Exercise 1
After observing the three histograms, they become more defined each
time. In turn, allowing its viewer to specifically focus on the mode of
the departure delays.
## [1] "year" "month" "day" "dep_time" "dep_delay" "arr_time"
## [7] "arr_delay" "carrier" "tailnum" "flight" "origin" "dest"
## [13] "air_time" "distance" "hour" "minute"
ggplot(data=nycflights, aes(x=dep_delay))+geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(data=nycflights, aes(x=dep_delay))+geom_histogram(binwidth=15)

ggplot(data=nycflights, aes(x=dep_delay))+geom_histogram(binwidth=150)

Exercise 2
Based on the data frame that includes flights headed to SFO in
February, a total of 68 flights meet these criteria.
sfo_feb_flights<-nycflights%>%filter(dest=="SFO", month==2)
###Exercise 3
The triangular shape of the histogram suggests a mode, while the
spread of data at both extremes indicates a high standard deviation and
a wide interquartile range, implying multiple outliers. Thus, the most
appropriate statistical tools for analysis would be the mean and
median.
ggplot(data=sfo_feb_flights, aes(x=arr_delay))+geom_histogram(binwidth=5)

sfo_feb_flights%>%summarize(mean_ad=mean(arr_delay),
median_ad=median(arr_delay),
n=n())
## # A tibble: 1 × 3
## mean_ad median_ad n
## <dbl> <dbl> <int>
## 1 -4.5 -11 68
###Exercise 4
Based on the executed code, the arrival delays exhibit the highest
variability for carriers DL and UA, while carrier B6 demonstrates the
least variability, evidenced by its smallest interquartile range in the
dataset.
sfo_feb_flights%>%
group_by(carrier)%>%
summarize(median_ad=median(arr_delay),
IQR_ad=IQR(arr_delay))
## # A tibble: 5 × 3
## carrier median_ad IQR_ad
## <chr> <dbl> <dbl>
## 1 AA 5 17.5
## 2 B6 -10.5 12.2
## 3 DL -15 22
## 4 UA -10 22
## 5 VX -22.5 21.2
###Exercise 5
Using mean departure delays provides less information about the
probability of a delay occurring compared to using median departure
delays. The median better represents the likelihood of encountering a
delay accurately. In the dataset relying on median departure delays,
delays might be less frequent, but when they do occur, they tend to be
significant. Conversely, in the dataset relying on mean departure
delays, delays are more frequent but generally smaller in magnitude.
Therefore, choosing mean and median departure delays depends on whether
one prioritizes the frquency of magnitude of delays.
nycflights%>%
group_by(month)%>%
summarize(mean_dd=mean(dep_delay))%>%
arrange(desc(mean_dd))
## # A tibble: 12 × 2
## month mean_dd
## <int> <dbl>
## 1 7 20.8
## 2 6 20.4
## 3 12 17.4
## 4 4 14.6
## 5 3 13.5
## 6 5 13.3
## 7 8 12.6
## 8 2 10.7
## 9 1 10.2
## 10 9 6.87
## 11 11 6.10
## 12 10 5.88
nycflights%>%
group_by(month)%>%
summarize(median_dd=median(dep_delay))%>%
arrange(desc(median_dd))
## # A tibble: 12 × 2
## month median_dd
## <int> <dbl>
## 1 12 1
## 2 6 0
## 3 7 0
## 4 3 -1
## 5 5 -1
## 6 8 -1
## 7 1 -2
## 8 2 -2
## 9 4 -2
## 10 11 -2
## 11 9 -3
## 12 10 -3
###Exercise 6
In my opinion, I would make the decision to fly out of the LGA
airport based on the percentage calculated here.
