Data frame:

exam_score <- data.frame(
  ID = c(1, 2, 3, 4, 5),
  Name = c("Alice", "Bob", "David", "John", "Jenny"),
  Age = c(20, 25, 30, 22, 18),
  Score = c(100, 78, 90, 55, 81)
)

Answer to question number a:

new_rows <- data.frame(
  ID = c(6, 7),
  Name = c("Emily", "Mike"),
  Age = c(28, 35),
  Score = c(85, 70)
)

exam_score <- rbind(exam_score, new_rows)
exam_score$Income <- c(50000, 60000, 70000, 45000, 55000, 65000, 48000)

Answer to question number b:

cat("Age Summary Statistics:\n")
Age Summary Statistics:
cat("Min Age:", min(exam_score$Age), "\n") # Lowest age in the vector
Min Age: 18 
cat("Max Age:", max(exam_score$Age), "\n") # Highest age
Max Age: 35 
cat("Mean Age:", mean(exam_score$Age), "\n") # Average age
Mean Age: 25.42857 
cat("Sum of Ages:", sum(exam_score$Age), "\n") # Sum of all ages
Sum of Ages: 178 
cat("Median Age:", median(exam_score$Age), "\n") # Median age
Median Age: 25 
cat("Standard Deviation of Ages:", sd(exam_score$Age), "\n") # Standard deviation
Standard Deviation of Ages: 5.99603 
cat("Variance of Ages:", var(exam_score$Age), "\n") # Variance
Variance of Ages: 35.95238 
cat("Quantiles of Ages:", quantile(exam_score$Age), "\n") # Quantile
Quantiles of Ages: 18 21 25 29 35 
cat("\nScore Summary Statistics:\n")

Score Summary Statistics:
cat("Min Score:", min(exam_score$Score), "\n") # Lowest score in the vector
Min Score: 55 
cat("Max Score:", max(exam_score$Score), "\n") # Highest score
Max Score: 100 
cat("Mean Score:", mean(exam_score$Score), "\n") # Average score
Mean Score: 79.85714 
cat("Sum of Scores:", sum(exam_score$Score), "\n") # Sum of all scores
Sum of Scores: 559 
cat("Median Score:", median(exam_score$Score), "\n") # Median score
Median Score: 81 
cat("Standard Deviation of Scores:", sd(exam_score$Score), "\n") # Standard deviation
Standard Deviation of Scores: 14.46177 
cat("Variance of Scores:", var(exam_score$Score), "\n") # Variance
Variance of Scores: 209.1429 
cat("Quantiles of Scores:", quantile(exam_score$Score), "\n") # Quantile
Quantiles of Scores: 55 74 81 87.5 100 
cat("\nIncome Summary Statistics:\n")

Income Summary Statistics:
cat("Min Income:", min(exam_score$Income), "\n") # Lowest income in the vector
Min Income: 45000 
cat("Max Income:", max(exam_score$Income), "\n") # Highest income
Max Income: 70000 
cat("Mean Income:", mean(exam_score$Income), "\n") # Average income
Mean Income: 56142.86 
cat("Sum of Incomes:", sum(exam_score$Income), "\n") # Sum of all incomes
Sum of Incomes: 393000 
cat("Median Income:", median(exam_score$Income), "\n") # Median income
Median Income: 55000 
cat("Standard Deviation of Incomes:", sd(exam_score$Income), "\n") # Standard deviation
Standard Deviation of Incomes: 9263.343 
cat("Variance of Incomes:", var(exam_score$Income), "\n") # Variance
Variance of Incomes: 85809524 
cat("Quantiles of Incomes:", quantile(exam_score$Income), "\n") # Quantile
Quantiles of Incomes: 45000 49000 55000 62500 70000 

Answer to question number c:

cor_age_score <- cor(exam_score$Age, exam_score$Score)
cor_age_income <- cor(exam_score$Age, exam_score$Income)
cor_score_income <- cor(exam_score$Score, exam_score$Income)

print("Correlation between Age and Score:")
[1] "Correlation between Age and Score:"
print(cor_age_score)
[1] -0.1279532
print("Correlation between Age and Income:")
[1] "Correlation between Age and Income:"
print(cor_age_income)
[1] 0.2597717
print("Correlation between Score and Income:")
[1] "Correlation between Score and Income:"
print(cor_score_income)
[1] 0.5115078

