Section 9.9
1. Now we are going to use the geom_histogram function
to make a histogram of the heights in the height data
frame. When reading the documentation for this function we see that it
requires just one mapping, the values to be used for the histogram. Make
a histogram of all the plots. What is the variable containing the
heights? C. Height
library(ggplot2)
library(dslabs)
heights
## sex height
## 1 Male 75.00000
## 2 Male 70.00000
## 3 Male 68.00000
## 4 Male 74.00000
## 5 Male 61.00000
## 6 Female 65.00000
## 7 Female 66.00000
## 8 Female 62.00000
## 9 Female 66.00000
## 10 Male 67.00000
## 11 Male 72.00000
## 12 Male 72.00000
## 13 Male 69.00000
## 14 Male 68.00000
## 15 Male 69.00000
## 16 Male 66.00000
## 17 Male 75.00000
## 18 Female 64.00000
## 19 Female 60.00000
## 20 Male 67.00000
## 21 Male 66.00000
## 22 Male 64.00000
## 23 Male 70.00000
## 24 Male 73.00000
## 25 Male 72.00000
## 26 Male 69.00000
## 27 Male 69.00000
## 28 Male 72.00000
## 29 Female 64.00000
## 30 Male 72.00000
## 31 Male 75.00000
## 32 Male 71.00000
## 33 Female 67.00000
## 34 Female 66.00000
## 35 Female 67.00000
## 36 Male 69.00000
## 37 Male 68.00000
## 38 Female 66.75000
## 39 Male 72.00000
## 40 Female 63.00000
## 41 Male 69.00000
## 42 Male 68.00000
## 43 Female 63.00000
## 44 Male 60.00000
## 45 Male 73.00000
## 46 Male 74.00000
## 47 Male 74.00000
## 48 Male 66.00000
## 49 Male 68.00000
## 50 Male 73.00000
## 51 Male 70.00000
## 52 Male 68.00000
## 53 Male 73.00000
## 54 Male 70.50000
## 55 Female 64.96063
## 56 Male 71.00000
## 57 Male 70.00000
## 58 Male 67.00000
## 59 Male 69.00000
## 60 Male 67.00000
## 61 Male 69.00000
## 62 Male 73.00000
## 63 Male 74.00000
## 64 Male 70.00000
## 65 Male 66.00000
## 66 Male 72.00000
## 67 Female 65.00000
## 68 Male 65.00000
## 69 Male 70.00000
## 70 Male 73.00000
## 71 Male 67.00000
## 72 Male 72.00000
## 73 Male 68.00000
## 74 Male 68.00000
## 75 Female 65.00000
## 76 Male 72.00000
## 77 Male 71.00000
## 78 Female 65.00000
## 79 Female 72.00000
## 80 Male 69.00000
## 81 Male 70.00000
## 82 Male 72.00000
## 83 Male 72.00000
## 84 Female 62.00000
## 85 Female 65.00000
## 86 Male 70.00000
## 87 Male 60.00000
## 88 Male 67.00000
## 89 Female 62.00000
## 90 Male 71.00000
## 91 Female 63.00000
## 92 Male 68.00000
## 93 Female 64.17320
## 94 Female 64.00000
## 95 Male 71.00000
## 96 Male 68.50000
## 97 Female 62.00000
## 98 Female 78.74016
## 99 Male 70.00000
## 100 Male 72.00000
## 101 Female 71.00000
## 102 Male 71.00000
## 103 Female 69.60000
## 104 Female 65.00000
## 105 Male 70.00000
## 106 Female 61.00000
## 107 Female 63.00000
## 108 Male 70.00000
## 109 Male 67.00000
## 110 Female 62.00000
## 111 Male 68.00000
## 112 Male 73.00000
## 113 Female 66.50000
## 114 Male 69.00000
## 115 Male 74.00000
## 116 Male 71.50000
## 117 Male 76.00000
## 118 Male 69.00000
## 119 Male 74.00000
## 120 Male 74.50000
## 121 Male 69.00000
## 122 Female 66.00000
## 123 Female 64.00000
## 124 Male 78.00000
## 125 Male 67.00000
## 126 Female 69.00000
## 127 Female 67.00000
## 128 Female 63.00000
## 129 Male 74.00000
## 130 Female 