Data Acquisition Input file :“tournamentinfo.txt”
txturl <- "https://raw.githubusercontent.com/ZIXIANNOW/DATA607project1/main/tournamentinfo.txt"
rawdata <- read_csv(txturl)
## Rows: 195 Columns: 1
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): -------------------------------------------------------------------...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
rawdata
## # A tibble: 195 × 1
## ---------------------------------------------------------------------------…¹
## <chr>
## 1 Pair | Player Name |Total|Round|Round|Round|Round|Round|…
## 2 Num | USCF ID / Rtg (Pre->Post) | Pts | 1 | 2 | 3 | 4 | 5 |…
## 3 ----------------------------------------------------------------------------…
## 4 1 | GARY HUA |6.0 |W 39|W 21|W 18|W 14|W 7|D …
## 5 ON | 15445895 / R: 1794 ->1817 |N:2 |W |B |W |B |W |B …
## 6 ----------------------------------------------------------------------------…
## 7 2 | DAKSHESH DARURI |6.0 |W 63|W 58|L 4|W 17|W 16|W …
## 8 MI | 14598900 / R: 1553 ->1663 |N:2 |B |W |B |W |B |W …
## 9 ----------------------------------------------------------------------------…
## 10 3 | ADITYA BAJAJ |6.0 |L 8|W 61|W 25|W 21|W 11|W …
## # ℹ 185 more rows
## # ℹ abbreviated name:
## # ¹`-----------------------------------------------------------------------------------------`
Then, split data into two data frames
alldata <-read_lines(txturl)
initial_data <- alldata[seq(5,length(alldata),3)]
initial_data
## [1] " 1 | GARY HUA |6.0 |W 39|W 21|W 18|W 14|W 7|D 12|D 4|"
## [2] " 2 | DAKSHESH DARURI |6.0 |W 63|W 58|L 4|W 17|W 16|W 20|W 7|"
## [3] " 3 | ADITYA BAJAJ |6.0 |L 8|W 61|W 25|W 21|W 11|W 13|W 12|"
## [4] " 4 | PATRICK H SCHILLING |5.5 |W 23|D 28|W 2|W 26|D 5|W 19|D 1|"
## [5] " 5 | HANSHI ZUO |5.5 |W 45|W 37|D 12|D 13|D 4|W 14|W 17|"
## [6] " 6 | HANSEN SONG |5.0 |W 34|D 29|L 11|W 35|D 10|W 27|W 21|"
## [7] " 7 | GARY DEE SWATHELL |5.0 |W 57|W 46|W 13|W 11|L 1|W 9|L 2|"
## [8] " 8 | EZEKIEL HOUGHTON |5.0 |W 3|W 32|L 14|L 9|W 47|W 28|W 19|"
## [9] " 9 | STEFANO LEE |5.0 |W 25|L 18|W 59|W 8|W 26|L 7|W 20|"
## [10] " 10 | ANVIT RAO |5.0 |D 16|L 19|W 55|W 31|D 6|W 25|W 18|"
## [11] " 11 | CAMERON WILLIAM MC LEMAN |4.5 |D 38|W 56|W 6|L 7|L 3|W 34|W 26|"
## [12] " 12 | KENNETH J TACK |4.5 |W 42|W 33|D 5|W 38|H |D 1|L 3|"
## [13] " 13 | TORRANCE HENRY JR |4.5 |W 36|W 27|L 7|D 5|W 33|L 3|W 32|"
## [14] " 14 | BRADLEY SHAW |4.5 |W 54|W 44|W 8|L 1|D 27|L 5|W 31|"
## [15] " 15 | ZACHARY JAMES HOUGHTON |4.5 |D 19|L 16|W 30|L 22|W 54|W 33|W 38|"
## [16] " 16 | MIKE NIKITIN |4.0 |D 10|W 15|H |W 39|L 2|W 36|U |"
## [17] " 17 | RONALD GRZEGORCZYK |4.0 |W 48|W 41|L 