cargamos librerias

library(readxl)

buscamos el archivo de nuestro interes en este caso el libro de excel que necesitaremo, usamos la funcion file.choose para poder abirlo, para que nos de la ruta, despues read_xlxs y abrimos.

en este caso tenemos df (443x17) y df1 (84x17)

#seleccionar archivo
file.choose()
## [1] "C:\\Users\\ferna\\Documents\\Documentos\\proyectos R\\excel\\Rconsolidados.html"
# ver el nombre de las pestañas 
excel_sheets("C:\\Users\\ferna\\Downloads\\supermarket_sales - Sheet1.xlsx")
## [1] "supermarket_sales - Sheet1" "Hoja1"
# con el archivo en la pestaña por default
df <- read_xlsx("C:\\Users\\ferna\\Downloads\\supermarket_sales - Sheet1.xlsx")
df
## # A tibble: 443 × 17
##    `Invoice ID` Branch City   `Customer type` Gender `Product line` `Unit price`
##    <chr>        <chr>  <chr>  <chr>           <chr>  <chr>                 <dbl>
##  1 731-59-7531  B      Manda… Member          Male   Health and be…         72.6
##  2 676-39-6028  A      Yangon Member          Female Electronic ac…         64.4
##  3 502-05-1910  A      Yangon Normal          Male   Health and be…         65.2
##  4 485-30-8700  A      Yangon Normal          Female Sports and tr…         33.3
##  5 598-47-9715  C      Naypy… Normal          Male   Electronic ac…         84.1
##  6 701-69-8742  B      Manda… Normal          Male   Sports and tr…         34.4
##  7 575-67-1508  A      Yangon Normal          Male   Electronic ac…         38.6
##  8 541-08-3113  C      Naypy… Normal          Male   Food and beve…         66.0
##  9 246-11-3901  C      Naypy… Normal          Female Electronic ac…         32.8
## 10 674-15-9296  A      Yangon Normal          Male   Sports and tr…         37.1
## # ℹ 433 more rows
## # ℹ 10 more variables: Quantity <dbl>, `Tax 5%` <dbl>, Total <dbl>, Date <chr>,
## #   Time <dttm>, Payment <chr>, cogs <dbl>, `gross margin percentage` <dbl>,
## #   `gross income` <dbl>, Rating <dbl>
# el archivo con la pestaña de nuestro interes 
df1 <-read_xlsx("C:\\Users\\ferna\\Downloads\\supermarket_sales - Sheet1.xlsx" , sheet = "Hoja1")
df1
## # A tibble: 84 × 17
##    `Invoice ID` Branch City   `Customer type` Gender `Product line` `Unit price`
##    <chr>        <chr>  <chr>  <chr>           <chr>  <chr>                 <dbl>
##  1 722-13-2115  C      Naypy… Member          Male   Sports and tr…         42.8
##  2 749-81-8133  A      Yangon Normal          Female Fashion acces…         94.7
##  3 777-67-2495  B      Manda… Normal          Male   Home and life…         69.0
##  4 636-98-3364  B      Manda… Member          Female Electronic ac…         26.3
##  5 246-55-6923  C      Naypy… Member          Female Home and life…         35.8
##  6 181-82-6255  B      Manda… Normal          Female Home and life…         16.4
##  7 838-02-1821  C      Naypy… Member          Female Home and life…         12.7
##  8 887-42-0517  C      Naypy… Normal          Female Sports and tr…         83.1
##  9 457-12-0244  C      Naypy… Member          Female Sports and tr…         35.2
## 10 226-34-0034  B      Manda… Normal          Female Electronic ac…         13.8
## # ℹ 74 more rows
## # ℹ 10 more variables: Quantity <dbl>, `Tax 5%` <dbl>, Total <dbl>, Date <chr>,
## #   Time <dttm>, Payment <chr>, cogs <dbl>, `gross margin percentage` <dbl>,
## #   `gross income` <dbl>, Rating <dbl>

okay esos archivos vamos a consolidarlos facilmente usando la funcion rbind, facil sencillo y listos para trabajar y en teoria la suma de df + df1 nos tendria que dar igual 527x17 lo que es realmente lo que nos muestra.

#cosolidacion de la informacion 
dfc = rbind(df,df1)
dfc
## # A tibble: 527 × 17
##    `Invoice ID` Branch City   `Customer type` Gender `Product line` `Unit price`
##    <chr>        <chr>  <chr>  <chr>           <chr>  <chr>                 <dbl>
##  1 731-59-7531  B      Manda… Member          Male   Health and be…         72.6
##  2 676-39-6028  A      Yangon Member          Female Electronic ac…         64.4
##  3 502-05-1910  A      Yangon Normal          Male   Health and be…         65.2
##  4 485-30-8700  A      Yangon Normal          Female Sports and tr…         33.3
##  5 598-47-9715  C      Naypy… Normal          Male   Electronic ac…         84.1
##  6 701-69-8742  B      Manda… Normal          Male   Sports and tr…         34.4
##  7 575-67-1508  A      Yangon Normal          Male   Electronic ac…         38.6
##  8 541-08-3113  C      Naypy… Normal          Male   Food and beve…         66.0
##  9 246-11-3901  C      Naypy… Normal          Female Electronic ac…         32.8
## 10 674-15-9296  A      Yangon Normal          Male   Sports and tr…         37.1
## # ℹ 517 more rows
## # ℹ 10 more variables: Quantity <dbl>, `Tax 5%` <dbl>, Total <dbl>, Date <chr>,
## #   Time <dttm>, Payment <chr>, cogs <dbl>, `gross margin percentage` <dbl>,
## #   `gross income` <dbl>, Rating <dbl>