Antecedentes

En este notebook se presentan ejemplos de análisis de la Encuesta Caracterización Socioecónomica (CASEN) usando R, con loa ayuda del paquete survey, del cual se pueden obtener mayores antecedentes en:

https://cran.r-project.org/web/packages/survey/survey.pdf

http://r-survey.r-forge.r-project.org/survey/

En particular, se estimará la pobreza por ingreso (pobres, no pobres y tasa de pobreza por ingresos), por Región.

Importante: Este documento no se trata de una publicación oficial y se hace solo con fines ilustrativos. No obstante, la correctitud de los resultados se puede comprobar con los cuadros estadísticos publicados para este producto en https://observatorio.ministeriodesarrollosocial.gob.cl/encuesta-casen-2022.

Mi información de contacto se puede encontrar en mi web personal.

Pasos previos

En primer lugar, se cargan las las librerías

> 
> 
> library(dplyr)
> library(survey)
> library (haven)
> library(openxlsx)
> library(readxl)
> library(ggplot2)

Se trabajará con el conjunto de datos referencia a 2022. https://observatorio.ministeriodesarrollosocial.gob.cl/encuesta-casen-2022

En este caso, se va a descargar los archivos, que están en formato zip, se extraerán los contenidos y finalmente se leerán y guardarán en un objeto de R.

> url_casen <-"https://observatorio.ministeriodesarrollosocial.gob.cl/storage/docs/casen/2022/Base%20de%20datos%20Casen%202022%20STATA.dta.zip"
> url_casen_provincia_comuna<-"https://observatorio.ministeriodesarrollosocial.gob.cl/storage/docs/casen/2022/Base%20de%20datos%20provincia%20y%20comuna%20Casen%202022%20STATA.dta.zip"
>  
> 
> 
> ### descargar base de datos CASEN
> 
> temp <- tempfile()
> 
> download.file(url_casen, temp)
> 
> unzip(zipfile = temp, exdir = getwd())
> 
> CASEN<- read_dta("Base de datos Casen 2022 STATA.dta")
> 
> unlink(c(temp))
> 
> 
> 
> ### descargar base de datos CASEN provincia comuna
> 
> temp <- tempfile()
> 
> download.file(url_casen_provincia_comuna, temp)
> 
> unzip(zipfile = temp, exdir = getwd())
> 
> CASEN_PROVINCIA_COMUNA<- read_dta("Base de datos provincia y comuna Casen 2022 STATA.dta")
> 
> unlink(c(temp))
> 
> 
> 
> 
>  
>  

Se examinan los nombres de las variables de la base CASEN 2022.