26|L 2|W 23|W 22|L 5|"
## [18] " 18 | DAVID SUNDEEN |4.0 |W 47|W 9|L 1|W 32|L 19|W 38|L 10|"
## [19] " 19 | DIPANKAR ROY |4.0 |D 15|W 10|W 52|D 28|W 18|L 4|L 8|"
## [20] " 20 | JASON ZHENG |4.0 |L 40|W 49|W 23|W 41|W 28|L 2|L 9|"
## [21] " 21 | DINH DANG BUI |4.0 |W 43|L 1|W 47|L 3|W 40|W 39|L 6|"
## [22] " 22 | EUGENE L MCCLURE |4.0 |W 64|D 52|L 28|W 15|H |L 17|W 40|"
## [23] " 23 | ALAN BUI |4.0 |L 4|W 43|L 20|W 58|L 17|W 37|W 46|"
## [24] " 24 | MICHAEL R ALDRICH |4.0 |L 28|L 47|W 43|L 25|W 60|W 44|W 39|"
## [25] " 25 | LOREN SCHWIEBERT |3.5 |L 9|W 53|L 3|W 24|D 34|L 10|W 47|"
## [26] " 26 | MAX ZHU |3.5 |W 49|W 40|W 17|L 4|L 9|D 32|L 11|"
## [27] " 27 | GAURAV GIDWANI |3.5 |W 51|L 13|W 46|W 37|D 14|L 6|U |"
## [28] " 28 | SOFIA ADINA STANESCU-BELLU |3.5 |W 24|D 4|W 22|D 19|L 20|L 8|D 36|"
## [29] " 29 | CHIEDOZIE OKORIE |3.5 |W 50|D 6|L 38|L 34|W 52|W 48|U |"
## [30] " 30 | GEORGE AVERY JONES |3.5 |L 52|D 64|L 15|W 55|L 31|W 61|W 50|"
## [31] " 31 | RISHI SHETTY |3.5 |L 58|D 55|W 64|L 10|W 30|W 50|L 14|"
## [32] " 32 | JOSHUA PHILIP MATHEWS |3.5 |W 61|L 8|W 44|L 18|W 51|D 26|L 13|"
## [33] " 33 | JADE GE |3.5 |W 60|L 12|W 50|D 36|L 13|L 15|W 51|"
## [34] " 34 | MICHAEL JEFFERY THOMAS |3.5 |L 6|W 60|L 37|W 29|D 25|L 11|W 52|"
## [35] " 35 | JOSHUA DAVID LEE |3.5 |L 46|L 38|W 56|L 6|W 57|D 52|W 48|"
## [36] " 36 | SIDDHARTH JHA |3.5 |L 13|W 57|W 51|D 33|H |L 16|D 28|"
## [37] " 37 | AMIYATOSH PWNANANDAM |3.5 |B |L 5|W 34|L 27|H |L 23|W 61|"
## [38] " 38 | BRIAN LIU |3.0 |D 11|W 35|W 29|L 12|H |L 18|L 15|"
## [39] " 39 | JOEL R HENDON |3.0 |L 1|W 54|W 40|L 16|W 44|L 21|L 24|"
## [40] " 40 | FOREST ZHANG |3.0 |W 20|L 26|L 39|W 59|L 21|W 56|L 22|"
## [41] " 41 | KYLE WILLIAM MURPHY |3.0 |W 59|L 17|W 58|L 20|X |U |U |"
## [42] " 42 | JARED GE |3.0 |L 12|L 50|L 57|D 60|D 61|W 64|W 56|"
## [43] " 43 | ROBERT GLEN VASEY |3.0 |L 21|L 23|L 24|W 63|W 59|L 46|W 55|"
## [44] " 44 | JUSTIN D SCHILLING |3.0 |B |L 14|L 32|W 53|L 39|L 24|W 59|"
## [45] " 45 | DEREK YAN |3.0 |L 5|L 51|D 60|L 56|W 63|D 55|W 58|"
## [46] " 46 | JACOB ALEXANDER LAVALLEY |3.0 |W 35|L 7|L 27|L 50|W 64|W 43|L 23|"
## [47] " 47 | ERIC WRIGHT |2.5 |L 18|W 24|L 21|W 61|L 8|D 51|L 25|"
## [48] " 48 | DANIEL KHAIN |2.5 |L 17|W 63|H |D 52|H |L 29|L 35|"
## [49] " 49 | MICHAEL J MARTIN |2.5 |L 26|L 20|D 63|D 64|W 58|H |U |"
## [50] " 50 | SHIVAM JHA |2.5 |L 29|W 42|L 33|W 46|H |L 31|L 30|"
## [51] " 51 | TEJAS AYYAGARI |2.5 |L 27|W 45|L 36|W 57|L 32|D 47|L 33|"
## [52] " 52 | ETHAN GUO |2.5 |W 30|D 22|L 19|D 48|L 29|D 35|L 34|"
## [53] " 53 | JOSE C YBARRA |2.0 |H |L 25|H |L 44|U |W 57|U |"
## [54] " 54 | LARRY HODGE |2.0 |L 14|L 39|L 61|B |L 15|L 59|W 64|"
## [55] " 55 | ALEX KONG |2.0 |L 62|D 31|L 10|L 30|B |D 45|L 43|"
## [56] " 56 | MARISA RICCI |2.0 |H |L 11|L 35|W 45|H |L 40|L 42|"
## [57] " 57 | MICHAEL LU |2.0 |L 7|L 36|W 42|L 51|L 35|L 53|B |"
## [58] " 58 | VIRAJ MOHILE |2.0 |W 31|L 2|L 41|L 23|L 49|B |L 45|"
## [59] " 59 | SEAN M MC CORMICK |2.0 |L 41|B |L 9|L 40|L 43|W 54|L 44|"
## [60] " 60 | JULIA SHEN |1.5 |L 33|L 34|D 45|D 42|L 24|H |U |"
## [61] " 61 | JEZZEL FARKAS |1.5 |L 32|L 3|W 54|L 47|D 42|L 30|L 37|"
## [62] " 62 | ASHWIN BALAJI |1.0 |W 55|U |U |U |U |U |U |"
## [63] " 63 | THOMAS JOSEPH HOSMER |1.0 |L 2|L 48|D 49|L 43|L 45|H |U |"
## [64] " 64 | BEN LI |1.0 |L 22|D 30|L 31|D 49|L 46|L 42|L 54|"
additional_data <- alldata[seq(6,length(alldata),3)]
additional_data
## [1] " ON | 15445895 / R: 1794 ->1817 |N:2 |W |B |W |B |W |B |W |"
## [2] " MI | 14598900 / R: 1553 ->1663 |N:2 |B |W |B |W |B |W |B |"
## [3] " MI | 14959604 / R: 1384 ->1640 |N:2 |W |B |W |B |W |B |W |"
## [4] " MI | 12616049 / R: 1716 ->1744 |N:2 |W |B |W |B |W |B |B |"
## [5] " MI | 14601533 / R: 1655 ->1690 |N:2 |B |W |B |W |B |W |B |"
## [6] " OH | 15055204 / R: 1686 ->1687 |N:3 |W |B |W |B |B |W |B |"
## [7] " MI | 11146376 / R: 1649 ->1673 |N:3 |W |B |W |B |B |W |W |"
## [8] " MI | 15142253 / R: 1641P17->1657P24 |N:3 |B |W |B |W |B |W |W |"
## [9] " ON | 14954524 / R: 1411 ->1564 |N:2 |W |B |W |B |W |B |B |"
## [10] " MI | 14150362 / R: 1365 ->1544 |N:3 |W |W |B |B |W |B |W |"
## [11] " MI | 12581589 / R: 1712 ->1696 |N:3 |B |W |B |W |B |W |B |"
## [12] " MI | 12681257 / R: 1663 ->1670 |N:3 |W |B |W |B | |W |B |"
## [13] " MI | 15082995 / R: 1666 ->1662 |N:3 |B |W |B |B |W |W |B |"
## [14] " MI | 10131499 / R: 1610 ->1618 |N:3 |W |B |W |W |B |B |W |"
## [15] " MI | 15619130 / R: 1220P13->1416P20 |N:3 |B |B |W |W |B |B |W |"
## [16] " MI | 10295068 / R: 1604 ->1613 |N:3 |B |W | |B |W |B | |"
## [17] " MI | 10297702 / R: 1629 ->1610 |N:3 |W |B |W |B |W |B |W |"
## [18] " MI | 11342094 / R: 1600 ->1600 |N:3 |B |W |B |W |B |W |B |"
## [19] " MI | 14862333 / R: 1564 ->1570 |N:3 |W |B |W |B |W |W |B |"
## [20] " MI | 14529060 / R: 1595 ->1569 |N:4 |W |B |W |B |W |B |W |"
## [21] " ON | 15495066 / R: 1563P22->1562 |N:3 |B |W |B |W |W |B |W |"
## [22] " MI | 12405534 / R: 1555 ->1529 |N:4 |W |B |W |B | |W |B |"
## [23] " ON | 15030142 / R: 1363 ->1371 | |B |W |B |W |B |W |B |"
## [24] " MI | 13469010 / R: 1229 ->1300 |N:4 |B |W |B |B |W |W |B |"
## [25] " MI | 12486656 / R: 1745 ->1681 |N:4 |B |W |B |W |B |W |B |"
## [26] " ON | 15131520 / R: 1579 ->1564 |N:4 |B |W |B |W |B |W |W |"
## [27] " MI | 14476567 / R: 1552 ->1539 |N:4 |W |B |W |B |W |B | |"
## [28] " MI | 14882954 / R: 1507 ->1513 |N:3 |W |W |B |W |B |B |W |"
## [29] " MI | 15323285 / R: 1602P6 ->1508P12 |N:4 |B |W |B |W |W |B | |"
## [30] " ON | 12577178 / R: 1522 ->1444 | |W |B |B |W |W |B |B |"
## [31] " MI | 15131618 / R: 1494 ->1444 | |B |W |B |W |B |W |B |"
## [32] " ON | 14073750 / R: 1441 ->1433 |N:4 |W |B |W |B |W |B |W |"
## [33] " MI | 14691842 / R: 1449 ->1421 | |B |W |B |W |B |W |B |"
## [34] " MI | 15051807 / R: 1399 ->1400 | |B |W |B |B |W |B |W |"
## [35] " MI | 14601397 / R: 1438 ->1392 | |W |W |B |W |B |B |W |"
## [36] " MI | 14773163 / R: 1355 ->1367 |N:4 |W |B |W |B | |W |B |"
## [37] " MI | 15489571 / R: 980P12->1077P17 | | |B |W |W | |B |W |"
## [38] " MI | 15108523 / R: 1423 ->1439 |N:4 |W |B |W |W | |B |B |"
## [39] " MI | 12923035 / R: 1436P23->1413 |N:4 |B |W |B |W |B |W |W |"
## [40] " MI | 14892710 / R: 1348 ->1346 | |B |B |W |W |B |W |W |"
## [41] " MI | 15761443 / R: 1403P5 ->1341P9 | |B |W |B |W | | | |"
## [42] " MI | 14462326 / R: 1332 ->1256 | |B |W |B |B |W |W |B |"
## [43] " MI | 14101068 / R: 1283 ->1244 | |W |B |W |W |B |B |W |"
## [44] " MI | 15323504 / R: 1199 ->1199 | | |W |B |B |W |B |W |"
## [45] " MI | 15372807 / R: 1242 ->1191 | |W |B |W |B |W |B |W |"
## [46] " MI | 15490981 / R: 377P3 ->1076P10 | |B |W |B |W |B |W |W |"
## [47] " MI | 12533115 / R: 1362 ->1341 | |W |B |W |B |W |B |W |"
## [48] " MI | 14369165 / R: 1382 ->1335 | |B |W | |B | |W |B |"
## [49] " MI | 12531685 / R: 1291P12->1259P17 | |W |W |B |W |B | | |"
## [50] " MI | 14773178 / R: 1056 ->1111 | |W |B |W |B | |B |W |"
## [51] " MI | 15205474 / R: 1011 ->1097 | |B |W |B |W |B |W |W |"
## [52] " MI | 14918803 / R: 935 ->1092 |N:4 |B |W |B |W |B |W |B |"
## [53] " MI | 12578849 / R: 1393 ->1359 | | |B | |W | |W | |"
## [54] " MI | 12836773 / R: 1270 ->1200 | |B |B |W | |W |B |W |"
## [55] " MI | 15412571 / R: 1186 ->1163 | |W |B |W |B | |W |B |"
## [56] " MI | 14679887 / R: 1153 ->1140 | | |B |W |W | |B |W |"
## [57] " MI | 15113330 / R: 1092 ->1079 | |B |W |W |B |W |B | |"
## [58] " MI | 14700365 / R: 917 -> 941 | |W |B |W |B |W | |B |"
## [59] " MI | 12841036 / R: 853 -> 878 | |W | |B |B |W |W |B |"
## [60] " MI | 14579262 / R: 967 -> 984 | |W |B |B |W |B | | |"
## [61] " ON | 15771592 / R: 955P11-> 979P18 | |B |W |B |W |B |W |B |"
## [62] " MI | 15219542 / R: 1530 ->1535 | |B | | | | | | |"
## [63] " MI | 15057092 / R: 1175 ->1125 | |W |B |W |B |B | | |"
## [64] " MI | 15006561 / R: 1163 ->1112 | |B |W |W |B |W |B |B |"
Then, extract required data from each data frame.
