title: “L1 French eeg amplitude analyses” author: “Coughlin” date: “September 29, 2015” output: html_document
This file contains eeg data collected from right-handed native French speakers (n=30), living in Canada. They participated in a masked-priming lexical decision task. Testing took approximately 45 minutes with short breaks.
A given trial in the experiment followed this timeline
Participants wore an electrode cap from ANT with 64 embedded channels. Left and right mastoid electrodes were embedded in the cap. Each electrode’s cable is shielded individually to guard against noise. Impedance was kept below 5 Kohms. There were no electrodes placed on the face. Only 23 electodes (including both mastoids) were recorded. Left (A1) mastoid was used as reference elecrode during recording.
Data were processed offline in the following order, with the given parameters
setwd("C:/Users/Katie/Desktop/Research/Dissertation/STUDIES/Studies 3 and 4 EEG/EEG Native French/Amplitude data")
data<-read.table("kate-output-500600.txt",header=TRUE)
dim(data)
## [1] 31920 5
head(data)
## subj cond chan win mean
## 1 KC01 fidr Fp1 +100..+301 3.13820
## 2 KC01 fidr Fp1 +301..+500 -0.72904
## 3 KC01 fidr Fp1 +500..+600 -1.84420
## 4 KC01 fidr Fp1 +176..+275 2.17400
## 5 KC01 fidr Fp1 +350..+449 -1.99730
## 6 KC01 fidr Fp1 +449..+551 -1.14940
str(data)
## 'data.frame': 31920 obs. of 5 variables:
## $ subj: Factor w/ 30 levels "KC01","KC02",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ cond: Factor w/ 8 levels "fidr","fidu",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ chan: Factor w/ 19 levels "C3","C4","Cz",..: 8 8 8 8 8 8 8 9 9 9 ...
## $ win : Factor w/ 7 levels "+100..+301","+176..+275",..: 1 4 7 2 5 6 3 1 4 7 ...
## $ mean: num 3.138 -0.729 -1.844 2.174 -1.997 ...
In the original dataframe condition and relatedness are encoded in the same column. The below code creates new columns for just condition and just relatedness
library(qdap)
cond<-as.character(unique(data[,2]))
conditions<-c("id","id","morph","morph", "orth", "orth", "sem","sem")
match_cond<-cbind(cond,conditions)
relateds<-c("rel","unrel","rel","unrel", "rel", "unrel", "rel","unrel")
match_rel<-cbind(cond,relateds)
data$Condition<-lookup(data$cond,match_cond)
data$Related<-lookup(data$cond,match_rel)
data$Condition<-as.factor(as.character(data$Condition))
data$Related<-as.factor(as.character(data$Related))
head(data,15)
## subj cond chan win mean Condition Related
## 1 KC01 fidr Fp1 +100..+301 3.13820 id rel
## 2 KC01 fidr Fp1 +301..+500 -0.72904 id rel
## 3 KC01 fidr Fp1 +500..+600 -1.84420 id rel
## 4 KC01 fidr Fp1 +176..+275 2.17400 id rel
## 5 KC01 fidr Fp1 +350..+449 -1.99730 id rel
## 6 KC01 fidr Fp1 +449..+551 -1.14940 id rel
## 7 KC01 fidr Fp1 +176..+301 1.77600 id rel
## 8 KC01 fidr Fp2 +100..+301 3.97990 id rel
## 9 KC01 fidr Fp2 +301..+500 0.70052 id rel
## 10 KC01 fidr Fp2 +500..+600 -0.54733 id rel
## 11 KC01 fidr Fp2 +176..+275 2.75780 id rel
## 12 KC01 fidr Fp2 +350..+449 -0.55682 id rel
## 13 KC01 fidr Fp2 +449..+551 0.51648 id rel
## 14 KC01 fidr Fp2 +176..+301 2.22200 id rel
## 15 KC01 fidr F3 +100..+301 3.00200 id rel
Remove participants 4, 15,and 27 are removed because the number of trials rejected during averaging was excessive (e.g., 15 of 36 in more than 1 condition. Rejection was equal across conditions).