nycflights<-nycflights%>%
mutate(dep_type=ifelse(dep_delay<5, "on time", "delayed"))
nycflights%>%
group_by(origin)%>%
summarize(ot_dep_rate=sum(dep_type=="on time")/n())%>%
arrange(desc(ot_dep_rate))
## # A tibble: 3 × 2
## origin ot_dep_rate
## <chr> <dbl>
## 1 LGA 0.728
## 2 JFK 0.694
## 3 EWR 0.637
###Exercise 7
nycflights<-nycflights%>%
mutate(avg_speed=distance/(air_time/60))
###Exercise 8
ggplot(data=nycflights, aes(x=avg_speed, y=distance))+geom_point()
###Exercise 9
flights<-nycflights%>%filter(carrier=="AA"|carrier=="DL"|carrier=="UA")
ggplot(data=flights, aes(x=dep_delay,y=arr_delay, color=carrier))+geom_point()

flights%>%
group_by(arr_delay)%>%
summarize(median_dd=median(dep_delay),
sd_dd=sd(dep_delay))%>%
arrange(desc(sd_dd))
## # A tibble: 339 × 3
## arr_delay median_dd sd_dd
## <dbl> <dbl> <dbl>
## 1 236 198. 104.
## 2 242 224. 98.3
## 3 104 56 87.7
## 4 124 69 81.7
## 5 194 201 78.6
## 6 164 99 63.3
## 7 96 44.5 62.5
## 8 256 254. 62.5
## 9 255 230. 60.1
## 10 122 110 58.9
## # ℹ 329 more rows
LS0tDQp0aXRsZTogIkxhYiAyOiBJbnRyb2R1Y3Rpb24gdG8gRGF0YSINCmF1dGhvcjogIkNvbGluIFMuIg0KZGF0ZTogIjIvMTgvMjAyNCINCm91dHB1dDogb3BlbmludHJvOjpsYWJfcmVwb3J0DQotLS0NCg0KYGBge3IgbG9hZC1wYWNrYWdlcywgbWVzc2FnZT1GQUxTRX0NCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShvcGVuaW50cm8pDQpkYXRhKG55Y2ZsaWdodHMpDQoNCmBgYA0KDQojIyMgRXhlcmNpc2UgMQ0KDQpBZnRlciBvYnNlcnZpbmcgdGhlIHRocmVlIGhpc3RvZ3JhbXMsIHRoZXkgYmVjb21lIG1vcmUgZGVmaW5lZCBlYWNoIHRpbWUuIEluIHR1cm4sIGFsbG93aW5nIGl0cyB2aWV3ZXIgdG8gc3BlY2lmaWNhbGx5IGZvY3VzIG9uIHRoZSBtb2RlIG9mIHRoZSBkZXBhcnR1cmUgZGVsYXlzLg0KDQpgYGB7ciBjb2RlLWNodW5rLWxhYmVsfQ0KbmFtZXMobnljZmxpZ2h0cykNCmdncGxvdChkYXRhPW55Y2ZsaWdodHMsIGFlcyh4PWRlcF9kZWxheSkpK2dlb21faGlzdG9ncmFtKCkNCmdncGxvdChkYXRhPW55Y2ZsaWdodHMsIGFlcyh4PWRlcF9kZWxheSkpK2dlb21faGlzdG9ncmFtKGJpbndpZHRoPTE1KQ0KZ2dwbG90KGRhdGE9bnljZmxpZ2h0cywgYWVzKHg9ZGVwX2RlbGF5KSkrZ2VvbV9oaXN0b2dyYW0oYmlud2lkdGg9MTUwKQ0KYGBgDQoNCiMjIyBFeGVyY2lzZSAyDQoNCkJhc2VkIG9uIHRoZSBkYXRhIGZyYW1lIHRoYXQgaW5jbHVkZXMgZmxpZ2h0cyBoZWFkZWQgdG8gU0ZPIGluIEZlYnJ1YXJ5LCBhIHRvdGFsIG9mIDY4IGZsaWdodHMgbWVldCB0aGVzZSBjcml0ZXJpYS4NCg0KYGBge3J9DQpzZm9fZmViX2ZsaWdodHM8LW55Y2ZsaWdodHMlPiVmaWx0ZXIoZGVzdD09IlNGTyIsIG1vbnRoPT0yKQ0KYGBgDQoNCiMjI0V4ZXJjaXNlIDMNCg0KVGhlIHRyaWFuZ3VsYXIgc2hhcGUgb2YgdGhlIGhpc3RvZ3JhbSBzdWdnZXN0cyBhIG1vZGUsIHdoaWxlIHRoZSBzcHJlYWQgb2YgZGF0YSBhdCBib3RoIGV4dHJlbWVzIGluZGljYXRlcyBhIGhpZ2ggc3RhbmRhcmQgZGV2aWF0aW9uIGFuZCBhIHdpZGUgaW50ZXJxdWFydGlsZSByYW5nZSwgaW1wbHlpbmcgbXVsdGlwbGUgb3V0bGllcnMuIFRodXMsIHRoZSBtb3N0IGFwcHJvcHJpYXRlIHN0YXRpc3RpY2FsIHRvb2xzIGZvciBhbmFseXNpcyB3b3VsZCBiZSB0aGUgbWVhbiBhbmQgbWVkaWFuLg0KDQpgYGB7cn0NCmdncGxvdChkYXRhPXNmb19mZWJfZmxpZ2h0cywgYWVzKHg9YXJyX2RlbGF5KSkrZ2VvbV9oaXN0b2dyYW0oYmlud2lkdGg9NSkNCg0Kc2ZvX2ZlYl9mbGlnaHRzJT4lc3VtbWFyaXplKG1lYW5fYWQ9bWVhbihhcnJfZGVsYXkpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1lZGlhbl9hZD1tZWRpYW4oYXJyX2RlbGF5KSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBuPW4oKSkNCmBgYA0KDQojIyNFeGVyY2lzZSA0DQoNCkJhc2VkIG9uIHRoZSBleGVjdXRlZCBjb2RlLCB0aGUgYXJyaXZhbCBkZWxheXMgZXhoaWJpdCB0aGUgaGlnaGVzdCB2YXJpYWJpbGl0eSBmb3IgY2FycmllcnMgREwgYW5kIFVBLCB3aGlsZSBjYXJyaWVyIEI2IGRlbW9uc3RyYXRlcyB0aGUgbGVhc3QgdmFyaWFiaWxpdHksIGV2aWRlbmNlZCBieSBpdHMgc21hbGxlc3QgaW50ZXJxdWFydGlsZSByYW5nZSBpbiB0aGUgZGF0YXNldC4NCg0KDQoNCmBgYHtyfQ0Kc2ZvX2ZlYl9mbGlnaHRzJT4lDQogIGdyb3VwX2J5KGNhcnJpZXIpJT4lDQogIHN1bW1hcml6ZShtZWRpYW5fYWQ9bWVkaWFuKGFycl9kZWxheSksDQogICAgICAgICAgICBJUVJfYWQ9SVFSKGFycl9kZWxheSkpDQpgYGANCg0KIyMjRXhlcmNpc2UgNQ0KDQpVc2luZyBtZWFuIGRlcGFydHVyZSBkZWxheXMgcHJvdmlkZXMgbGVzcyBpbmZvcm1hdGlvbiBhYm91dCB0aGUgcHJvYmFiaWxpdHkgb2YgYSBkZWxheSBvY2N1cnJpbmcgY29tcGFyZWQgdG8gdXNpbmcgbWVkaWFuIGRlcGFydHVyZSBkZWxheXMuIFRoZSBtZWRpYW4gYmV0dGVyIHJlcHJlc2VudHMgdGhlIGxpa2VsaWhvb2Qgb2YgZW5jb3VudGVyaW5nIGEgZGVsYXkgYWNjdXJhdGVseS4gSW4gdGhlIGRhdGFzZXQgcmVseWluZyBvbiBtZWRpYW4gZGVwYXJ0dXJlIGRlbGF5cywgZGVsYXlzIG1pZ2h0IGJlIGxlc3MgZnJlcXVlbnQsIGJ1dCB3aGVuIHRoZXkgZG8gb2NjdXIsIHRoZXkgdGVuZCB0byBiZSBzaWduaWZpY2FudC4gQ29udmVyc2VseSwgaW4gdGhlIGRhdGFzZXQgcmVseWluZyBvbiBtZWFuIGRlcGFydHVyZSBkZWxheXMsIGRlbGF5cyBhcmUgbW9yZSBmcmVxdWVudCBidXQgZ2VuZXJhbGx5IHNtYWxsZXIgaW4gbWFnbml0dWRlLiBUaGVyZWZvcmUsIGNob29zaW5nIG1lYW4gYW5kIG1lZGlhbiBkZXBhcnR1cmUgZGVsYXlzIGRlcGVuZHMgb24gd2hldGhlciBvbmUgcHJpb3JpdGl6ZXMgdGhlIGZycXVlbmN5IG9mIG1hZ25pdHVkZSBvZiBkZWxheXMuIA0KDQpgYGB7cn0NCm55Y2ZsaWdodHMlPiUNCiAgZ3JvdXBfYnkobW9udGgpJT4lDQogIHN1bW1hcml6ZShtZWFuX2RkPW1lYW4oZGVwX2RlbGF5KSklPiUNCiAgYXJyYW5nZShkZXNjKG1lYW5fZGQpKQ0KDQpueWNmbGlnaHRzJT4lDQogIGdyb3VwX2J5KG1vbnRoKSU+JQ0KICBzdW1tYXJpemUobWVkaWFuX2RkPW1lZGlhbihkZXBfZGVsYXkpKSU+JQ0KICBhcnJhbmdlKGRlc2MobWVkaWFuX2RkKSkNCmBgYA0KIyMjRXhlcmNpc2UgNg0KDQpJbiBteSBvcGluaW9uLCBJIHdvdWxkIG1ha2UgdGhlIGRlY2lzaW9uIHRvIGZseSBvdXQgb2YgdGhlIExHQSBhaXJwb3J0IGJhc2VkIG9uIHRoZSBwZXJjZW50YWdlIGNhbGN1bGF0ZWQgaGVyZS4NCg0KYGBge3J9DQpueWNmbGlnaHRzPC1ueWNmbGlnaHRzJT4lDQogIG11dGF0ZShkZXBfdHlwZT1pZmVsc2UoZGVwX2RlbGF5PDUsICJvbiB0aW1lIiwgImRlbGF5ZWQiKSkNCm55Y2ZsaWdodHMlPiUNCiAgZ3JvdXBfYnkob3JpZ2luKSU+JQ0KICBzdW1tYXJpemUob3RfZGVwX3JhdGU9c3VtKGRlcF90eXBlPT0ib24gdGltZSIpL24oKSklPiUNCiAgYXJyYW5nZShkZXNjKG90X2RlcF9yYXRlKSkNCmBgYA0KIyMjRXhlcmNpc2UgNw0KYGBge3J9DQpueWNmbGlnaHRzPC1ueWNmbGlnaHRzJT4lDQogIG11dGF0ZShhdmdfc3BlZWQ9ZGlzdGFuY2UvKGFpcl90aW1lLzYwKSkNCmBgYA0KIyMjRXhlcmNpc2UgOA0KYGBge3J9DQpnZ3Bsb3QoZGF0YT1ueWNmbGlnaHRzLCBhZXMoeD1hdmdfc3BlZWQsIHk9ZGlzdGFuY2UpKStnZW9tX3BvaW50KCkNCmBgYA0KIyMjRXhlcmNpc2UgOQ0KYGBge3J9DQpmbGlnaHRzPC1ueWNmbGlnaHRzJT4lZmlsdGVyKGNhcnJpZXI9PSJBQSJ8Y2Fycmllcj09IkRMInxjYXJyaWVyPT0iVUEiKQ0KZ2dwbG90KGRhdGE9ZmxpZ2h0cywgYWVzKHg9ZGVwX2RlbGF5LHk9YXJyX2RlbGF5LCBjb2xvcj1jYXJyaWVyKSkrZ2VvbV9wb2ludCgpDQoNCmZsaWdodHMlPiUNCiAgZ3JvdXBfYnkoYXJyX2RlbGF5KSU+JQ0KICBzdW1tYXJpemUobWVkaWFuX2RkPW1lZGlhbihkZXBfZGVsYXkpLA0KICAgICAgICAgICAgc2RfZGQ9c2QoZGVwX2RlbGF5KSklPiUNCiAgYXJyYW5nZShkZXNjKHNkX2RkKSkNCmBgYA==