Pair_number <- as.integer(str_extract(initial_data, "\\d+"))
Pair_number
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
## [26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
## [51] 51 52 53 54 55 56 57 58 59 60 61 62 63 64
Player_name <- str_extract(initial_data, "\\|\\s*([^|]+)\\s*\\|")
Player_name <- trimws(gsub("\\|", "", Player_name))
Player_name
## [1] "GARY HUA" "DAKSHESH DARURI"
## [3] "ADITYA BAJAJ" "PATRICK H SCHILLING"
## [5] "HANSHI ZUO" "HANSEN SONG"
## [7] "GARY DEE SWATHELL" "EZEKIEL HOUGHTON"
## [9] "STEFANO LEE" "ANVIT RAO"
## [11] "CAMERON WILLIAM MC LEMAN" "KENNETH J TACK"
## [13] "TORRANCE HENRY JR" "BRADLEY SHAW"
## [15] "ZACHARY JAMES HOUGHTON" "MIKE NIKITIN"
## [17] "RONALD GRZEGORCZYK" "DAVID SUNDEEN"
## [19] "DIPANKAR ROY" "JASON ZHENG"
## [21] "DINH DANG BUI" "EUGENE L MCCLURE"
## [23] "ALAN BUI" "MICHAEL R ALDRICH"
## [25] "LOREN SCHWIEBERT" "MAX ZHU"
## [27] "GAURAV GIDWANI" "SOFIA ADINA STANESCU-BELLU"
## [29] "CHIEDOZIE OKORIE" "GEORGE AVERY JONES"
## [31] "RISHI SHETTY" "JOSHUA PHILIP MATHEWS"
## [33] "JADE GE" "MICHAEL JEFFERY THOMAS"
## [35] "JOSHUA DAVID LEE" "SIDDHARTH JHA"
## [37] "AMIYATOSH PWNANANDAM" "BRIAN LIU"
## [39] "JOEL R HENDON" "FOREST ZHANG"
## [41] "KYLE WILLIAM MURPHY" "JARED GE"
## [43] "ROBERT GLEN VASEY" "JUSTIN D SCHILLING"
## [45] "DEREK YAN" "JACOB ALEXANDER LAVALLEY"
## [47] "ERIC WRIGHT" "DANIEL KHAIN"
## [49] "MICHAEL J MARTIN" "SHIVAM JHA"
## [51] "TEJAS AYYAGARI" "ETHAN GUO"
## [53] "JOSE C YBARRA" "LARRY HODGE"
## [55] "ALEX KONG" "MARISA RICCI"
## [57] "MICHAEL LU" "VIRAJ MOHILE"
## [59] "SEAN M MC CORMICK" "JULIA SHEN"
## [61] "JEZZEL FARKAS" "ASHWIN BALAJI"
## [63] "THOMAS JOSEPH HOSMER" "BEN LI"
state <- str_extract(additional_data, "\\b[A-Z]{2}\\b")
state
## [1] "ON" "MI" "MI" "MI" "MI" "OH" "MI" "MI" "ON" "MI" "MI" "MI" "MI" "MI" "MI"
## [16] "MI" "MI" "MI" "MI" "MI" "ON" "MI" "ON" "MI" "MI" "ON" "MI" "MI" "MI" "ON"
## [31] "MI" "ON" "MI" "MI" "MI" "MI" "MI" "MI" "MI" "MI" "MI" "MI" "MI" "MI" "MI"
## [46] "MI" "MI" "MI" "MI" "MI" "MI" "MI" "MI" "MI" "MI" "MI" "MI" "MI" "MI" "MI"
## [61] "ON" "MI" "MI" "MI"
Total_pt <- str_extract(initial_data, "\\b\\d+\\.\\d+\\b")
Total_pt
## [1] "6.0" "6.0" "6.0" "5.5" "5.5" "5.0" "5.0" "5.0" "5.0" "5.0" "4.5" "4.5"
## [13] "4.5" "4.5" "4.5" "4.0" "4.0" "4.0" "4.0" "4.0" "4.0" "4.0" "4.0" "4.0"
## [25] "3.5" "3.5" "3.5" "3.5" "3.5" "3.5" "3.5" "3.5" "3.5" "3.5" "3.5" "3.5"
## [37] "3.5" "3.0" "3.0" "3.0" "3.0" "3.0" "3.0" "3.0" "3.0" "3.0" "2.5" "2.5"
## [49] "2.5" "2.5" "2.5" "2.5" "2.0" "2.0" "2.0" "2.0" "2.0" "2.0" "2.0" "1.5"
## [61] "1.5" "1.0" "1.0" "1.0"
Pre_rating <- as.integer(str_extract(str_extract(additional_data, "[^\\d]\\d{3,4}[^\\d]"), "\\d+"))
Pre_rating