>   
> names(CASEN)
  [1] "id_vivienda"        "folio"              "id_persona"        
  [4] "region"             "area"               "cod_upm"           
  [7] "nse"                "estrato"            "hogar"             
 [10] "expr"               "expr_osig"          "varstrat"          
 [13] "varunit"            "fecha_entrev"       "p1"                
 [16] "p2"                 "p3"                 "p4"                
 [19] "p9"                 "p10"                "p11"               
 [22] "tot_per_h"          "h1"                 "edad"              
 [25] "mes_nac_nna"        "ano_nac_nna"        "sexo"              
 [28] "pco1_a"             "pco1_b"             "pco1"              
 [31] "h5_cp"              "h5_sp"              "h5_b1_1"           
 [34] "h5_b1_2"            "h5a_2"              "h5_b2_1"           
 [37] "h5_b2_2"            "h5a_3"              "h5_b3_1"           
 [40] "h5_b3_2"            "h5a_4"              "h5b"               
 [43] "ecivil"             "h5_10"              "h5_1a"             
 [46] "h5_1b"              "h5_20"              "h5_2"              
 [49] "n_nucleos"          "nucleo"             "pco2_a"            
 [52] "pco2_b"             "pco2"               "h7a"               
 [55] "h7b"                "h7c"                "h7d"               
 [58] "h7e"                "h7f"                "informante"        
 [61] "e1"                 "e3"                 "e4a"               
 [64] "e4a_esp"            "e5a"                "e5a_esp"           
 [67] "e5b"                "e6a_asiste"         "e6a_no_asiste"     
 [70] "e6a"                "e6b_asiste"         "e6b_no_asiste"     
 [73] "e6b"                "e6c_completo"       "e6d_preg"          
 [76] "e6d_postg"          "e7"                 "cinef13_area"      
 [79] "cinef13_subarea"    "e8"                 "e9nom"             
 [82] "e9dir"              "e9com_cod"          "e9pais_cod"        
 [85] "e9rbd"              "e9rbd_sup"          "e9dv"              
 [88] "e9depen"            "e10"                "e11"               
 [91] "e12a"               "e12b"               "e12c"              
 [94] "e12d"               "e12e"               "e13a"              
 [97] "e13b_1"             "e13b_2"             "e13b_3"            
[100] "e13b_4"             "e13b_5"             "e13b_6"            
[103] "e13b_7"             "e13b_8"             "e13b_9"            
[106] "e13b_10"            "e13b_11"            "e13b1"             
[109] "e13b2"              "e13b_esp1"          "e13b_esp2"         
[112] "e14a"               "e14b"               "e14c"              
[115] "e14d"               "e14e"               "e16"               
[118] "e18"                "o1"                 "o2"                
[121] "o3"                 "o4"                 "o5"                
[124] "o6"                 "o7"                 "o7_esp"            
[127] "o8"                 "o9a"                "o9b"               
[130] "oficio1_08"         "oficio4_08"         "o10"               
[133] "o11"                "o12"                "o14"               
[136] "o15"                "o16"                "o19"               
[139] "o18"                "o20"                "o21"               
[142] "o22"                "o23"                "o24"               
[145] "rama1_sub"          "rama4_sub"          "rama1"             
[148] "rama4"              "o25"                "o26a"              
[151] "o26b"               "o26c"               "o26d"              
[154] "o28a_hr"            "o28a_min"           "o28b"              
[157] "o28c"               "o28c_esp"           "o28d"              
[160] "o28e"               "o29"                "o30"               
[163] "o31"                "o32"                "o32_esp"           
[166] "o32b"               "y1"                 "y2_dias"           
[169] "y2_hrs"             "y3a_preg"           "y3b_preg"          
[172] "y3c_preg"           "y3d_preg"           "y3e_preg"          
[175] "y3f_preg"           "y3a"                "y3ap"              
[178] "y3b"                "y3bp"               "y3c"               
[181] "y3cp"               "y3d"                "y3dp"              
[184] "y3e"                "y3ep"               "y3f_esp"           
[187] "y3f"                "y3fp"               "y4a_preg"          
[190] "y4b_preg"           "y4c_preg"           "y4d_preg"          
[193] "y4a"                "y4b"                "y4c"               
[196] "y4d_esp"            "y4d"                "y5a_preg"          
[199] "y5b_preg"           "y5c_preg"           "y5d_preg"          
[202] "y5e_preg"           "y5f_preg"           "y5g_preg"          
[205] "y5h_preg"           "y5i_preg"           "y5j_preg"          
[208] "y5k_preg"           "y5l_preg"           "y5a"               
[211] "y5b"                "y5c"                "y5d"               
[214] "y5e"                "y5f"                "y5g"               
[217] "y5h"                "y5i"                "y5j"               
[220] "y5k"                "y5l"                "y6"                
[223] "y7"                 "y8"                 "y9"                
[226] "y10"                "y11_preg"           "y11"               