62.00000
## 131 Female 69.00000
## 132 Female 64.00000
## 133 Male 71.00000
## 134 Female 62.50000
## 135 Male 68.00000
## 136 Female 67.00000
## 137 Male 71.00000
## 138 Male 74.00000
## 139 Male 75.00000
## 140 Female 65.00000
## 141 Male 68.00000
## 142 Female 65.00000
## 143 Female 66.00000
## 144 Male 72.00000
## 145 Male 73.00000
## 146 Male 71.00000
## 147 Male 74.00000
## 148 Female 63.00000
## 149 Male 73.00000
## 150 Male 68.00000
## 151 Female 77.00000
## 152 Male 70.50000
## 153 Female 63.00000
## 154 Male 69.00000
## 155 Male 69.00000
## 156 Male 68.89000
## 157 Male 66.50000
## 158 Female 64.17300
## 159 Female 63.00000
## 160 Female 65.00000
## 161 Female 64.00000
## 162 Female 63.00000
## 163 Female 63.00000
## 164 Female 69.00000
## 165 Male 69.00000
## 166 Female 64.00000
## 167 Female 62.00000
## 168 Male 70.00000
## 169 Male 70.00000
## 170 Female 59.00000
## 171 Female 65.00000
## 172 Male 67.70000
## 173 Male 72.00000
## 174 Male 74.00000
## 175 Male 71.70000
## 176 Male 70.87000
## 177 Female 66.00000
## 178 Male 72.00000
## 179 Male 74.00000
## 180 Male 69.00000
## 181 Male 71.00000
## 182 Female 70.00000
## 183 Male 70.00000
## 184 Male 64.00000
## 185 Male 68.11000
## 186 Female 68.00000
## 187 Female 66.00000
## 188 Female 64.00000
## 189 Male 67.00000
## 190 Female 65.00000
## 191 Male 72.00000
## 192 Male 70.00000
## 193 Female 64.57000
## 194 Female 51.00000
## 195 Female 63.00000
## 196 Female 70.00000
## 197 Male 68.00000
## 198 Female 67.00000
## 199 Male 71.00000
## 200 Male 69.00000
## 201 Female 63.00000
## 202 Male 71.00000
## 203 Male 70.00000
## 204 Female 64.00000
## 205 Male 70.00000
## 206 Male 68.00000
## 207 Male 66.00000
## 208 Female 69.00000
## 209 Male 67.00000
## 210 Female 65.00000
## 211 Male 72.00000
## 212 Male 72.00000
## 213 Male 70.00000
## 214 Male 75.00000
## 215 Female 64.00000
## 216 Female 66.00000
## 217 Male 68.00000
## 218 Female 69.00000
## 219 Male 73.00000
## 220 Male 66.00000
## 221 Male 71.00000
## 222 Male 67.00000
## 223 Male 70.00000
## 224 Male 67.00000
## 225 Female 61.00000
## 226 Female 64.00000
## 227 Female 64.00000
## 228 Male 65.00000
## 229 Male 72.00000
## 230 Male 70.00000
## 231 Male 65.00000
## 232 Male 69.00000
## 233 Male 68.00000
## 234 Male 67.00000
## 235 Male 59.00000
## 236 Male 59.00000
## 237 Female 72.00000
## 238 Male 77.00000
## 239 Male 72.00000
## 240 Female 59.05512
## 241 Male 70.00000
## 242 Male 69.00000
## 243 Male 72.00000
## 244 Male 69.00000
## 245 Male 68.11000
## 246 Male 68.11000
## 247 Male 68.00000
## 248 Male 65.00000
## 249 Female 67.00000
## 250 Male 67.00000
## 251 Male 68.00000
## 252 Male 69.00000
## 253 Male 80.00000
## 254 Male 68.00000
## 255 Male 68.00000
## 256 Female 60.00000
## 257 Male 70.00000
## 258 Female 60.00000
## 259 Female 60.00000
## 260 Female 64.96000
## 261 Female 66.00000
## 262 Male 68.89764
## 263 Male 69.68504
## 264 Female 68.00000
## 265 Male 70.00000
## 266 Male 66.00000
## 267 Male 66.00000
## 268 Male 63.00000
## 269 Male 72.00000
## 270 Male 68.00000
## 271 Male 72.00000
## 272 Male 72.05000