## [1] 1794 1553 1384 1716 1655 1686 1649 1641 1411 1365 1712 1663 1666 1610 1220
## [16] 1604 1629 1600 1564 1595 1563 1555 1363 1229 1745 1579 1552 1507 1602 1522
## [31] 1494 1441 1449 1399 1438 1355 980 1423 1436 1348 1403 1332 1283 1199 1242
## [46] 377 1362 1382 1291 1056 1011 935 1393 1270 1186 1153 1092 917 853 967
## [61] 955 1530 1175 1163
Opponents <- unlist(str_extract_all(initial_data, "\\|[0-9].*"))
Opponents <- str_replace_all(Opponents, "\\s{1,2}\\|","00|")
Opponents <- str_extract_all(Opponents, "\\s\\d{1,2}")
Opponents
## [[1]]
## [1] " 39" " 21" " 18" " 14" " 7" " 12" " 4"
##
## [[2]]
## [1] " 63" " 58" " 4" " 17" " 16" " 20" " 7"
##
## [[3]]
## [1] " 8" " 61" " 25" " 21" " 11" " 13" " 12"
##
## [[4]]
## [1] " 23" " 28" " 2" " 26" " 5" " 19" " 1"
##
## [[5]]
## [1] " 45" " 37" " 12" " 13" " 4" " 14" " 17"
##
## [[6]]
## [1] " 34" " 29" " 11" " 35" " 10" " 27" " 21"
##
## [[7]]
## [1] " 57" " 46" " 13" " 11" " 1" " 9" " 2"
##
## [[8]]
## [1] " 3" " 32" " 14" " 9" " 47" " 28" " 19"
##
## [[9]]
## [1] " 25" " 18" " 59" " 8" " 26" " 7" " 20"
##
## [[10]]
## [1] " 16" " 19" " 55" " 31" " 6" " 25" " 18"
##
## [[11]]
## [1] " 38" " 56" " 6" " 7" " 3" " 34" " 26"
##
## [[12]]
## [1] " 42" " 33" " 5" " 38" " 00" " 1" " 3"
##
## [[13]]
## [1] " 36" " 27" " 7" " 5" " 33" " 3" " 32"
##
## [[14]]
## [1] " 54" " 44" " 8" " 1" " 27" " 5" " 31"
##
## [[15]]
## [1] " 19" " 16" " 30" " 22" " 54" " 33" " 38"
##
## [[16]]
## [1] " 10" " 15" " 00" " 39" " 2" " 36" " 00"
##
## [[17]]
## [1] " 48" " 41" " 26" " 2" " 23" " 22" " 5"
##
## [[18]]
## [1] " 47" " 9" " 1" " 32" " 19" " 38" " 10"
##
## [[19]]
## [1] " 15" " 10" " 52" " 28" " 18" " 4" " 8"
##
## [[20]]
## [1] " 40" " 49" " 23" " 41" " 28" " 2" " 9"
##
## [[21]]
## [1] " 43" " 1" " 47" " 3" " 40" " 39" " 6"
##
## [[22]]
## [1] " 64" " 52" " 28" " 15" " 00" " 17" " 40"
##
## [[23]]
## [1] " 4" " 43" " 20" " 58" " 17" " 37" " 46"
##
## [[24]]
## [1] " 28" " 47" " 43" " 25" " 60" " 44" " 39"
##
## [[25]]
## [1] " 9" " 53" " 3" " 24" " 34" " 10" " 47"
##
## [[26]]
## [1] " 49" " 40" " 17" " 4" " 9" " 32" " 11"
##
## [[27]]
## [1] " 51" " 13" " 46" " 37" " 14" " 6" " 00"
##
## [[28]]
## [1] " 24" " 4" " 22" " 19" " 20" " 8" " 36"
##
## [[29]]
## [1] " 50" " 6" " 38" " 34" " 52" " 48" " 00"
##
## [[30]]
## [1] " 52" " 64" " 15" " 55" " 31" " 61" " 50"
##
## [[31]]
## [1] " 58" " 55" " 64" " 10" " 30" " 50" " 14"
##
## [[32]]
## [1] " 61" " 8" " 44" " 18" " 51" " 26" " 13"
##
## [[33]]
## [1] " 60" " 12" " 50" " 36" " 13" " 15" " 51"
##
## [[34]]
## [1] " 6" " 60" " 37" " 29" " 25" " 11" " 52"
##
## [[35]]
## [1] " 46" " 38" " 56" " 6" " 57" " 52" " 48"
##
## [[36]]
## [1] " 13" " 57" " 51" " 33" " 00" " 16" " 28"
##
## [[37]]
## [1] " 00" " 5" " 34" " 27" " 00" " 23" " 61"
##
## [[38]]
## [1] " 