[229] "y12a_preg"          "y12a"               "y12b_preg"         
[232] "y12b"               "y13a_preg"          "y13a"              
[235] "y13b_preg"          "y13b"               "y13c_preg"         
[238] "y13c"               "y14a_preg"          "y14a"              
[241] "y14b_preg"          "y14b"               "y14c_preg"         
[244] "y14c"               "y15a_preg"          "y15a"              
[247] "y15b_preg"          "y15b"               "y15c_preg"         
[250] "y15c"               "y16a_preg"          "y16a"              
[253] "y16b_preg"          "y16b"               "y17_preg"          
[256] "y17"                "y18a_preg"          "y18a"              
[259] "y18b_preg"          "y18b"               "y18c_preg"         
[262] "y18c"               "y18d_preg"          "y18d_esp"          
[265] "y18d"               "y19"                "y19t"              
[268] "y19n"               "y20a"               "y20b"              
[271] "y20c"               "y20d"               "y20e"              
[274] "y20amonto"          "y20bmonto"          "y20cmonto"         
[277] "y20dmonto"          "y20emonto"          "y21_canasta"       
[280] "y22_preg"           "y22"                "y22amonto"         
[283] "y22bmonto"          "y22cmonto"          "y22dmonto"         
[286] "y23a_preg"          "y23a"               "y23b"              
[289] "y23c"               "y23bmonto"          "y23cmonto"         
[292] "y24_preg"           "y24"                "y25a_preg"         
[295] "y25a"               "y25amonto"          "y25b_preg"         
[298] "y25b"               "y25bmonto"          "y25c"              
[301] "y25cmonto"          "y25d"               "y25dmonto"         
[304] "y25ep"              "y25e"               "y25fp"             
[307] "y25f"               "y25g_preg"          "y25g"              
[310] "y25h_preg"          "y25hp"              "y25h"              
[313] "y25i_preg"          "y25imonto"          "y25ip"             
[316] "y25j_preg"          "y25j"               "y25jmonto"         
[319] "y26d_hog"           "y26d_preg"          "y26d_integrantes"  
[322] "y26d_monto"         "y27_preg"           "y27_esp"           
[325] "y27"                "y28_1b"             "y28_1c"            
[328] "y28_1d"             "y28_1dmonto"        "y28_1e"            
[331] "y28_1f"             "y28_1g"             "y28_1h"            
[334] "y28_1i"             "y28_1j"             "y28j_esp"          
[337] "y28_2b1"            "y28_2b2"            "y28_3b"            
[340] "y28_4b"             "y28_1c1"            "y28_1c2"           
[343] "y28_1c2monto"       "y28_2c1"            "y28_2c2"           
[346] "y28_2c"             "y28_3c"             "y28_4c"            
[349] "y28_2e1"            "y28_2e2"            "y28_3e"            
[352] "y28_4e"             "y28_2f"             "y28_3f"            
[355] "y28_4f"             "y28_1g1"            "y28_2g1"           
[358] "y28_2g2"            "y28_2g"             "y28_3g"            
[361] "y28_4g"             "y28_2h"             "y28_3h"            
[364] "y28_4h"             "y28_1i1"            "y28_2i1"           
[367] "y28_2i2"            "y28_2i"             "y28_2j"            
[370] "y28_3j"             "y28_4j"             "s2"                
[373] "s2c"                "s3_1"               "s3_2"              
[376] "s3_3"               "s3_4"               "s3_5"              
[379] "s3_6"               "s3_7"               "s3_8"              
[382] "s3_88"              "s3a1"               "s3a2"              
[385] "s4"                 "s5"                 "s6"                
[388] "s7"                 "s7_meses"           "s8"                
[391] "s9a"                "s9b"                "s10"               
[394] "s11a"               "s11b"               "s12"               
[397] "s13"                "s13_fonasa"         "s15"               
[400] "s16"                "s17"                "s17b"              
[403] "s18"                "s18_esp"            "s19a"              
[406] "s19b"               "s19c"               "s19d"              
[409] "s19e"               "s20a_preg"          "s20a"              
[412] "s20b"               "s21a_preg"          "s21a"              
[415] "s21b"               "s22a_preg"          "s22a"              
[418] "s22b"               "s23a_preg"          "s23a"              
[421] "s23b"               "s24a_preg"          "s24a"              
[424] "s24b"               "s25a1_preg"         "s25b1"             
[427] "s25a2_preg"         "s25b2"              "s26a"              
[430] "s26b_1"             "s26b_2"             "s26b_3"            
[433] "s26b_4"             "s26b_5"             "s26b_6"            
[436] "s26b_7"             "s26b_8"             "s26b_88"           
[439] "s26b_esp"           "s26u"               "s26c"              
[442] "s27a"               "s27b"               "s27c"              
[445] "s28"                "s28_esp"            "s29"               
[448] "s30"                "s30_esp"            "s31_1"             
[451] "s31_2"              "s31_3"              "s31_4"             
[454] "s31_5"              "s31_6"              "s31_7"             
[457] "s32a"               "s32b"               "s32c"              