## 273 Male 71.00000
## 274 Male 72.50000
## 275 Male 70.00000
## 276 Male 72.00000
## 277 Male 72.00000
## 278 Male 68.00000
## 279 Male 70.00000
## 280 Male 69.00000
## 281 Male 80.00000
## 282 Male 68.00000
## 283 Male 66.00000
## 284 Male 70.00000
## 285 Male 65.00000
## 286 Male 70.07874
## 287 Male 75.00000
## 288 Male 66.00000
## 289 Male 69.00000
## 290 Female 53.00000
## 291 Male 71.00000
## 292 Male 70.00000
## 293 Male 72.00000
## 294 Male 68.50000
## 295 Female 68.00000
## 296 Female 64.17323
## 297 Female 68.00000
## 298 Male 59.05510
## 299 Male 66.92000
## 300 Male 72.00000
## 301 Male 72.00000
## 302 Male 74.00000
## 303 Male 68.89764
## 304 Female 68.00000
## 305 Male 70.00000
## 306 Male 69.00000
## 307 Female 61.00000
## 308 Male 74.00000
## 309 Male 65.00000
## 310 Male 72.00000
## 311 Female 66.00000
## 312 Male 68.00000
## 313 Male 61.00000
## 314 Male 70.00000
## 315 Female 65.00000
## 316 Male 68.00000
## 317 Male 70.07874
## 318 Male 70.00000
## 319 Male 71.00000
## 320 Male 74.00000
## 321 Female 64.96063
## 322 Male 71.00000
## 323 Male 74.00000
## 324 Male 64.00000
## 325 Male 71.00000
## 326 Female 66.00000
## 327 Male 65.00000
## 328 Female 64.96063
## 329 Male 74.00000
## 330 Male 75.00000
## 331 Male 70.86614
## 332 Male 68.00000
## 333 Female 62.00000
## 334 Male 74.80000
## 335 Male 69.00000
## 336 Male 68.40000
## 337 Male 67.00000
## 338 Male 65.00000
## 339 Male 68.00000
## 340 Female 67.00000
## 341 Male 69.30000
## 342 Male 66.53543
## 343 Male 67.00000
## 344 Male 67.00000
## 345 Male 73.00000
## 346 Male 75.00000
## 347 Male 70.00000
## 348 Male 71.00000
## 349 Female 64.00000
## 350 Male 72.00000
## 351 Male 70.00000
## 352 Male 72.00000
## 353 Male 71.50000
## 354 Male 72.00000
## 355 Male 68.89760
## 356 Male 68.00000
## 357 Male 64.00000
## 358 Male 69.00000
## 359 Male 70.00000
## 360 Female 75.00000
## 361 Male 67.00000
## 362 Male 61.81102
## 363 Male 73.00000
## 364 Male 66.53543
## 365 Female 63.00000
## 366 Male 66.00000
## 367 Male 72.04724
## 368 Male 67.72000
## 369 Female 65.00000
## 370 Male 69.00000
## 371 Male 71.00000
## 372 Male 66.00000
## 373 Male 72.00000
## 374 Male 72.40000
## 375 Male 69.00000
## 376 Male 72.00000
## 377 Male 79.05000
## 378 Male 63.77953
## 379 Male 70.07874
## 380 Male 70.86614
## 381 Male 66.40000
## 382 Male 72.00000
## 383 Male 70.00000
## 384 Male 66.00000
## 385 Male 69.29000
## 386 Male 66.92913
## 387 Female 63.00000
## 388 Female 66.14160
## 389 Male 78.00000
## 390 Male 75.00000
## 391 Male 70.07874
## 392 Male 70.00000
## 393 Male 66.00000
## 394 Female 65.00000
## 395 Male 71.00000
## 396 Male 68.50000
## 397 Male 65.00000
## 398 Male 69.00000
## 399 Male 74.80315
## 400 Male 70.00000
## 401 Male 66.00000
## 402 Male 66.00000
## 403 Female 63.00000
## 404 Male 71.00000
## 405 Male 64.00000
## 406 Male 70.00000
## 407 Male 72.00000
## 408 Male 72.44094
## 409 Male 67.00000
## 410 Male 68.50000
## 411 Female 68.00000
## 412 Male 69.00000
## 413 Male 70.00000
## 414 Male 68.50000
## 415 Male 53.77000
## 416 Male 66.92000
## 417 Male 73.00000
## 418 