.
# A tibble: 1 × 6
.y. n statistic df p method
* <chr> <int> <dbl> <int> <dbl> <chr>
1 Vocabulary 100 1.49 3 0.685 Kruskal-Wallis
Based on the p-value, there is no significant difference was observed between the group pairs.
# A tibble: 6 × 9
.y. group1 group2 n1 n2 statistic p p.adj p.adj.signif
* <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <chr>
1 Vocabulary STEM ABM 16 24 -1.18 0.240 1 ns
2 Vocabulary STEM HUMSS 16 37 -0.921 0.357 1 ns
3 Vocabulary STEM GAS 16 23 -0.589 0.556 1 ns
4 Vocabulary ABM HUMSS 24 37 0.395 0.693 1 ns
5 Vocabulary ABM GAS 24 23 0.643 0.520 1 ns
6 Vocabulary HUMSS GAS 37 23 0.316 0.752 1 ns
Shapiro-Wilk normality test
data: Data1$Scores
W = 0.97258, p-value = 0.0005945
Since p-value = 0.0005945 < 0.05, it is conclusive that we reject the null hypothesis. That is, we cannot assume normality.
Warning in leveneTest.default(y = y, group = group, ...): group coerced to
factor.
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 0.0966 0.7563
198
The p-value is greater than the 0.05 level of significance. Thus, the homogeneity assumption of the variance is met.
Warning in plot.xy(xy.coords(x, y), type = type, ...): "frame" is not a
graphical parameter
Warning in axis(1, at = 1:length(means), labels = legends, ...): "frame" is not
a graphical parameter
Warning in plot.xy(xy.coords(x, y), type = type, ...): "frame" is not a
graphical parameter
# A tibble: 2 × 11
Variables variable n min max median iqr mean sd se ci
<fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Background Kn… Scores 100 1.5 4 3 0.75 2.93 0.582 0.058 0.115
2 Vocabulary Scores 100 1.75 4 2.75 0.75 2.86 0.569 0.057 0.113
The mean of physical health and mental health is 2.928 and 2.857, respectively.
# A tibble: 1 × 6
.y. n statistic df p method
* <chr> <int> <dbl> <int> <dbl> <chr>
1 Scores 200 0.820 1 0.365 Kruskal-Wallis
Based on the p-value, there is no significant difference between physical health and mental health.
Based on the provided output above, we can say that it is the Background Knowledge.