[460] "s32d"               "s32e"               "s32f"              
[463] "s32g"               "s32h"               "s32i"              
[466] "s32j"               "s33a"               "s33b"              
[469] "s33c"               "s33d"               "s33e"              
[472] "s33f"               "s33g"               "s33h"              
[475] "s33i"               "s33j"               "s34a"              
[478] "s34b"               "s34c"               "r1a"               
[481] "r1a_esp"            "r1a_esp_cod"        "r1b"               
[484] "r1b_comuna_esp"     "r1b_comuna_esp_cod" "r1b_pais_esp"      
[487] "r1b_pais_esp_cod"   "r1c"                "r1cp"              
[490] "r2"                 "r2_comuna_esp"      "r2_comuna_esp_cod" 
[493] "r2_pais_esp"        "r2_pais_esp_cod"    "r3"                
[496] "r4"                 "r5"                 "r6"                
[499] "r7a"                "r7b"                "r7c"               
[502] "r7d"                "r7e"                "r7f"               
[505] "r7g"                "r7h"                "r7i"               
[508] "r7j"                "r7k"                "r8a"               
[511] "r8b"                "r8c"                "r8d"               
[514] "r8e"                "r8f"                "r8g"               
[517] "r8h"                "r9a"                "r9b"               
[520] "r9c"                "r9d"                "r9e"               
[523] "r9f"                "r9g"                "r9h"               
[526] "r9i"                "r9j"                "r9k"               
[529] "r9l"                "r9m"                "r9n"               
[532] "r9o"                "r9p"                "r9q"               
[535] "r9r"                "r9s"                "r9t"               
[538] "r9_esp"             "r11"                "r12a"              
[541] "r12b"               "r13a"               "r13b"              
[544] "r14"                "r15"                "r17a"              
[547] "r17b"               "r17c"               "r17d"              
[550] "r17e"               "r18"                "v1"                
[553] "v2"                 "v3"                 "v4"                
[556] "v5"                 "v6"                 "v7"                
[559] "v9"                 "v10"                "v11_o1"            
[562] "v11_o2"             "v12"                "v12mt"             
[565] "v13"                "v13_propia"         "v13_arrendada"     
[568] "v13_cedida"         "v13b_1"             "v13b_2"            
[571] "v13b_3"             "v13b_4"             "v13b_5"            
[574] "v13b_6"             "v13b_7"             "v14"               
[577] "v15"                "v16"                "v17"               
[580] "v18"                "v19"                "v20"               
[583] "v20_esp"            "v20_red"            "v21"               
[586] "v22"                "v23"                "v23_sistema"       
[589] "v23_cajon"          "v24"                "v25"               
[592] "v26"                "v27a"               "v27b"              
[595] "v28"                "v29a"               "v29b"              
[598] "v30"                "v31"                "v32"               
[601] "v33"                "v34a"               "v34b"              
[604] "v34c"               "v35a"               "v35b"              
[607] "v35c"               "v35d"               "v35e"              
[610] "v35f"               "v35g"               "v35h"              
[613] "v35i"               "v36a"               "v36b"              
[616] "v36c"               "v36d"               "v36e"              
[619] "v37a"               "v37b"               "v37c"              
[622] "v37d"               "v37e"               "v37f"              
[625] "v37g"               "v38"                "os_presente"       
[628] "os1"                "os1_esp"            "genero"            
[631] "genero_esp"         "trans"              "y0101"             
[634] "y0301"              "y0302"              "y0303"             
[637] "y0304"              "y0305"              "y0306"             
[640] "y0401"              "y0402"              "y0403"             
[643] "y0404"              "y0501"              "y0502"             
[646] "y0503"              "y0504"              "y0505"             
[649] "y0506"              "y0507"              "y0508"             
[652] "y0509"              "y0510"              "y0511"             
[655] "y0512"              "yosa"               "y0701"             
[658] "y0801"              "y0901"              "yosi"              
[661] "y1101"              "yre1"               "yama"              
[664] "ymes"               "yfa1"               "yfa2"              
[667] "ytro"               "yta1"               "yta2"              
[670] "ydes"               "yah1"               "yah2"              
[673] "yrut"               "yre2"               "yre3"              
[676] "yac2"               "yids"               "ydon"              
[679] "ydim"               "yotr"               "yfam"              
[682] "y2001"              "y2002"              "y2003"             
[685] "y2004"              "y2005"              "y2101"             