Male 68.00000
## 419 Male 72.00000
## 420 Male 70.00000
## 421 Male 66.00000
## 422 Male 71.50000
## 423 Female 66.00000
## 424 Male 72.44094
## 425 Male 72.00000
## 426 Male 67.00000
## 427 Male 72.00000
## 428 Male 65.74803
## 429 Male 72.00000
## 430 Male 74.00000
## 431 Male 72.00000
## 432 Male 72.00000
## 433 Male 67.71650
## 434 Male 71.00000
## 435 Male 65.00000
## 436 Male 72.00000
## 437 Male 68.00000
## 438 Male 71.00000
## 439 Male 69.00000
## 440 Female 63.00000
## 441 Male 71.00000
## 442 Male 65.00000
## 443 Female 62.00000
## 444 Male 67.00000
## 445 Male 70.86614
## 446 Male 54.00000
## 447 Male 65.00000
## 448 Male 65.00000
## 449 Male 77.00000
## 450 Male 67.00000
## 451 Male 68.11020
## 452 Male 69.00000
## 453 Male 68.00000
## 454 Female 62.00000
## 455 Male 72.00000
## 456 Male 70.00000
## 457 Male 71.00000
## 458 Male 64.96100
## 459 Female 64.00000
## 460 Male 67.00000
## 461 Male 70.86614
## 462 Male 66.00000
## 463 Male 72.04724
## 464 Male 66.92913
## 465 Male 66.00000
## 466 Male 66.00000
## 467 Male 70.00000
## 468 Male 66.00000
## 469 Female 64.00000
## 470 Male 72.00000
## 471 Male 70.00000
## 472 Male 67.71654
## 473 Male 75.00000
## 474 Male 72.00000
## 475 Male 72.00000
## 476 Male 68.50000
## 477 Female 66.00000
## 478 Male 71.00000
## 479 Male 71.00000
## 480 Male 66.14173
## 481 Male 72.00000
## 482 Female 64.00000
## 483 Female 70.00000
## 484 Male 67.00000
## 485 Male 70.00000
## 486 Male 70.00000
## 487 Male 72.00000
## 488 Male 63.00000
## 489 Male 65.00000
## 490 Male 63.00000
## 491 Male 66.92913
## 492 Male 70.00000
## 493 Male 70.80000
## 494 Male 67.71654
## 495 Male 68.00000
## 496 Female 66.00000
## 497 Male 77.16540
## 498 Male 65.00000
## 499 Male 69.29134
## 500 Male 67.50000
## 501 Male 67.50000
## 502 Male 68.00000
## 503 Male 66.00000
## 504 Male 74.00000
## 505 Male 72.00000
## 506 Male 72.83000
## 507 Male 77.00000
## 508 Male 67.00000
## 509 Male 70.00000
## 510 Male 64.00000
## 511 Male 65.00000
## 512 Male 73.00000
## 513 Female 62.00000
## 514 Male 66.70000
## 515 Female 69.00000
## 516 Male 67.00000
## 517 Male 68.11024
## 518 Male 69.00000
## 519 Male 68.50394
## 520 Male 69.29134
## 521 Male 68.89764
## 522 Male 71.00000
## 523 Male 64.00000
## 524 Male 67.00000
## 525 Male 70.00000
## 526 Male 68.00000
## 527 Female 67.78000
## 528 Male 68.50000
## 529 Male 68.00000
## 530 Female 67.71000
## 531 Male 66.50000
## 532 Male 69.00000
## 533 Male 79.00000
## 534 Female 64.00000
## 535 Male 60.00000
## 536 Male 72.00000
## 537 Female 61.00000
## 538 Male 74.00000
## 539 Female 66.00000
## 540 Female 65.00000
## 541 Male 67.00000
## 542 Male 68.80000
## 543 Male 69.00000
## 544 Male 78.00000
## 545 Male 70.00000
## 546 Male 66.00000
## 547 Male 66.00000
## 548 Male 74.00000
## 549 Male 71.00000
## 550 Male 73.00000
## 551 Male 67.00000
## 552 Male 72.00000
## 553 Male 70.00000
## 554 Male 70.10000
## 555 Male 62.00000
## 556 Male 69.00000
## 557 Female 65.00000
## 558 Female 68.00000
## 559 Male 72.00000
## 560 Male 72.00000
## 561 Male 72.00000
## 562 Female 63.00000
## 563 Male 