Macarena Fernandez Carro

Problem 1

Create the following figure, using the data included in the R Markdown file.

# PACKAGES

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(maps)
## 
## Attaching package: 'maps'
## 
## The following object is masked from 'package:purrr':
## 
##     map
library(ggplot2)
library(ggrepel)
library(mapproj)
library(sf)
## Linking to GEOS 3.11.2, GDAL 3.7.2, PROJ 9.3.0; sf_use_s2() is TRUE
library(cartography)
## This project is in maintenance mode. 
## Core functionalities of `cartography` can be found in `mapsf`.
## https://riatelab.github.io/mapsf/
library(mapsf)
library(rnaturalearth)
library(rnaturalearthdata)
## 
## Attaching package: 'rnaturalearthdata'
## 
## The following object is masked from 'package:rnaturalearth':
## 
##     countries110
sessionInfo()
## R version 4.3.2 (2023-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 11 x64 (build 22631)
## 
## Matrix products: default
## 
## 
## locale:
## [1] LC_COLLATE=English_United Kingdom.utf8 
## [2] LC_CTYPE=English_United Kingdom.utf8   
## [3] LC_MONETARY=English_United Kingdom.utf8
## [4] LC_NUMERIC=C                           
## [5] LC_TIME=English_United Kingdom.utf8    
## 
## time zone: Europe/London
## tzcode source: internal
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] rnaturalearthdata_1.0.0 rnaturalearth_1.0.1     mapsf_0.9.0            
##  [4] cartography_3.1.4       sf_1.0-15               mapproj_1.2.11         
##  [7] ggrepel_0.9.5           maps_3.4.2              lubridate_1.9.3        
## [10] forcats_1.0.0           stringr_1.5.1           dplyr_1.1.4            
## [13] purrr_1.0.2             readr_2.1.5             tidyr_1.3.1            
## [16] tibble_3.2.1            ggplot2_3.4.4           tidyverse_2.0.0        
## 
## loaded via a namespace (and not attached):
##  [1] s2_1.1.6           sass_0.4.8         utf8_1.2.4         generics_0.1.3    
##  [5] class_7.3-22       KernSmooth_2.23-22 stringi_1.8.3      hms_1.1.3         
##  [9] digest_0.6.34      magrittr_2.0.3     evaluate_0.23      grid_4.3.2        
## [13] timechange_0.3.0   fastmap_1.1.1      jsonlite_1.8.8     e1071_1.7-14      
## [17] DBI_1.2.1          httr_1.4.7         fansi_1.0.6        scales_1.3.0      
## [21] codetools_0.2-19   jquerylib_0.1.4    cli_3.6.2          rlang_1.1.3       
## [25] units_0.8-5        munsell_0.5.0      withr_3.0.0        cachem_1.0.8      
## [29] yaml_2.3.8         tools_4.3.2        tzdb_0.4.0         colorspace_2.1-0  
## [33] vctrs_0.6.5        R6_2.5.1           proxy_0.4-27       lifecycle_1.0.4   
## [37] classInt_0.4-10    pkgconfig_2.0.3    terra_1.7-71       pillar_1.9.0      
## [41] bslib_0.6.1        gtable_0.3.4       glue_1.7.0         Rcpp_1.0.12       
## [45] xfun_0.41          tidyselect_1.2.0   rstudioapi_0.15.0  knitr_1.45        
## [49] maplegend_0.1.0    htmltools_0.5.7    rmarkdown_2.25     wk_0.9.1          
## [53] compiler_4.3.2
plot <- my_world_map %>%
  left_join(some_data_values) %>%
  select(long,
         lat,
         region,
         group,
         Score)

ggplot(data = plot,
               aes(x = long, 
                   y = lat)) +
  geom_polygon(aes(group = group,
                   fill = Score)) + 
  scale_fill_distiller(palette= "Greens") + 
  coord_quickmap()

Problem 2

Create the following figure, using the data included in the R Markdown file.

