Download
Read in cache.
We parse out values from the raw stats.
Check that nothing that has a stat input and doesn’t get an ES out.
## # A tibble: 7 × 3
## # Rowwise:
## target_lastauthor_year type raw_stat
## <chr> <fct> <chr>
## 1 chou2016 rescue t(240.14)=.50322TODOrederive!
## 2 craig2014 rescue TODOIWANTRAWNUMBERS
## 3 gong2019 rescue F(1,113)=6.2934750
## 4 schechtman2010 original <NA>
## 5 schechtman2010 rep1 t(1420)=-2.384
## 6 schechtman2010 rescue F(1,1508)=1.429
## 7 yeshurun2003 rescue <NA>
## # A tibble: 4 × 3
## # Rowwise:
## target_lastauthor_year type raw_stat
## <chr> <fct> <chr>
## 1 chou2016 rescue t(240.14)=.50322TODOrederive!
## 2 craig2014 rescue TODOIWANTRAWNUMBERS
## 3 schechtman2010 original <NA>
## 4 yeshurun2003 rescue <NA>
## # A tibble: 4 × 2
## replication_score n
## <dbl> <int>
## 1 0 11
## 2 0.75 2
## 3 1 3
## 4 NA 1
## rho
## 0.9032829
Of a total of 17 replication, 5 succeeding at mostly or fully replicating the original results (11 with a score of 0, 2 with a score of .75, and 3 with a score of 1). The interrater reliability was 0.903.
Predictors | r | p |
---|---|---|
Social | 0.110 | 0.686 |
Other psych | -0.320 | 0.228 |
Within subjects | 0.299 | 0.261 |
Single vignette | -0.065 | 0.810 |
Switch to online | 0.140 | 0.606 |
Open data | 0.213 | 0.427 |
Open materials | 0.449 | 0.081 |
Stanford | -0.251 | 0.347 |
Log trials | 0.065 | 0.810 |
Log original sample size | -0.060 | 0.825 |
Log rep/orig sample | 0.046 | 0.865 |
rep_1_log_sample | -0.374 | 0.153 |
log_ratio_rep1_orig | -0.469 | 0.067 |
log_ratio_rescue_rep1 | 0.495 | 0.051 |
It looks like the ones with poor replication sample (due to inflated effect size, or exclusion/attrition/etc issues) where the rescue recruited more is the only sorta strong predictor. (I added a couple non-pre-reg’d relative sample size of rep1 measures)
## # A tibble: 17 × 7
## paper rescue_score N_original N_rep1 N_rescue closeness_rep1 closeness_rescue
## <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
## 1 krau… 1 101 19 75 close very close
## 2 ngo2… 1 31 12 77 very close very close
## 3 todd… 1 63 26 55 very close very close
## 4 jara… 0.75 144 147 426 exact exact
## 5 port… 0.75 145 168 136 close very close
## 6 birc… 0 103 73 247 very close very close
## 7 chil… 0 35 40 98 very close very close
## 8 chou… 0 100 158 252 close very close
## 9 crai… 0 121 76 127 exact exact
## 10 gong… 0 155 90 137 far far
## 11 haim… 0 132 97 141 exact exact
## 12 hopk… 0 147 93 161 very close very close
## 13 paxt… 0 92 82 160 close close
## 14 payn… 0 48 23 23 far very close
## 15 sche… 0 39 20 21 close close
## 16 tara… 0 139 212 166 close close
## 17 yesh… NA 18 10 NA close <NA>
NOTE: can’t do p-orig not on SMD scale here b/c tau imputation is in SMD units!!!
## # A tibble: 17 × 5
## # Rowwise: target_lastauthor_year
## target_lastauthor_year orig_v_other orig_v_rescue orig_v_not_rescue
## <chr> <dbl> <dbl> <dbl>
## 1 birch2007 0.192 0.194 1.91e-1
## 2 child2018 0.405 0.641 3.77e-9
## 3 chou2016 NA NA 4.91e-3
## 4 craig2014 NA NA 3.02e-1
## 5 gong2019 NA NA 5.11e-1
## 6 haimovitz2016 0.0687 0.0182 1.80e-1
## 7 hopkins2016 NA NA NA
## 8 jara-ettinger2022 NA NA NA
## 9 krauss2003 NA NA NA
## 10 ngo2019 0.106 0.00000903 3.85e-1
## 11 paxton2012 0.0109 0.00545 2.26e-2
## 12 payne2008 0.0714 0.0308 2.45e-1
## 13 porter2016 0.370 0.905 2.30e-3
## 14 schechtman2010 NA NA NA
## 15 tarampi2016 0.000341 0.000000291 2.24e-4
## 16 todd2016 0.0619 0.124 5.81e-2
## 17 yeshurun2003 NA NA 1.60e-2
## # ℹ 1 more variable: rescue_v_reps <dbl>
We will visualize the consistency between original, 1st replication, rescue, and any other replications by plotting effect size and prediction interval for each.