66.00000
## 564 Male 67.00000
## 565 Male 73.20000
## 566 Female 64.00000
## 567 Male 74.00000
## 568 Male 73.62000
## 569 Male 72.00000
## 570 Female 68.40000
## 571 Male 69.00000
## 572 Female 61.00000
## 573 Male 67.00000
## 574 Male 69.00000
## 575 Male 66.00000
## 576 Male 68.00000
## 577 Male 65.00000
## 578 Male 68.90000
## 579 Male 67.71000
## 580 Male 67.00000
## 581 Male 67.00000
## 582 Female 59.00000
## 583 Female 59.00000
## 584 Female 67.00000
## 585 Male 72.04724
## 586 Male 71.00000
## 587 Male 67.71654
## 588 Male 68.00000
## 589 Male 66.90000
## 590 Male 68.50000
## 591 Male 74.00000
## 592 Male 76.00000
## 593 Male 60.00000
## 594 Male 69.00000
## 595 Male 72.00000
## 596 Male 69.00000
## 597 Male 67.00000
## 598 Male 70.00000
## 599 Male 68.50000
## 600 Male 70.00000
## 601 Male 67.00000
## 602 Male 70.00000
## 603 Male 69.00000
## 604 Female 65.00000
## 605 Male 68.90000
## 606 Male 69.00000
## 607 Male 66.14173
## 608 Female 66.92910
## 609 Male 70.00000
## 610 Male 77.00000
## 611 Male 70.85000
## 612 Male 66.92913
## 613 Male 68.89764
## 614 Female 64.00000
## 615 Male 69.00000
## 616 Male 67.00000
## 617 Male 72.00000
## 618 Male 72.00000
## 619 Male 67.00000
## 620 Male 72.00000
## 621 Male 72.00000
## 622 Male 72.83000
## 623 Male 70.00000
## 624 Female 63.00000
## 625 Male 71.00000
## 626 Male 72.00000
## 627 Male 72.00000
## 628 Male 72.44000
## 629 Male 70.00000
## 630 Male 68.00000
## 631 Female 59.00000
## 632 Male 71.00000
## 633 Male 61.32000
## 634 Male 72.00000
## 635 Male 68.00000
## 636 Male 73.00000
## 637 Male 71.00000
## 638 Male 69.00000
## 639 Male 71.00000
## 640 Male 66.93000
## 641 Male 58.00000
## 642 Female 55.00000
## 643 Male 70.00000
## 644 Male 66.00000
## 645 Male 65.00000
## 646 Male 72.00000
## 647 Female 74.00000
## 648 Male 71.00000
## 649 Male 69.00000
## 650 Male 63.77953
## 651 Male 71.00000
## 652 Male 72.00000
## 653 Male 68.00000
## 654 Male 69.00000
## 655 Male 70.00000
## 656 Male 73.00000
## 657 Male 64.96063
## 658 Male 72.44094
## 659 Male 73.22000
## 660 Female 64.00000
## 661 Male 70.00000
## 662 Male 75.00000
## 663 Male 63.00000
## 664 Male 72.05000
## 665 Male 72.00000
## 666 Male 68.00000
## 667 Male 75.00000
## 668 Male 68.00000
## 669 Male 68.11024
## 670 Male 70.00000
## 671 Female 66.14170
## 672 Male 74.00000
## 673 Male 62.99213
## 674 Male 68.00000
## 675 Male 68.00000
## 676 Male 70.00000
## 677 Male 71.00000
## 678 Male 67.71654
## 679 Male 66.92913
## 680 Male 70.00000
## 681 Male 70.08000
## 682 Male 67.20000
## 683 Male 69.00000
## 684 Male 70.00000
## 685 Male 69.00000
## 686 Male 72.44000
## 687 Male 69.00000
## 688 Male 72.45000
## 689 Male 69.00000
## 690 Male 67.00000
## 691 Male 75.98000
## 692 Male 71.00000
## 693 Male 67.00000
## 694 Male 71.00000
## 695 Male 67.00000
## 696 Male 65.00000
## 697 Male 62.00000
## 698 Male 71.00000
## 699 Male 74.00000
## 700 Male 69.00000
## 701 Male 72.00000
## 702 Male 68.50394
## 703 Male 66.92913
## 704 Male 68.00000
## 705 Male 66.92910
## 706 Male 63.00000
## 707 Female 62.99213
## 708 Male 70.00000
## 709 Male 