data<-data[data$subj!= "KC04" &data$subj!= "KC15" &data$subj!="KC27" ,]
data$subj<-factor(data$subj)
Relevel to make the unrelated condition the baseline
data$Related<-relevel(data$Related,ref="unrel")
Create subset of data just for midline electrodes (Fz,Cz,Pz) and for lateral electrodes. The dataframe for lateral electrodes (F3/4, C3/4, P3/4) then gets a variable labelling the hemisphere
midline<-data[data$chan=="Fz"| data$chan=="Cz" | data$chan=="Pz",]
midline$chan<-factor(midline$chan)
lateral<-data[data$chan=="F3"| data$chan=="F4"| data$chan=="C3" | data$chan=="C4" | data$chan=="P3" | data$chan=="P4",]
lateral$chan<-factor(lateral$chan)
hem<-as.character(unique(lateral[,3]))
sides<-c("left","right","left","right", "left", "right")
match_sides<-cbind(hem,sides)
lateral$hemisphere<-lookup(lateral$chan,match_sides)
head(lateral)
## subj cond chan win mean Condition Related hemisphere
## 15 KC01 fidr F3 +100..+301 3.00200 id rel left
## 16 KC01 fidr F3 +301..+500 -1.38630 id rel left
## 17 KC01 fidr F3 +500..+600 -1.23540 id rel left
## 18 KC01 fidr F3 +176..+275 1.56620 id rel left
## 19 KC01 fidr F3 +350..+449 -2.46650 id rel left
## 20 KC01 fidr F3 +449..+551 -0.77718 id rel left
Averageing was done in the following time-windows. These time windows correspond to the peaks found in the waveform plots
mid100<-midline[midline$win=="+100..+301",]
mid300<-midline[midline$win=="+301..+500",]
mid500<-midline[midline$win=="+500..+600",]
lat100<-lateral[lateral$win=="+100..+301",]
lat300<-lateral[lateral$win=="+301..+500",]
lat500<-lateral[lateral$win=="+500..+600",]
library(lme4)
library(lmerTest)
midline100_1<-lmer(mean~ Condition * Related * chan +(1|subj),mid100)
midline100_2<-lmer(mean~ Condition * Related * chan - Condition:Related:chan +(1|subj),mid100)
midline100_3<-lmer(mean~ Condition * Related * chan - Condition:Related:chan-chan:Related +(1|subj),mid100)
midline100_4<-lmer(mean~ Condition * Related * chan - Condition:Related:chan-chan:Condition +(1|subj),mid100)
midline100_5<-lmer(mean~ Condition * Related + chan + (1|subj),mid100)
summary(midline100_5)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula: mean ~ Condition * Related + chan + (1 | subj)
## Data: mid100
##
## REML criterion at convergence: 2735.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2858 -0.6560 0.0166 0.6016 4.4950
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj (Intercept) 5.392 2.322
## Residual 3.425 1.851
## Number of obs: 648, groups: subj, 27
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 1.46127 0.50254 39.40000 2.908 0.005954
## Conditionmorph -0.41910 0.29079 612.00000 -1.441 0.150026
## Conditionorth -0.39695 0.29079 612.00000 -1.365 0.172728
## Conditionsem -0.01838 0.29079 612.00000 -0.063 0.949623
## Relatedrel 0.92100 0.29079 612.00000 3.167 0.001615
## chanFz 1.56326 0.17807 612.00000 8.779 < 2e-16
## chanPz -0.50007 0.17807 612.00000 -2.808 0.005140
## Conditionmorph:Relatedrel -0.21572 0.41124 612.00000 -0.525 0.600084
## Conditionorth:Relatedrel -0.61098 0.41124 612.00000 -1.486 0.137868
## Conditionsem:Relatedrel -1.57399 0.41124 612.00000 -3.827 0.000143
##
## (Intercept) **
## Conditionmorph
## Conditionorth
## Conditionsem
## Relatedrel **
## chanFz ***
## chanPz **
## Conditionmorph:Relatedrel
## Conditionorth:Relatedrel
## Conditionsem:Relatedrel ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Cndtnm Cndtnr Cndtns Rltdrl chanFz chanPz Cndtnm:R
## Conditnmrph -0.289
## Conditinrth -0.289 0.500
## Conditionsm -0.289 0.500 0.500
## Relatedrel -0.289 0.500 0.500 0.500
## chanFz -0.177 0.000 0.000 0.000 0.000
## chanPz -0.177 0.000 0.000 0.000 0.000 0.500
## Cndtnmrph:R 0.205 -0.707 -0.354 -0.354 -0.707 0.000 0.000
## Cndtnrth:Rl 0.205 -0.354 -0.707 -0.354 -0.707 0.000 0.000 0.500
## Cndtnsm:Rlt 0.205 -0.354 -0.354 -0.707 -0.707 0.000 0.000 0.500
## Cndtnr:R
## Conditnmrph
## Conditinrth
## Conditionsm
## Relatedrel
## chanFz
## chanPz
## Cndtnmrph:R
## Cndtnrth:Rl
## Cndtnsm:Rlt 0.500
midline300_1<-lmer(mean~ Condition * Related * chan +(1|subj),mid300)
