T_matrix <- matrix(c(3, 2, 1, 1, 1, -3, 2, 3, 1), nrow = 4, byrow = TRUE)
## Warning in matrix(c(3, 2, 1, 1, 1, -3, 2, 3, 1), nrow = 4, byrow = TRUE): data
## length [9] is not a sub-multiple or multiple of the number of rows [4]
cat("$$ T = ", format(T_matrix, justify = "c"), " $$")
## $$ T = 3 1 2 3 2 1 3 2 1 -3 1 1 $$
The standard basis vectors in C3 are i=[1,0,0]i=[1,0,0], j=[0,1,0]j=[0,1,0], and k=[0,0,1]k=[0,0,1].
Calculate T(i), T(j), and T(k) and arrange them into a matrix:[T(i),T(j),T(k)]
Use the transformation TT provided: i=[1,0,0],
j=[0,1,0]
and k=[0,0,1].
[T(i),T(j),T(k)]
T([1,0,0])=[3,1,1,2] T([0,1,0])=[2,1,−3,3] T([0,0,1])=[1,1,0,1]
Now, we can arrange these vectors into a matrix:
T = [ 3 2 1 1 1 1 1 − 3 0 2 3 1]
T:P2→C2, T (a+bx+cx2) = [2a-b, b+c]
To verify whether the given function \(T : P_2 \rightarrow \mathbb{C}^2\) is a linear transformation, we need to check two conditions:
For the given transformation \(T(a + bx + cx^2) = [2a - b, b + c]\), let’s check these conditions.
Let \(u = a_1 + b_1x + c_1x^2\) and \(v = a_2 + b_2x + c_2x^2\) be arbitrary vectors in \(P_2\), and \(c\) be an arbitrary scalar.
On the other hand: \[ T(u) + T(v) = [2a_1 - b_1, b_1 + c_1] + [2a_2 - b_2, b_2 + c_2] \] \[ T(u) + T(v) = [2(a_1 + a_2) - (b_1 + b_2), (b_1 + b_2) + (c_1 + c_2)] \]
Additivity holds.
On the other hand: \[ cT(u) = c[2a - b, b + c] = [2ca - cb, cb + cc] \]
Homogeneity holds.
Since both additivity and homogeneity hold, the given function \(T\) is a linear transformation from \(P_2\) to \(\mathbb{C}^2\).
# Define the transformation function T
T <- function(coefficients) {
a <- coefficients[1]
b <- coefficients[2]
c <- coefficients[3]
result <- c(2*a - b, b + c)
return(result)
}
# Verify additivity
u <- c(1, 2, 3) # Example vector in P2
v <- c(4, 5, 6) # Another example vector in P2
additivity_lhs <- T(u + v)
additivity_rhs <- T(u) + T(v)
# Check if additivity holds
additivity_check <- all(additivity_lhs == additivity_rhs)
cat("Additivity Check:", additivity_check, "\n")
## Additivity Check: TRUE
# Verify homogeneity
c_value <- 2 # Example scalar
cu <- c_value * u
homogeneity_lhs <- T(cu)
homogeneity_rhs <- c_value * T(u)
# Check if homogeneity holds
homogeneity_check <- all(homogeneity_lhs == homogeneity_rhs)
cat("Homogeneity Check:", homogeneity_check, "\n")
## Homogeneity Check: TRUE