75.59055
## 710 Male 68.00000
## 711 Male 69.00000
## 712 Male 71.00000
## 713 Male 71.00000
## 714 Male 69.30000
## 715 Male 65.74803
## 716 Male 70.86600
## 717 Male 67.00000
## 718 Male 67.72000
## 719 Male 70.00000
## 720 Male 67.00000
## 721 Male 65.00000
## 722 Male 67.00000
## 723 Female 62.40000
## 724 Male 71.00000
## 725 Male 59.05512
## 726 Male 72.00000
## 727 Male 68.00000
## 728 Male 75.00000
## 729 Male 72.00000
## 730 Male 66.00000
## 731 Male 71.00000
## 732 Male 76.00000
## 733 Male 69.00000
## 734 Male 69.00000
## 735 Male 66.92913
## 736 Male 66.00000
## 737 Male 68.50394
## 738 Male 69.29000
## 739 Male 72.00000
## 740 Male 68.00000
## 741 Female 64.00000
## 742 Male 66.00000
## 743 Male 70.00000
## 744 Male 67.00000
## 745 Male 75.60000
## 746 Male 71.50000
## 747 Male 72.00000
## 748 Female 63.00000
## 749 Female 62.00000
## 750 Male 69.00000
## 751 Female 68.00000
## 752 Male 71.65000
## 753 Male 75.00000
## 754 Male 68.89760
## 755 Male 74.00000
## 756 Female 65.00000
## 757 Female 64.00000
## 758 Female 68.00000
## 759 Female 65.00000
## 760 Female 64.00000
## 761 Female 67.00000
## 762 Male 69.00000
## 763 Male 68.00000
## 764 Female 67.00000
## 765 Female 68.89760
## 766 Female 62.60000
## 767 Male 70.00000
## 768 Female 69.00000
## 769 Female 65.00000
## 770 Female 63.00000
## 771 Male 67.30000
## 772 Female 64.20000
## 773 Female 63.00000
## 774 Male 61.00000
## 775 Male 67.00000
## 776 Male 71.00000
## 777 Female 61.00000
## 778 Female 61.00000
## 779 Female 68.11000
## 780 Female 66.14000
## 781 Female 67.50000
## 782 Female 60.00000
## 783 Female 67.00000
## 784 Female 67.72000
## 785 Female 66.00000
## 786 Male 67.00000
## 787 Female 70.00000
## 788 Female 66.00000
## 789 Female 64.50000
## 790 Female 68.00000
## 791 Male 69.00000
## 792 Male 68.00000
## 793 Male 71.00000
## 794 Male 76.00000
## 795 Male 70.86610
## 796 Male 66.00000
## 797 Female 67.00000
## 798 Male 71.00000
## 799 Female 62.50000
## 800 Male 67.00000
## 801 Male 67.00000
## 802 Male 67.71654
## 803 Female 60.00000
## 804 Male 67.00000
## 805 Female 68.00000
## 806 Male 75.00000
## 807 Male 65.00000
## 808 Male 65.00000
## 809 Female 64.00000
## 810 Female 62.00000
## 811 Male 70.86614
## 812 Male 75.00000
## 813 Male 71.00000
## 814 Female 67.00000
## 815 Male 72.00000
## 816 Female 60.00000
## 817 Male 68.00000
## 818 Female 64.00000
## 819 Male 70.86614
## 820 Male 70.86614
## 821 Male 73.00000
## 822 Male 75.40000
## 823 Female 68.00000
## 824 Male 70.00000
## 825 Male 69.00000
## 826 Female 63.00000
## 827 Female 62.00000
## 828 Male 73.00000
## 829 Male 72.00000
## 830 Female 68.00000
## 831 Female 61.00000
## 832 Female 60.00000
## 833 Male 65.00000
## 834 Female 63.00000
## 835 Male 67.00000
## 836 Female 69.00000
## 837 Male 74.00000
## 838 Female 68.00000
## 839 Male 70.00000
## 840 Male 73.00000
## 841 Male 70.00000
## 842 Female 60.00000
## 843 Female 66.00000
## 844 Female 68.00000
## 845 Male 67.00000
## 846 Male 65.00000
## 847 Male 71.00000
## 848 Female 70.00000
## 849 Male 65.00000
## 850 Male 72.83460
## 851 Male 70.00000