midline300_2<-lmer(mean~ Condition * Related * chan - Condition:Related:chan +(1|subj),mid300)
midline300_3<-lmer(mean~ Condition * Related * chan - Condition:Related:chan-chan:Related +(1|subj),mid300)
midline300_4<-lmer(mean~ Condition * Related * chan - Condition:Related:chan-chan:Condition +(1|subj),mid300)
midline300_5<-lmer(mean~ Condition * Related + chan + (1|subj),mid300)
summary(midline300_5)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula: mean ~ Condition * Related + chan + (1 | subj)
## Data: mid300
##
## REML criterion at convergence: 2971.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -5.2223 -0.6280 -0.0053 0.6465 3.0226
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj (Intercept) 10.127 3.182
## Residual 4.899 2.213
## Number of obs: 648, groups: subj, 27
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 1.94442 0.67132 36.00000 2.896 0.006381
## Conditionmorph -0.09196 0.34780 612.00000 -0.264 0.791555
## Conditionorth -0.50089 0.34780 612.00000 -1.440 0.150331
## Conditionsem -0.58529 0.34780 612.00000 -1.683 0.092916
## Relatedrel 1.59678 0.34780 612.00000 4.591 5.35e-06
## chanFz -0.70613 0.21298 612.00000 -3.315 0.000969
## chanPz 2.33104 0.21298 612.00000 10.945 < 2e-16
## Conditionmorph:Relatedrel -0.27916 0.49186 612.00000 -0.568 0.570539
## Conditionorth:Relatedrel -1.11518 0.49186 612.00000 -2.267 0.023721
## Conditionsem:Relatedrel -0.97735 0.49186 612.00000 -1.987 0.047363
##
## (Intercept) **
## Conditionmorph
## Conditionorth
## Conditionsem .
## Relatedrel ***
## chanFz ***
## chanPz ***
## Conditionmorph:Relatedrel
## Conditionorth:Relatedrel *
## Conditionsem:Relatedrel *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Cndtnm Cndtnr Cndtns Rltdrl chanFz chanPz Cndtnm:R
## Conditnmrph -0.259
## Conditinrth -0.259 0.500
## Conditionsm -0.259 0.500 0.500
## Relatedrel -0.259 0.500 0.500 0.500
## chanFz -0.159 0.000 0.000 0.000 0.000
## chanPz -0.159 0.000 0.000 0.000 0.000 0.500
## Cndtnmrph:R 0.183 -0.707 -0.354 -0.354 -0.707 0.000 0.000
## Cndtnrth:Rl 0.183 -0.354 -0.707 -0.354 -0.707 0.000 0.000 0.500
## Cndtnsm:Rlt 0.183 -0.354 -0.354 -0.707 -0.707 0.000 0.000 0.500
## Cndtnr:R
## Conditnmrph
## Conditinrth
## Conditionsm
## Relatedrel
## chanFz
## chanPz
## Cndtnmrph:R
## Cndtnrth:Rl
## Cndtnsm:Rlt 0.500
midline500_1<-lmer(mean~ Condition * Related * chan +(1|subj),mid500)
midline500_2<-lmer(mean~ Condition * Related * chan - Condition:Related:chan +(1|subj),mid500)
midline500_3<-lmer(mean~ Condition * Related * chan - Condition:Related:chan-chan:Related +(1|subj),mid500)
midline500_4<-lmer(mean~ Condition * Related * chan - Condition:Related:chan-chan:Condition +(1|subj),mid500)
midline500_5<-lmer(mean~ Condition * Related + chan + (1|subj),mid500)
summary(midline500_5)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula: mean ~ Condition * Related + chan + (1 | subj)
## Data: mid500
##
## REML criterion at convergence: 3049.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.2167 -0.6411 0.0236 0.6197 3.0881
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj (Intercept) 7.616 2.760
## Residual 5.629 2.373
## Number of obs: 648, groups: subj, 27
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 6.003786 0.607404 41.700000 9.884