Answer to question number d:

high_score_rows <- exam_score[exam_score$Score >= 80, ]
high_score_rows

Answer to question number e:

age_range_rows <- exam_score[exam_score$Age >= 20 & exam_score$Age <= 30, ]

print("Rows where the score is greater than or equal to 80:")
[1] "Rows where the score is greater than or equal to 80:"
high_score_rows

print("Rows with an age range of 20 to 30:")
[1] "Rows with an age range of 20 to 30:"
age_range_rows
LS0tDQp0aXRsZTogIkFzc2lnbm1lbnQgLSAyIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCiMjIyBEYXRhIGZyYW1lOg0KYGBge3J9DQpleGFtX3Njb3JlIDwtIGRhdGEuZnJhbWUoDQogIElEID0gYygxLCAyLCAzLCA0LCA1KSwNCiAgTmFtZSA9IGMoIkFsaWNlIiwgIkJvYiIsICJEYXZpZCIsICJKb2huIiwgIkplbm55IiksDQogIEFnZSA9IGMoMjAsIDI1LCAzMCwgMjIsIDE4KSwNCiAgU2NvcmUgPSBjKDEwMCwgNzgsIDkwLCA1NSwgODEpDQopDQpgYGANCg0KDQojIyBBbnN3ZXIgdG8gcXVlc3Rpb24gbnVtYmVyIGE6DQoNCmBgYHtyfQ0KbmV3X3Jvd3MgPC0gZGF0YS5mcmFtZSgNCiAgSUQgPSBjKDYsIDcpLA0KICBOYW1lID0gYygiRW1pbHkiLCAiTWlrZSIpLA0KICBBZ2UgPSBjKDI4LCAzNSksDQogIFNjb3JlID0gYyg4NSwgNzApDQopDQoNCmV4YW1fc2NvcmUgPC0gcmJpbmQoZXhhbV9zY29yZSwgbmV3X3Jvd3MpDQpleGFtX3Njb3JlJEluY29tZSA8LSBjKDUwMDAwLCA2MDAwMCwgNzAwMDAsIDQ1MDAwLCA1NTAwMCwgNjUwMDAsIDQ4MDAwKQ0KYGBgDQoNCg0KIyMgQW5zd2VyIHRvIHF1ZXN0aW9uIG51bWJlciBiOg0KYGBge3J9DQpjYXQoIkFnZSBTdW1tYXJ5IFN0YXRpc3RpY3M6XG4iKQ0KY2F0KCJNaW4gQWdlOiIsIG1pbihleGFtX3Njb3JlJEFnZSksICJcbiIpICMgTG93ZXN0IGFnZSBpbiB0aGUgdmVjdG9yDQpjYXQoIk1heCBBZ2U6IiwgbWF4KGV4YW1fc2NvcmUkQWdlKSwgIlxuIikgIyBIaWdoZXN0IGFnZQ0KY2F0KCJNZWFuIEFnZToiLCBtZWFuKGV4YW1fc2NvcmUkQWdlKSwgIlxuIikgIyBBdmVyYWdlIGFnZQ0KY2F0KCJTdW0gb2YgQWdlczoiLCBzdW0oZXhhbV9zY29yZSRBZ2UpLCAiXG4iKSAjIFN1bSBvZiBhbGwgYWdlcw0KY2F0KCJNZWRpYW4gQWdlOiIsIG1lZGlhbihleGFtX3Njb3JlJEFnZSksICJcbiIpICMgTWVkaWFuIGFnZQ0KY2F0KCJTdGFuZGFyZCBEZXZpYXRpb24gb2YgQWdlczoiLCBzZChleGFtX3Njb3JlJEFnZSksICJcbiIpICMgU3RhbmRhcmQgZGV2aWF0aW9uDQpjYXQoIlZhcmlhbmNlIG9mIEFnZXM6IiwgdmFyKGV4YW1fc2NvcmUkQWdlKSwgIlxuIikgIyBWYXJpYW5jZQ0KY2F0KCJRdWFudGlsZXMgb2YgQWdlczoiLCBxdWFudGlsZShleGFtX3Njb3JlJEFnZSksICJcbiIpICMgUXVhbnRpbGUNCg0KY2F0KCJcblNjb3JlIFN1bW1hcnkgU3RhdGlzdGljczpcbiIpDQpjYXQoIk1pbiBTY29yZToiLCBtaW4oZXhhbV9zY29yZSRTY29yZSksICJcbiIpICMgTG93ZXN0IHNjb3JlIGluIHRoZSB2ZWN0b3INCmNhdCgiTWF4IFNjb3JlOiIsIG1heChleGFtX3Njb3JlJFNjb3JlKSwgIlxuIikgIyBIaWdoZXN0IHNjb3JlDQpjYXQoIk1lYW4gU2NvcmU6IiwgbWVhbihleGFtX3Njb3JlJFNjb3JlKSwgIlxuIikgIyBBdmVyYWdlIHNjb3JlDQpjYXQoIlN1bSBvZiBTY29yZXM6Iiwgc3VtKGV4YW1fc2NvcmUkU2NvcmUpLCAiXG4iKSAjIFN1bSBvZiBhbGwgc2NvcmVzDQpjYXQoIk1lZGlhbiBTY29yZToiLCBtZWRpYW4oZXhhbV9zY29yZSRTY29yZSksICJcbiIpICMgTWVkaWFuIHNjb3JlDQpjYXQoIlN0YW5kYXJkIERldmlhdGlvbiBvZiBTY29yZXM6Iiwgc2QoZXhhbV9zY29yZSRTY29yZSksICJcbiIpICMgU3RhbmRhcmQgZGV2aWF0aW9uDQpjYXQoIlZhcmlhbmNlIG9mIFNjb3JlczoiLCB2YXIoZXhhbV9zY29yZSRTY29yZSksICJcbiIpICMgVmFyaWFuY2UNCmNhdCgiUXVhbnRpbGVzIG9mIFNjb3JlczoiLCBxdWFudGlsZShleGFtX3Njb3JlJFNjb3JlKSwgIlxuIikgIyBRdWFudGlsZQ0KDQpjYXQoIlxuSW5jb21lIFN1bW1hcnkgU3RhdGlzdGljczpcbiIpDQpjYXQoIk1pbiBJbmNvbWU6IiwgbWluKGV4YW1fc2NvcmUkSW5jb21lKSwgIlxuIikgIyBMb3dlc3QgaW5jb21lIGluIHRoZSB2ZWN0b3INCmNhdCgiTWF4IEluY29tZToiLCBtYXgoZXhhbV9zY29yZSRJbmNvbWUpLCAiXG4iKSAjIEhpZ2hlc3QgaW5jb21lDQpjYXQoIk1lYW4gSW5jb21lOiIsIG1lYW4oZXhhbV9zY29yZSRJbmNvbWUpLCAiXG4iKSAjIEF2ZXJhZ2UgaW5jb21lDQpjYXQoIlN1bSBvZiBJbmNvbWVzOiIsIHN1bShleGFtX3Njb3JlJEluY29tZSksICJcbiIpICMgU3VtIG9mIGFsbCBpbmNvbWVzDQpjYXQoIk1lZGlhbiBJbmNvbWU6IiwgbWVkaWFuKGV4YW1fc2NvcmUkSW5jb21lKSwgIlxuIikgIyBNZWRpYW4gaW5jb21lDQpjYXQoIlN0YW5kYXJkIERldmlhdGlvbiBvZiBJbmNvbWVzOiIsIHNkKGV4YW1fc2NvcmUkSW5jb21lKSwgIlxuIikgIyBTdGFuZGFyZCBkZXZpYXRpb24NCmNhdCgiVmFyaWFuY2Ugb2YgSW5jb21lczoiLCB2YXIoZXhhbV9zY29yZSRJbmNvbWUpLCAiXG4iKSAjIFZhcmlhbmNlDQpjYXQoIlF1YW50aWxlcyBvZiBJbmNvbWVzOiIsIHF1YW50aWxlKGV4YW1fc2NvcmUkSW5jb21lKSwgIlxuIikgIyBRdWFudGlsZQ0KDQpgYGANCg0KDQojIyBBbnN3ZXIgdG8gcXVlc3Rpb24gbnVtYmVyIGM6DQoNCmBgYHtyfQ0KY29yX2FnZV9zY29yZSA8LSBjb3IoZXhhbV9zY29yZSRBZ2UsIGV4YW1fc2NvcmUkU2NvcmUpDQpjb3JfYWdlX2luY29tZSA8LSBjb3IoZXhhbV9zY29yZSRBZ2UsIGV4YW1fc2NvcmUkSW5jb21lKQ0KY29yX3Njb3JlX2luY29tZSA8LSBjb3IoZXhhbV9zY29yZSRTY29yZSwgZXhhbV9zY29yZSRJbmNvbWUpDQoNCnByaW50KCJDb3JyZWxhdGlvbiBiZXR3ZWVuIEFnZSBhbmQgU2NvcmU6IikNCnByaW50KGNvcl9hZ2Vfc2NvcmUpDQoNCnByaW50KCJDb3JyZWxhdGlvbiBiZXR3ZWVuIEFnZSBhbmQgSW5jb21lOiIpDQpwcmludChjb3JfYWdlX2luY29tZSkNCg0KcHJpbnQoIkNvcnJlbGF0aW9uIGJldHdlZW4gU2NvcmUgYW5kIEluY29tZToiKQ0KcHJpbnQoY29yX3Njb3JlX2luY29tZSkNCmBgYA0KDQoNCiMgQW5zd2VyIHRvIHF1ZXN0aW9uIG51bWJlciBkOg0KYGBge3J9DQpoaWdoX3Njb3JlX3Jvd3MgPC0gZXhhbV9zY29yZVtleGFtX3Njb3JlJFNjb3JlID49IDgwLCBdDQpoaWdoX3Njb3JlX3Jvd3MNCmBgYA0KDQoNCiMgQW5zd2VyIHRvIHF1ZXN0aW9uIG51bWJlciBlOg0KYGBge3J9DQphZ2VfcmFuZ2Vfcm93cyA8LSBleGFtX3Njb3JlW2V4YW1fc2NvcmUkQWdlID49IDIwICYgZXhhbV9zY29yZSRBZ2UgPD0gMzAsIF0NCg0KcHJpbnQoIlJvd3Mgd2hlcmUgdGhlIHNjb3JlIGlzIGdyZWF0ZXIgdGhhbiBvciBlcXVhbCB0byA4MDoiKQ0KaGlnaF9zY29yZV9yb3dzDQoNCnByaW50KCJSb3dzIHdpdGggYW4gYWdlIHJhbmdlIG9mIDIwIHRvIDMwOiIpDQphZ2VfcmFuZ2Vfcm93cw0KYGBgDQoNCg==