## 852 Male 70.00000
## 853 Female 65.00000
## 854 Male 70.00000
## 855 Male 70.00000
## 856 Female 67.70000
## 857 Female 62.00000
## 858 Male 69.00000
## 859 Male 69.00000
## 860 Female 62.00000
## 861 Male 74.00000
## 862 Male 71.00000
## 863 Female 70.00000
## 864 Male 64.00000
## 865 Male 73.00000
## 866 Male 70.00000
## 867 Male 66.00000
## 868 Male 66.00000
## 869 Male 68.00000
## 870 Female 62.00000
## 871 Female 66.00000
## 872 Female 64.00000
## 873 Male 67.00000
## 874 Male 71.00000
## 875 Male 78.00000
## 876 Male 69.00000
## 877 Female 67.00000
## 878 Male 70.00000
## 879 Female 65.00000
## 880 Male 70.00000
## 881 Male 65.74803
## 882 Male 71.00000
## 883 Male 68.00000
## 884 Female 67.00000
## 885 Male 66.14173
## 886 Female 64.00000
## 887 Male 68.00000
## 888 Female 60.00000
## 889 Female 64.00000
## 890 Male 73.20000
## 891 Male 72.00000
## 892 Male 73.00000
## 893 Male 71.00000
## 894 Male 72.44000
## 895 Female 67.00000
## 896 Male 71.00000
## 897 Male 71.00000
## 898 Male 68.89000
## 899 Male 68.89000
## 900 Male 70.07874
## 901 Male 71.65354
## 902 Female 69.00000
## 903 Female 64.56693
## 904 Female 66.00000
## 905 Male 68.00000
## 906 Male 70.00000
## 907 Male 70.00000
## 908 Male 68.00000
## 909 Male 70.10000
## 910 Female 72.83465
## 911 Male 72.00000
## 912 Male 72.00000
## 913 Male 66.00000
## 914 Male 66.00000
## 915 Male 69.00000
## 916 Male 66.00000
## 917 Male 78.74000
## 918 Male 67.00000
## 919 Male 70.00000
## 920 Male 67.00000
## 921 Male 66.00000
## 922 Male 70.00000
## 923 Male 72.83460
## 924 Male 67.70000
## 925 Male 72.00000
## 926 Female 69.00000
## 927 Male 65.00000
## 928 Male 66.00000
## 929 Male 70.00000
## 930 Male 67.71654
## 931 Male 67.00000
## 932 Male 72.00000
## 933 Female 68.00000
## 934 Female 69.00000
## 935 Male 64.90000
## 936 Male 62.99213
## 937 Male 75.00000
## 938 Male 69.00000
## 939 Female 64.96000
## 940 Male 64.50000
## 941 Male 64.00000
## 942 Male 65.00000
## 943 Male 70.00000
## 944 Male 61.00000
## 945 Male 67.00000
## 946 Male 59.84252
## 947 Male 67.50000
## 948 Male 70.86614
## 949 Male 70.86000
## 950 Male 68.89764
## 951 Male 70.00000
## 952 Male 62.20472
## 953 Male 68.11024
## 954 Male 64.56693
## 955 Male 76.00000
## 956 Male 66.53543
## 957 Male 70.00000
## 958 Male 72.83465
## 959 Male 66.14173
## 960 Male 69.00000
## 961 Male 66.53543
## 962 Male 65.00000
## 963 Male 68.00000
## 964 Male 68.50394
## 965 Male 68.00000
## 966 Male 68.11024
## 967 Male 75.00000
## 968 Male 69.00000
## 969 Male 70.47244
## 970 Male 66.00000
## 971 Male 69.00000
## 972 Male 67.00000
## 973 Male 68.89000
## 974 Male 73.22000
## 975 Male 66.00000
## 976 Male 65.00000
## 977 Male 72.00000
## 978 Male 75.00000
## 979 Male 72.00000
## 980 Male 66.92913
## 981 Female 52.00000
## 982 Female 52.00000
## 983 Female 79.00000
## 984 Male 70.00000
## 985 Male 72.00000
## 986 Male 67.71654
## 987 Female 64.00000
## 988 Male 68.11000
## 989 Male 67.00000
## 990 Male 62.20472
## 991 Male 75.00000
## 992 Male 75.00000
## 993 Male 81.00000
## 994 Male 69.00000
## 995 Male 68.89764
## 996 Male 