## Conditionmorph -0.058753 0.372811 612.000000 -0.158
## Conditionorth -0.657656 0.372811 612.000000 -1.764
## Conditionsem -0.128335 0.372811 612.000000 -0.344
## Relatedrel -0.468632 0.372811 612.000000 -1.257
## chanFz -2.764886 0.228299 612.000000 -12.111
## chanPz 1.721252 0.228299 612.000000 7.539
## Conditionmorph:Relatedrel 0.035821 0.527235 612.000000 0.068
## Conditionorth:Relatedrel -0.165936 0.527235 612.000000 -0.315
## Conditionsem:Relatedrel -0.002989 0.527235 612.000000 -0.006
## Pr(>|t|)
## (Intercept) 1.70e-12 ***
## Conditionmorph 0.8748
## Conditionorth 0.0782 .
## Conditionsem 0.7308
## Relatedrel 0.2092
## chanFz < 2e-16 ***
## chanPz 1.71e-13 ***
## Conditionmorph:Relatedrel 0.9459
## Conditionorth:Relatedrel 0.7531
## Conditionsem:Relatedrel 0.9955
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Cndtnm Cndtnr Cndtns Rltdrl chanFz chanPz Cndtnm:R
## Conditnmrph -0.307
## Conditinrth -0.307 0.500
## Conditionsm -0.307 0.500 0.500
## Relatedrel -0.307 0.500 0.500 0.500
## chanFz -0.188 0.000 0.000 0.000 0.000
## chanPz -0.188 0.000 0.000 0.000 0.000 0.500
## Cndtnmrph:R 0.217 -0.707 -0.354 -0.354 -0.707 0.000 0.000
## Cndtnrth:Rl 0.217 -0.354 -0.707 -0.354 -0.707 0.000 0.000 0.500
## Cndtnsm:Rlt 0.217 -0.354 -0.354 -0.707 -0.707 0.000 0.000 0.500
## Cndtnr:R
## Conditnmrph
## Conditinrth
## Conditionsm
## Relatedrel
## chanFz
## chanPz
## Cndtnmrph:R
## Cndtnrth:Rl
## Cndtnsm:Rlt 0.500
library(lme4)
library(lmerTest)
lateral100_1<-lmer(mean~ Condition * Related * hemisphere +(1|subj),lat100)
lateral100_2<-lmer(mean~ Condition * Related * hemisphere-Condition:Related:hemisphere +(1|subj),lat100)
lateral100_3<-lmer(mean~ Condition * Related * hemisphere-Condition:Related:hemisphere -hemisphere:Related +(1|subj),lat100)
lateral100_4<-lmer(mean~ Condition * Related * hemisphere-Condition:Related:hemisphere -hemisphere:Condition +(1|subj),lat100)
lateral100_5<-lmer(mean~ Condition * Related + hemisphere +(1|subj),lat100)
lateral100_6<-lmer(mean~ Condition * Related +(1|subj),lat100)
summary(lateral100_5)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula: mean ~ Condition * Related + hemisphere + (1 | subj)
## Data: lat100
##
## REML criterion at convergence: 5997.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.1475 -0.6751 -0.0167 0.6282 4.4049
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj (Intercept) 5.079 2.254
## Residual 5.525 2.351
## Number of obs: 1296, groups: subj, 27
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 1.62019 0.47591 36.00000 3.404
## Conditionmorph -0.42958 0.26117 1261.00000 -1.645
## Conditionorth -0.24350 0.26117 1261.00000 -0.932
## Conditionsem -0.08420 0.26117 1261.00000 -0.322
## Relatedrel 0.57523 0.26117 1261.00000 2.203
## hemisphereright -0.32640 0.13058 1261.00000 -2.500
## Conditionmorph:Relatedrel 0.07358 0.36935 1261.00000 0.199
## Conditionorth:Relatedrel -0.55051 0.36935 1261.00000 -1.491
## Conditionsem:Relatedrel -1.14263 0.36935 1261.00000 -3.094
## Pr(>|t|)
## (Intercept) 0.00164 **
## Conditionmorph 0.10025
## Conditionorth 0.35134
## Conditionsem 0.74722
## Relatedrel 0.02781 *
## hemisphereright 0.01256 *
## Conditionmorph:Relatedrel 0.84213
## Conditionorth:Relatedrel 0.13634
## Conditionsem:Relatedrel 0.00202 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Cndtnm Cndtnr Cndtns Rltdrl hmsphr Cndtnm:R Cndtnr:R
## Conditnmrph -0.274
## Conditinrth -0.274 0.500
## Conditionsm -0.274 0.500 0.500
## Relatedrel -0.274 0.500 0.500 0.500
## hemsphrrght -0.137 0.000 0.000 0.000 0.000
## Cndtnmrph:R 0.194 -0.707 -0.354 -0.354 -0.707 0.000
## Cndtnrth:Rl 0.194 -0.354 -0.707 -0.354 -0.707 0.000 0.500
## Cndtnsm:Rlt 0.194 -0.354 -0.354 -0.707 -0.707 0.000 0.500 0.500
lateral300_1<-lmer(mean~ Condition * Related * hemisphere +(1|subj),lat300)
