library(readr)
library(ggplot2)
library(dplyr)
library(tsibble)
library(caTools)
library(fabletools)
`%>%` <- magrittr::`%>%`
VehicleSales <- read_delim("C:/Users/simon/Desktop/ACR_VehicleSales/VehicleSales.csv",
delim = ";", escape_double = FALSE, col_types = cols(Date = col_date(format = "%d.%m.%Y"),
Sales = col_number()), trim_ws = TRUE)
plot(VehicleSales$Date,VehicleSales$Sales,col="purple",main="Predaj aut od roku 1976 až 2023",xlab = "Rok",ylab = "Cena")
VehicleSales <- VehicleSales[399:493,]
plot(VehicleSales$Date,VehicleSales$Sales,col="purple",main="Predaj aut od roku 2009 až 2016",xlab = "Rok",ylab = "Cena")
Zvolený časový rad predstavuje celkový počet predaných vozidiel v rokoch 2010 až 2016. Dáta som našla na stránke https://fred.stlouisfed.org/series/.
Zobrazenie
qplot(x = Date, y = Sales, data = VehicleSales, main = "Total Vehicle Sales",xlab ="" ,ylab = "Millions of units")
table<-c("length","min","max","median","mean","sd") %>%
sapply(function(x) eval(call(x, VehicleSales$Sales))) %>%
round(2) %>%
rbind()
head(table)
## length min max median mean sd
## . 95 9.38 18.8 15.72 14.95 2.66
Rozdelenie na trénovaciu a validačnú vzorku
VehicleSales <- VehicleSales %>%
dplyr::mutate(Date = yearmonth(Date))
VehicleSales <- VehicleSales %>%
dplyr::mutate(
sample = ifelse(Date < yearmonth("2015-01-01"), "train", "valid"), # rozdelenie
sample = factor(sample, levels = unique(sample)) # zafixovanie poradia
) %>%
tsibble::as_tsibble(index = Date, key = sample)
feasts::autoplot(VehicleSales , Sales)