[688] "y2201"              "y2202"              "y2203"             
[691] "y2204"              "y2301"              "y2302"             
[694] "y2303"              "y2401"              "y2501"             
[697] "y2502"              "y2503"              "y2504"             
[700] "y2505"              "y2506"              "y2507"             
[703] "y2508p"             "y2508"              "y2509"             
[706] "y2510"              "y2604"              "y2701"             
[709] "y2804"              "y280201"            "y280202"           
[712] "y280101"            "y280301"            "y280302"           
[715] "y2803"              "yinv0101"           "yinv0102"          
[718] "yinv02"             "ymon0101"           "ymon0102"          
[721] "ymon02"             "yorf"               "yesp0101"          
[724] "yesp0102"           "yesp"               "yotp"              
[727] "yaut"               "ysub1"              "ysub2"             
[730] "ysub"               "ytot"               "y0101h"            
[733] "y0301h"             "y0302h"             "y0303h"            
[736] "y0304h"             "y0305h"             "y0306h"            
[739] "y0401h"             "y0402h"             "y0403h"            
[742] "y0404h"             "y0501h"             "y0502h"            
[745] "y0503h"             "y0504h"             "y0505h"            
[748] "y0506h"             "y0507h"             "y0508h"            
[751] "y0509h"             "y0510h"             "y0511h"            
[754] "y0512h"             "yosah"              "y0701h"            
[757] "y0801h"             "y0901h"             "yosih"             
[760] "y1101h"             "yre1h"              "yamah"             
[763] "ymesh"              "yfa1h"              "yfa2h"             
[766] "ytroh"              "yta1h"              "yta2h"             
[769] "ydesh"              "yah1h"              "yah2h"             
[772] "yruth"              "yre2h"              "yre3h"             
[775] "yac2h"              "yidsh"              "ydonh"             
[778] "ydimh"              "yotrh"              "yfamh"             
[781] "y2001h"             "y2002h"             "y2003h"            
[784] "y2004h"             "y2005h"             "y2101h"            
[787] "y2201h"             "y2202h"             "y2203h"            
[790] "y2204h"             "y2301h"             "y2302h"            
[793] "y2303h"             "y2401h"             "y2501h"            
[796] "y2502h"             "y2503h"             "y2504h"            
[799] "y2505h"             "y2506h"             "y2507h"            
[802] "y2508h"             "y2509h"             "y2510h"            
[805] "y2604h"             "y2701h"             "y2804h"            
[808] "y280201h"           "y280202h"           "y280101h"          
[811] "y280301h"           "y280302h"           "y2803h"            
[814] "yinv0101h"          "yinv0102h"          "yinv02h"           
[817] "ymon0101h"          "ymon0102h"          "ymon02h"           
[820] "yorfh"              "yesp0101h"          "yesp0102h"         
[823] "yesph"              "yotph"              "yauth"             
[826] "ysub1h"             "ysub2h"             "ysubh"             
[829] "yaimh"              "ytoth"              "ypch"              
[832] "y0101c"             "y0701c"             "y280201c"          
[835] "y280301c"           "y2803c"             "yautcor"           
[838] "ytotcor"            "y0101ch"            "y0701ch"           
[841] "y280201ch"          "y280301ch"          "y2803ch"           
[844] "yautcorh"           "yaimcorh"           "ytotcorh"          
[847] "ypc"                "li"                 "lp"                
[850] "nae"                "yae"                "pobreza"           
[853] "yoprcor"            "yoprcorh"           "ytrabajocor"       
[856] "ytrabajocorh"       "ymonecorh"          "ypchtrabcor"       
[859] "ypchautcor"         "dau"                "qaut"              
[862] "dautr"              "qautr"              "hh_d_asis"         
[865] "hh_d_rez"           "hh_d_esc"           "hh_d_mal"          
[868] "hh_d_prevs"         "hh_d_acc"           "hh_d_act"          
[871] "hh_d_cot"           "hh_d_jub"           "hh_d_hacina"       
[874] "hh_d_estado"        "hh_d_habitab"       "hh_d_servbas"      
[877] "hh_d_medio"         "hh_d_equipo"        "hh_d_tiempo"       
[880] "hh_d_accesi"        "hh_d_entorno"       "hh_d_hapoyo"       
[883] "hh_d_part"          "hh_d_tsocial"       "hh_d_seg"          
[886] "hh_d_appart"        "pobreza_multi_5d"   "pobreza_multi_4d"  
[889] "disc_wg"            "esc"                "desercion"         
[892] "rezago"             "asiste"             "educ"              
[895] "depen"              "activ"              "asal"              
[898] "contrato"           "cotiza"             "lugar_nac"         
[901] "pueblos_indigenas"  "n_ocupados"         "n_desocupados"     
[904] "n_inactivos"        "conyuge_jh"         "numper"            
[907] "numnuc"             "men18c"             "may60c"            
[910] "tipohogar"          "tot_hog"            "ind_hacina"        
[913] "indsan"             "ten_viv"            "ten_viv_f"         
[916] "allega_ext"         "allega_int"        