11" " 35" " 29" " 12" " 00" " 18" " 15"
##
## [[39]]
## [1] " 1" " 54" " 40" " 16" " 44" " 21" " 24"
##
## [[40]]
## [1] " 20" " 26" " 39" " 59" " 21" " 56" " 22"
##
## [[41]]
## [1] " 59" " 17" " 58" " 20" " 00" " 00" " 00"
##
## [[42]]
## [1] " 12" " 50" " 57" " 60" " 61" " 64" " 56"
##
## [[43]]
## [1] " 21" " 23" " 24" " 63" " 59" " 46" " 55"
##
## [[44]]
## [1] " 00" " 14" " 32" " 53" " 39" " 24" " 59"
##
## [[45]]
## [1] " 5" " 51" " 60" " 56" " 63" " 55" " 58"
##
## [[46]]
## [1] " 35" " 7" " 27" " 50" " 64" " 43" " 23"
##
## [[47]]
## [1] " 18" " 24" " 21" " 61" " 8" " 51" " 25"
##
## [[48]]
## [1] " 17" " 63" " 00" " 52" " 00" " 29" " 35"
##
## [[49]]
## [1] " 26" " 20" " 63" " 64" " 58" " 00" " 00"
##
## [[50]]
## [1] " 29" " 42" " 33" " 46" " 00" " 31" " 30"
##
## [[51]]
## [1] " 27" " 45" " 36" " 57" " 32" " 47" " 33"
##
## [[52]]
## [1] " 30" " 22" " 19" " 48" " 29" " 35" " 34"
##
## [[53]]
## [1] " 00" " 25" " 00" " 44" " 00" " 57" " 00"
##
## [[54]]
## [1] " 14" " 39" " 61" " 00" " 15" " 59" " 64"
##
## [[55]]
## [1] " 62" " 31" " 10" " 30" " 00" " 45" " 43"
##
## [[56]]
## [1] " 00" " 11" " 35" " 45" " 00" " 40" " 42"
##
## [[57]]
## [1] " 7" " 36" " 42" " 51" " 35" " 53" " 00"
##
## [[58]]
## [1] " 31" " 2" " 41" " 23" " 49" " 00" " 45"
##
## [[59]]
## [1] " 41" " 00" " 9" " 40" " 43" " 54" " 44"
##
## [[60]]
## [1] " 33" " 34" " 45" " 42" " 24" " 00" " 00"
##
## [[61]]
## [1] " 32" " 3" " 54" " 47" " 42" " 30" " 37"
##
## [[62]]
## [1] " 55" " 00" " 00" " 00" " 00" " 00" " 00"
##
## [[63]]
## [1] " 2" " 48" " 49" " 43" " 45" " 00" " 00"
##
## [[64]]
## [1] " 22" " 30" " 31" " 49" " 46" " 42" " 54"
Calculate average pre rating of opponents in order to prepare additional variable
avgprechessoppoents <- c()
for (i in c(1:length(Opponents)))
{
avgprechessoppoents[i] <- round(mean(Pre_rating[as.numeric(Opponents[[i]])]),0)
}
avgprechessoppoents
## [1] 1605 1469 1564 1574 1501 1519 1372 1468 1523 1554 1468 1506 1498 1515 1484
## [16] 1386 1499 1480 1426 1411 1470 1300 1214 1357 1363 1507 1222 1522 1314 1144
## [31] 1260 1379 1277 1375 1150 1388 1385 1539 1430 1391 1248 1150 1107 1327 1152
## [46] 1358 1392 1356 1286 1296 1356 1495 1345 1206 1406 1414 1363 1391 1319 1330
## [61] 1327 1186 1350 1263
Concatenate all variables as new table
new_chess_rating <- data.frame(Pair_number,Player_name, state, Total_pt, Pre_rating, avgprechessoppoents)
new_chess_rating
