a \(\begin{bmatrix} 2 \\ 1 \end{bmatrix}\) + b \(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\) = \(\begin{bmatrix} 4 \\ 3 \end{bmatrix}\)
\(\begin{bmatrix} 2 & 1 & 4 \\ 1 & 1 & 3 \end{bmatrix}\)
Row reduce:
library(pracma)
## Warning: package 'pracma' was built under R version 4.3.2
A <- matrix(c(2, 1, 4, 1, 1, 3), 2, 3, byrow = TRUE)
rref(A)
## [,1] [,2] [,3]
## [1,] 1 0 1
## [2,] 0 1 2
Now, you know that a equals 1 and b equals 2 because the third column in the matrix shows you the answer. Plug in to the equation, and you will get the same result.
1 * T\(\begin{bmatrix} 2 \\ 1 \end{bmatrix}\) + 2 * T\(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\) = T\(\begin{bmatrix} 4 \\ 3 \end{bmatrix}\)
1 * \(\begin{bmatrix} 3 \\ 4 \end{bmatrix}\) + 2 * \(\begin{bmatrix} -1 \\ 2 \end{bmatrix}\) = \(\begin{bmatrix} 1 \\ 8 \end{bmatrix}\)