lateral300_2<-lmer(mean~ Condition * Related * hemisphere-Condition:Related:hemisphere +(1|subj),lat300)
lateral300_3<-lmer(mean~ Condition * Related * hemisphere-Condition:Related:hemisphere -hemisphere:Related +(1|subj),lat300)
lateral300_4<-lmer(mean~ Condition * Related * hemisphere-Condition:Related:hemisphere -hemisphere:Condition +(1|subj),lat300)
lateral300_5<-lmer(mean~ Condition * Related + hemisphere +(1|subj),lat300)
lateral300_6<-lmer(mean~ Condition * Related +(1|subj),lat300)
summary(lateral300_5)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula: mean ~ Condition * Related + hemisphere + (1 | subj)
## Data: lat300
##
## REML criterion at convergence: 5896.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.2649 -0.6330 -0.0242 0.5735 3.9490
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj (Intercept) 7.305 2.703
## Residual 5.063 2.250
## Number of obs: 1296, groups: subj, 27
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.2001 0.5529 32.2000 3.979 0.000368
## Conditionmorph -0.2083 0.2500 1261.0000 -0.833 0.404946
## Conditionorth -0.4691 0.2500 1261.0000 -1.876 0.060832
## Conditionsem -0.5635 0.2500 1261.0000 -2.254 0.024361
## Relatedrel 1.2176 0.2500 1261.0000 4.870 1.25e-06
## hemisphereright 0.6382 0.1250 1261.0000 5.106 3.80e-07
## Conditionmorph:Relatedrel 0.0382 0.3536 1261.0000 0.108 0.913988
## Conditionorth:Relatedrel -0.8901 0.3536 1261.0000 -2.518 0.011940
## Conditionsem:Relatedrel -0.7552 0.3536 1261.0000 -2.136 0.032866
##
## (Intercept) ***
## Conditionmorph
## Conditionorth .
## Conditionsem *
## Relatedrel ***
## hemisphereright ***
## Conditionmorph:Relatedrel
## Conditionorth:Relatedrel *
## Conditionsem:Relatedrel *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Cndtnm Cndtnr Cndtns Rltdrl hmsphr Cndtnm:R Cndtnr:R
## Conditnmrph -0.226
## Conditinrth -0.226 0.500
## Conditionsm -0.226 0.500 0.500
## Relatedrel -0.226 0.500 0.500 0.500
## hemsphrrght -0.113 0.000 0.000 0.000 0.000
## Cndtnmrph:R 0.160 -0.707 -0.354 -0.354 -0.707 0.000
## Cndtnrth:Rl 0.160 -0.354 -0.707 -0.354 -0.707 0.000 0.500
## Cndtnsm:Rlt 0.160 -0.354 -0.354 -0.707 -0.707 0.000 0.500 0.500
lateral500_1<-lmer(mean~ Condition * Related * hemisphere +(1|subj),lat500)
lateral500_2<-lmer(mean~ Condition * Related * hemisphere-Condition:Related:hemisphere +(1|subj),lat500)
lateral500_3<-lmer(mean~ Condition * Related * hemisphere-Condition:Related:hemisphere -hemisphere:Related +(1|subj),lat500)
lateral500_4<-lmer(mean~ Condition * Related * hemisphere-Condition:Related:hemisphere -hemisphere:Condition +(1|subj),lat500)
lateral500_5<-lmer(mean~ Condition * Related + hemisphere +(1|subj),lat500)
lateral500_6<-lmer(mean~ Condition * Related +(1|subj),lat500)
summary(lateral500_5)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula: mean ~ Condition * Related + hemisphere + (1 | subj)
## Data: lat500
##
## REML criterion at convergence: 6245.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.6103 -0.6363 -0.0165 0.6458 3.0096
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj (Intercept) 7.379 2.717
## Residual 6.672 2.583
## Number of obs: 1296, groups: subj, 27
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 4.86920 0.56537 34.20000 8.612