62.59843
## 997 Male 76.00000
## 998 Female 74.80315
## 999 Male 69.60000
## 1000 Male 67.00000
## 1001 Female 63.00000
## 1002 Male 70.00000
## 1003 Male 72.44000
## 1004 Female 66.00000
## 1005 Male 66.92913
## 1006 Male 62.20472
## 1007 Male 73.00000
## 1008 Male 72.00000
## 1009 Female 60.00000
## 1010 Male 76.00000
## 1011 Male 65.00000
## 1012 Male 66.00000
## 1013 Male 70.86614
## 1014 Male 68.90000
## 1015 Male 71.00000
## 1016 Female 64.00000
## 1017 Male 82.67717
## 1018 Male 72.00000
## 1019 Male 68.00000
## 1020 Male 67.00000
## 1021 Male 69.00000
## 1022 Female 64.20000
## 1023 Male 72.00000
## 1024 Male 63.00000
## 1025 Female 63.77953
## 1026 Male 66.00000
## 1027 Male 66.92913
## 1028 Male 74.00000
## 1029 Male 72.00000
## 1030 Male 67.00000
## 1031 Male 71.00000
## 1032 Male 50.00000
## 1033 Male 66.92913
## 1034 Male 61.81102
## 1035 Male 73.22835
## 1036 Male 65.00000
## 1037 Male 66.92913
## 1038 Male 63.00000
## 1039 Male 74.00000
## 1040 Male 67.71650
## 1041 Male 60.00000
## 1042 Male 60.00000
## 1043 Male 69.00000
## 1044 Male 69.00000
## 1045 Male 50.00000
## 1046 Female 69.00000
## 1047 Male 69.00000
## 1048 Male 63.38583
## 1049 Male 66.00000
## 1050 Male 66.00000
2. Now create a ggplot object using the pipe to assign the heights
data to a ggplot object. Assign height to the x values
through the aes function.
dk<-heights|>ggplot(aes(x=height))
3. Now we are ready to add a layer to actually make the histogram.
Use the object created in the previous exercise and the
geom_histogram() function to make the histogram.
dk+geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
4. Note that when we run the code in the previous exercise we get the
warning: stat_bin() using bins = 30. Pick
better value with binwidth. Use the binwidth
argument to change the histogram made in the previous exercise to use
bins of size 1 inch.
dk+geom_histogram(binwidth=1)
5. Instead of a histogram, we are going to make a smooth density plot. In this case we will not make an object, but instead render the plot with one line of code. Change the geometry in the code previously used to make a smooth density instead of a histogram.
dk+geom_density()
6. Now we are going to make a density plot for males and females
separately. We can do this using the group argument. We
assign groups via the aesthetic mapping as each point needs to a group
before making the calculations needed to estimate a density.
heights|>ggplot(aes(x=height, group=sex))+geom_density()
color argument.
This has the added benefit that it uses color to distinguish the groups.
Change the code above to use color.heights|>ggplot(aes(x=height, color=sex))+geom_density()
8. We can also assign groups through the fill argument.
This has the added benefit that it uses colors to distinguish the
groups, like this. However, here the second density is drawn over the
other. We can make the curves more visible by using alpha blending to
add transparency. Set the alpha parameter to 0.2 in the geom_density
function to make this change.
heights |> ggplot(aes(height, fill=sex)) + geom_density(alpha=.20)