world <- map_data("world")
CentralAmerica1 <- filter(world,region=="Costa Rica"|
                            region=="Nicaragua"|
                            region=="Panama")
my_cities <-maps::world.cities
CA_big_cities <- filter(my_cities,country.etc=="Costa Rica"|
                            country.etc=="Nicaragua"|
                            country.etc=="Panama",pop>40000)
add_column(CA_big_cities,Measurement)
##              name country.etc    pop   lat   long capital Measurement
## 1        Alajuela  Costa Rica  48366 10.02 -84.23       0    50.25882
## 2        Arraijan      Panama  81118  8.95 -79.65       0    51.83112
## 3      Bluefields   Nicaragua  45703 12.01 -83.77       0    49.66038
## 4      Chinandega   Nicaragua 129730 12.63 -87.13       0    50.89720
## 5          Chitre      Panama  44735  7.97 -80.42       0    50.48802
## 6  Ciudad Sandino   Nicaragua  72109 12.16 -86.34       0    48.74461
## 7           Colon      Panama  77983  9.36 -79.90       0    50.02279
## 8           David      Panama  84013  8.44 -82.43       0    51.09077
## 9        El Viejo   Nicaragua  55268 12.67 -87.18       0    49.86788
## 10         Esteli   Nicaragua  99479 13.09 -86.36       0    48.92500
## 11        Granada   Nicaragua  90868 11.94 -85.96       0    50.85501
## 12       Jinotega   Nicaragua  53055 13.10 -86.00       0    49.63502
## 13       Juigalpa   Nicaragua  56712 12.11 -85.38       0    50.16555
## 14    La Chorrera      Panama  62359  8.88 -79.78       0    48.75722
## 15    Las Cumbres      Panama  73219  9.08 -79.53       0    51.45929
## 16           Leon   Nicaragua 146685 12.43 -86.89       0    49.99639
## 17        Liberia  Costa Rica  47906 10.64 -85.45       0    49.97912
## 18          Limon  Costa Rica  64285  9.99 -83.04       0    50.03211
## 19        Managua   Nicaragua 990417 12.15 -86.27       1    48.83272
## 20         Masaya   Nicaragua 134516 11.98 -86.10       0    49.48043
## 21      Matagalpa   Nicaragua 114628 12.93 -85.93       0    51.37389
## 22   Nueva Guinea   Nicaragua  55339 11.69 -84.46       0    51.41233
## 23         Pacora      Panama  56414  9.08 -79.28       0    49.59783
## 24         Panama      Panama 406070  8.97 -79.53       1    49.56086
## 25        Paraiso  Costa Rica  41936  9.83 -83.87       0    51.01061
## 26  San Francisco  Costa Rica  59484  9.99 -84.13       0    50.43082
## 27       San Jose  Costa Rica 339588  9.93 -84.08       1    50.73393
## 28  San Miguelito      Panama 326951  9.03 -79.50       0    49.31933
## 29       Santiago      Panama  46284  8.10 -80.97       0    50.32620
## 30       Tipitapa   Nicaragua 132672 12.20 -86.10       0    50.90703
## 31        Tocumen      Panama  89951  9.08 -79.38       0    49.53732
## 32   Vista Alegre      Panama  42451  8.93 -79.70       0    50.00470
ggplot(data = CentralAmerica1, 
       mapping = aes(x= long,
                     y= lat,
                     group =group))+
  geom_polygon(color="black",
               fill="white") +
   geom_point(data = CA_big_cities,
              aes(x=long,
                  y=lat,
                  group=NULL,
                  color=Measurement),
             size=5, 
             alpha=.8) +
  scale_size_continuous() +
  scale_color_distiller(palette= "Oranges") +
  theme_classic() +
   theme(axis.text.x = element_blank(),axis.text.y=element_blank(),
        axis.line = element_blank(),axis.ticks = element_blank())+
  labs(x="",y="", title="Panama, Nicaragua, & Costa Rica major cities", 
  caption ="Population > 40,000")

Problem 3

Create the following figure, using the data included in the R Markdown file.

Note that the code in the .rmd file will import a set of simple features data for South America. Make sure you install any necessary packages.

ggplot()+
  geom_sf(data= s_america,
          aes(fill=pop_est))+
  scale_fill_distiller(palette = 10)