## Conditionmorph -0.29187 0.28701 1261.00000 -1.017
## Conditionorth -0.63836 0.28701 1261.00000 -2.224
## Conditionsem -0.15844 0.28701 1261.00000 -0.552
## Relatedrel -0.58423 0.28701 1261.00000 -2.036
## hemisphereright 0.26462 0.14350 1261.00000 1.844
## Conditionmorph:Relatedrel 0.43958 0.40589 1261.00000 1.083
## Conditionorth:Relatedrel -0.07224 0.40589 1261.00000 -0.178
## Conditionsem:Relatedrel 0.27039 0.40589 1261.00000 0.666
## Pr(>|t|)
## (Intercept) 4.35e-10 ***
## Conditionmorph 0.3094
## Conditionorth 0.0263 *
## Conditionsem 0.5810
## Relatedrel 0.0420 *
## hemisphereright 0.0654 .
## Conditionmorph:Relatedrel 0.2790
## Conditionorth:Relatedrel 0.8588
## Conditionsem:Relatedrel 0.5054
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Cndtnm Cndtnr Cndtns Rltdrl hmsphr Cndtnm:R Cndtnr:R
## Conditnmrph -0.254
## Conditinrth -0.254 0.500
## Conditionsm -0.254 0.500 0.500
## Relatedrel -0.254 0.500 0.500 0.500
## hemsphrrght -0.127 0.000 0.000 0.000 0.000
## Cndtnmrph:R 0.179 -0.707 -0.354 -0.354 -0.707 0.000
## Cndtnrth:Rl 0.179 -0.354 -0.707 -0.354 -0.707 0.000 0.500
## Cndtnsm:Rlt 0.179 -0.354 -0.354 -0.707 -0.707 0.000 0.500 0.500
Early time-windows (100-300 ms): In the midline and lateral electrodes there is an attenuation of the early negativity when the prime-target pairs have orthographic overlap. That is, the pattern of relatedness found in the ID condition does not differ from the pattern of relatedness found in the morphological or orthographic conditions.
In the middle time-window (300-500 ms): In the middle and lateral electrodes there is an attenuation of the negativity when the prime-target pairs have morphological overlap. The effect of relatedness found in the ID condition is also found in the morphological condition, but it is not found in the orthographic condition,.
In the late time-window (500-600 ms): In the lateral electrodes there is an effect of relatedness, but no interaction of condition x relatedness for any condition. In the midline electrodes there is no effect of relatedness, and no interactions of condition x relatedness for any condition. Interestingly, there is an effect of orthographic condition in this time-window (marginal at midline, significant in lateral). This indicates an overal difference of mean in the orth condition compared to the ID condition. Looking at the difference waves in the orthographic condition, and the topographic plot, it is noticeable that the orth related condition has a positivity in this time-window (relative to its unrelated prime), whereas other conditions’ related primes elicit a more negative waveform. The effect of relatedness in the late time-window for the orth condition will be further investigated (below).
Semantic overlap between prime-target pairs does not modulate the effect of relatedness in any time-window, suggesting the masked-priming paradigm successfully inhibited semantic priming
Create dataframes with summaries of mean amplitudes
orth_late_mid<-mid500[mid500$Condition=="orth",]
orth_late_lat<-lat500[lat500$Condition=="orth",]
id_late_mid<-mid500[mid500$Condition=="id",]
id_late_lat<-lat500[lat500$Condition=="id",]
morph_late_mid<-mid500[mid500$Condition=="morph",]
morph_late_lat<-lat500[lat500$Condition=="morph",]
sem_late_mid<-mid500[mid500$Condition=="sem",]
sem_late_lat<-lat500[lat500$Condition=="sem",]
Summarize means
library(plyr)
means <- ddply(mid500, c("Condition", "Related"), summarize,
mean = mean(mean)
)
means
## Condition Related mean
## 1 id unrel 5.655908
## 2 id rel 5.187276
## 3 morph unrel 5.597155
## 4 morph rel 5.164344
## 5 orth unrel 4.998251
## 6 orth rel 4.363683
## 7 sem unrel 5.527573
## 8 sem rel 5.055952
If you look at the means for the other conditions in this time-window you see that the mean for orth-unrelated is lower than the other unrelateds, and the orth-related is also lower than the other relateds.
So this late effect may just be a consequence of the lexical properties of the orthographic targets (independent of priming)