## Pair_number Player_name state Total_pt Pre_rating
## 1 1 GARY HUA ON 6.0 1794
## 2 2 DAKSHESH DARURI MI 6.0 1553
## 3 3 ADITYA BAJAJ MI 6.0 1384
## 4 4 PATRICK H SCHILLING MI 5.5 1716
## 5 5 HANSHI ZUO MI 5.5 1655
## 6 6 HANSEN SONG OH 5.0 1686
## 7 7 GARY DEE SWATHELL MI 5.0 1649
## 8 8 EZEKIEL HOUGHTON MI 5.0 1641
## 9 9 STEFANO LEE ON 5.0 1411
## 10 10 ANVIT RAO MI 5.0 1365
## 11 11 CAMERON WILLIAM MC LEMAN MI 4.5 1712
## 12 12 KENNETH J TACK MI 4.5 1663
## 13 13 TORRANCE HENRY JR MI 4.5 1666
## 14 14 BRADLEY SHAW MI 4.5 1610
## 15 15 ZACHARY JAMES HOUGHTON MI 4.5 1220
## 16 16 MIKE NIKITIN MI 4.0 1604
## 17 17 RONALD GRZEGORCZYK MI 4.0 1629
## 18 18 DAVID SUNDEEN MI 4.0 1600
## 19 19 DIPANKAR ROY MI 4.0 1564
## 20 20 JASON ZHENG MI 4.0 1595
## 21 21 DINH DANG BUI ON 4.0 1563
## 22 22 EUGENE L MCCLURE MI 4.0 1555
## 23 23 ALAN BUI ON 4.0 1363
## 24 24 MICHAEL R ALDRICH MI 4.0 1229
## 25 25 LOREN SCHWIEBERT MI 3.5 1745
## 26 26 MAX ZHU ON 3.5 1579
## 27 27 GAURAV GIDWANI MI 3.5 1552
## 28 28 SOFIA ADINA STANESCU-BELLU MI 3.5 1507
## 29 29 CHIEDOZIE OKORIE MI 3.5 1602
## 30 30 GEORGE AVERY JONES ON 3.5 1522
## 31 31 RISHI SHETTY MI 3.5 1494
## 32 32 JOSHUA PHILIP MATHEWS ON 3.5 1441
## 33 33 JADE GE MI 3.5 1449
## 34 34 MICHAEL JEFFERY THOMAS MI 3.5 1399
## 35 35 JOSHUA DAVID LEE MI 3.5 1438
## 36 36 SIDDHARTH JHA MI 3.5 1355
## 37 37 AMIYATOSH PWNANANDAM MI 3.5 980
## 38 38 BRIAN LIU MI 3.0 1423
## 39 39 JOEL R HENDON MI 3.0 1436
## 40 40 FOREST ZHANG MI 3.0 1348
## 41 41 KYLE WILLIAM MURPHY MI 3.0 1403
## 42 42 JARED GE MI 3.0 1332
## 43 43 ROBERT GLEN VASEY MI 3.0 1283
## 44 44 JUSTIN D SCHILLING MI 3.0 1199
## 45 45 DEREK YAN MI 3.0 1242
## 46 46 JACOB ALEXANDER LAVALLEY MI 3.0 377
## 47 47 ERIC WRIGHT MI 2.5 1362
## 48 48 DANIEL KHAIN MI 2.5 1382
## 49 49 MICHAEL J MARTIN MI 2.5 1291
## 50 50 SHIVAM JHA MI 2.5 1056
## 51 51 TEJAS AYYAGARI MI 2.5 1011
## 52 52 ETHAN GUO MI 2.5 935
## 53 53 JOSE C YBARRA MI 2.0 1393
## 54 54 LARRY HODGE MI 2.0 1270
## 55 55 ALEX KONG MI 2.0 1186
## 56 56 MARISA RICCI MI 2.0 1153
## 57 57 MICHAEL LU MI 2.0 1092
## 58 58 VIRAJ MOHILE MI 2.0 917
## 59 59 SEAN M MC CORMICK MI 2.0 853
## 60 60 JULIA SHEN MI 1.5 967
## 61 61 JEZZEL FARKAS ON 1.5 955
## 62 62 ASHWIN BALAJI MI 1.0 1530
## 63 63 THOMAS JOSEPH HOSMER MI 1.0 1175
## 64 64 BEN LI MI 1.0 1163
## avgprechessoppoents
## 1 1605
## 2 1469
## 3 1564
## 4 1574
## 5 1501
## 6 1519
## 7 1372
## 8 1468
## 9 1523
## 10 1554
## 11 1468
## 12 1506
## 13 1498
## 14 1515
## 15 1484
## 16 1386
## 17 1499
## 18 1480
## 19 1426
## 20 1411
## 21 1470
## 22 1300
## 23 1214
## 24 1357
## 25 1363
## 26 1507
## 27 1222
## 28 1522
## 29 1314
## 30 1144
## 31 1260
## 32 1379
## 33 1277
## 34 1375
## 35 1150
## 36 1388
## 37 1385
## 38 1539
## 39 1430
## 40 1391
## 41 1248
## 42 1150
## 43 1107
## 44 1327
## 45 1152
## 46 1358
## 47 1392
## 48 1356
## 49 1286
## 50 1296
## 51 1356
## 52 1495
## 53 1345
## 54 1206
## 55 1406
## 56 1414
## 57 1363
## 58 1391
## 59 1319
## 60 1330
## 61 1327
## 62 1186
## 63 1350
## 64 1263
Export csv file
write.csv(new_chess_rating, file ="Chess_Rating_List.csv")