library(doParallel)
## Loading required package: foreach
## Loading required package: iterators
## Loading required package: parallel
library(foreach)
library(iterators)
library(jpeg) #for readJPEG()
library(EBImage) #for the resize() function
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("EBImage")
## Bioconductor version 3.18 (BiocManager 1.30.22), R 4.3.2 (2023-10-31 ucrt)
## Warning: package(s) not installed when version(s) same as or greater than current; use
## `force = TRUE` to re-install: 'EBImage'
## Installation paths not writeable, unable to update packages
## path: C:/Program Files/R/R-4.3.2/library
## packages:
## cluster, foreign, lattice, MASS, Matrix, mgcv, nlme, rpart, survival
## Old packages: 'cli', 'digest', 'rlang', 'xfun'
files=list.files(path='C:/Users/Uzma/OneDrive/Desktop/Documents/jpg',pattern="\\.jpg")
files
## [1] "RC_2500x1200_2014_us_53446.jpg" "RC_2500x1200_2014_us_53455.jpg"
## [3] "RC_2500x1200_2014_us_53469.jpg" "RC_2500x1200_2014_us_53626.jpg"
## [5] "RC_2500x1200_2014_us_53632.jpg" "RC_2500x1200_2014_us_53649.jpg"
## [7] "RC_2500x1200_2014_us_53655.jpg" "RC_2500x1200_2014_us_53663.jpg"
## [9] "RC_2500x1200_2014_us_53697.jpg" "RC_2500x1200_2014_us_54018.jpg"
## [11] "RC_2500x1200_2014_us_54067.jpg" "RC_2500x1200_2014_us_54106.jpg"
## [13] "RC_2500x1200_2014_us_54130.jpg" "RC_2500x1200_2014_us_54148.jpg"
## [15] "RC_2500x1200_2014_us_54157.jpg" "RC_2500x1200_2014_us_54165.jpg"
## [17] "RC_2500x1200_2014_us_54172.jpg"
height=1200
width=2500
scale=20
plot_Image = function(path, add=FALSE) #initialize function
{
require('jpeg')
jpg = readJPEG(path, native=T) # read the file
res = dim(jpg)[2:1] # get the resolution, [x is 2, y is 1]
if (!add) # initialize an empty plot area if add==FALSE
plot(1,1,xlim=c(1,res[1]),ylim=c(1,res[2]), #set the X Limits by size
asp=1, #aspect ratio
type='n', #don't plot
xaxs='i',yaxs='i',#prevents expanding axis windows +6% as normal
xaxt='n',yaxt='n',xlab='',ylab='', # no axes or labels
bty='n') # no box around graph
rasterImage(jpg,1,1,res[1],res[2]) #image, xleft,ybottom,xright,ytop
}
#initialize array with zeros.
shoeIMG=array(rep(0,length(files)*height/scale*width/scale*3),
#set dimension to N, x, y, 3 colors, 4D array)
dim=c(length(files), height/scale, width/scale,3))
for (i in 1:length(files)){
#define file to be read
tmp=paste0("C:/Users/Uzma/OneDrive/Desktop/Documents/jpg/", files[i])
#read the file
temp=EBImage::resize(readJPEG(tmp),height/scale, width/scale)
#assign to the array
shoeIMG[i,,,]=array(temp,dim=c(1, height/scale, width/scale,3))
}
par(mfrow=c(3,3)) #set graphics to 3 x 3 table
par(mai=c(.3,.3,.3,.3)) #set margins
for (i in 1:8){ #plot the first images only
plot_Image(writeJPEG(shoeIMG[i,,,]))
}
### Principal Component Analysis:
height=1200
width=2500
scale=20
scaled_Data=shoeIMG
dim(scaled_Data)=c(length(files),height*width*3/scale^2)
dim(scaled_Data)
## [1] 17 22500
pca_Result = princomp(t(as.matrix(scaled_Data)), scores=TRUE, cor=TRUE)
pca_Result
## Call:
## princomp(x = t(as.matrix(scaled_Data)), cor = TRUE, scores = TRUE)
##
## Standard deviations:
## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
## 3.4319009 1.3118000 0.9316975 0.6809679 0.5683219 0.5255886 0.4877556 0.4528049
## Comp.9 Comp.10 Comp.11 Comp.12 Comp.13 Comp.14 Comp.15 Comp.16
## 0.4060420 0.3924175 0.3791956 0.3684830 0.3602187 0.3374253 0.3241916 0.3181866
## Comp.17
## 0.2808942
##
## 17 variables and 22500 observations.
variance = sum(pca_Result$sdev^2/sum(pca_Result$sdev^2))
variance
## [1] 1
final_Comp = pca_Result$sdev^2/sum(pca_Result$sdev^2)
sum(final_Comp[1:3])
## [1] 0.8451073
sum(final_Comp[1:6])
## [1] 0.9076338
pca_result2=t(pca_Result$scores)
dim(pca_result2)=c(length(files),height/scale,width/scale,3)
par(mfrow=c(5,5))
par(mai=c(.001,.001,.001,.001))
for (i in 1:17){ #plot the first 81 Eigenshoes only
plot_Image(writeJPEG(pca_result2[i,,,], quality=1,bg="white"))
}