Es muy importante tener a mano los antecedentes metodológicos y el libro de códigos. Allí se puede ver que la variable pobreza tiene lo que nos interesa.

>  attributes(CASEN$pobreza)$labels
   Pobreza extrema Pobreza no extrema         No pobreza 
                 1                  2                  3 

Factor de expansión

En este caso se debe usar el factor de expansión regional expr.

El diseño muestral de CASEN es del tipo diseño complejo, por ello se utilizará el paquete survey. Dicho paquete, permite obtener estimaciones y su variabilidad , permitiendo evaluar la calidad de dichas estimaciones.

Por conveniencia, se crearán variables binarias que permitirán identificar casos de pobreza extrema, pobreza no extrema y no pobres.

>  
>   CASEN<-mutate(CASEN, pobreza_extrema = case_when( pobreza==1 ~1, TRUE~ 0)
+                     , pobreza_no_extrema = case_when( pobreza==2 ~1, TRUE~ 0)
+               , no_pobreza = case_when( pobreza==3 ~1, TRUE~ 0))
> 

Se debe crear el diseño complejo (para conocer las variables necesarias se debe consultar los documentos metodológicos que están publicados)

>   
>   ##creamos el disenio
>   disenio =svydesign(id=~varunit, # Etiquetas UPM
+                          strata=~varstrat, #Estratos
+                          check.strata=TRUE, # Comprueba que los clusters est?n anidados en los estratos
+                          weights=~expr, # Ponderador
+                          data=CASEN)
>   
>   options(survey.lonely.psu="remove") 
>   

A continuación, se utilizan las funciones del paquete survey para obtener la cantidad de pobres extremos, pobres no extremos y no pobres. Esto se guarda finalmente en el objeto llamado resumen_2.

>   ## probres extremos
>   pobres_extremos<-svyby(~pobreza_extrema,by=~region
+                      ,data=CASEN
+                      ,drop.empty.groups=FALSE
+                      , na.rm.all=FALSE
+                      ,disenio
+                      ,svytotal
+                      ,vartype=c("se","cv"))
>   
>   pobres_no_extremos<-svyby(~pobreza_no_extrema,by=~region
+                      ,data=CASEN
+                      ,drop.empty.groups=FALSE
+                      , na.rm.all=FALSE
+                      ,disenio
+                      ,svytotal
+                      ,vartype=c("se","cv"))
>   
>   
> no_pobres<-svyby(~no_pobreza,by=~region
+                      ,data=CASEN
+                      ,drop.empty.groups=FALSE
+                      , na.rm.all=FALSE
+                      ,disenio
+                      ,svytotal
+                      ,vartype=c("se","cv"))
> 
> 
> 
> resumen_2<-as.data.frame(cbind(region=pobres_extremos$region, pobreza_extrema=pobres_extremos$pobreza_extrema, no_extrema=pobres_no_extremos$pobreza_no_extrema
+                  , no_pobres = no_pobres$no_pobreza)
+ )  
> 
> resumen_2
   region pobreza_extrema no_extrema no_pobres
1       1           17635      26226    354636
2       2           19618      34593    656641
3       3            9039      17060    292250
4       4           21689      46590    794311
5       5           38850      92721   1869211
6       6           22911      48195    941244
7       7           29810      70157   1056754
8       8           38972      87238   1551426
9       9           33991      84591    906665
10     10           19336      43755    840796
11     11            1142       3190    103705
12     12            1885       4371    175219
13     13          108743     259237   7954598
14     14            5099      18931    385878
15     15            7070      16567    234183
16     16           21818      40794    455317

Finalmente, se calcula la tasa de pobreza por ingresos por región.

>    
> 
> resumen_2<-mutate(resumen_2, tasa_pobreza = (pobreza_extrema+no_extrema)/  (pobreza_extrema+no_extrema+no_pobres)*100)
> 
>   
> resumen_2
   region pobreza_extrema no_extrema no_pobres tasa_pobreza
1       1           17635      26226    354636    11.006607
2       2           19618      34593    656641     7.626201
3       3            9039      17060    292250     8.198235
4       4           21689      46590    794311     7.915580
5       5           38850      92721   1869211     6.575979
6       6           22911      48195    941244     7.023855
7       7           29810      70157   1056754     8.642274
8       8           38972      87238   1551426     7.523086
9       9           33991      84591    906665    11.566188
10     10           19336      43755    840796     6.979965
11     11            1142       3190    103705     4.009737
12     12            1885       4371    175219     3.447307
13     13          108743     259237   7954598     4.421467
14     14            5099      18931    385878     5.862291
15     15            7070      16567    234183     9.168024
16     16           21818      40794    455317    12.088916

Estos resultados se pueden corroborar con el set de cuadros estadísticos disponibles en [https://observatorio.ministeriodesarrollosocial.gob.cl/encuesta-casen-2022] (https://observatorio.ministeriodesarrollosocial.gob.cl/encuesta-casen-2022)., sección Estadísticas.