Setting up Workspace
rm(list = ls()) # Clear environment
gc() # Clear unused memory
## used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
## Ncells 533497 28.5 1189562 63.6 NA 669428 35.8
## Vcells 985359 7.6 8388608 64.0 16384 1851749 14.2
cat("\f") # Clear the console
if(!is.null(dev.list())) dev.off() # Clear all plots
## null device
## 1
#making results reproduceable
set.seed(7)
#defining range of x-values
x <- seq(-4, 4, length.out = 200)
#plotting normal distribution
plot(x, dnorm(x), type = "l", col = "blue", lwd = 2,
main = "Normal and t Distributions", xlab = "", ylab = "Density")
#defining degrees of freedom
df <- c(2,5,15,30,120)
#defining color scale
colors <- c("purple","red","green","yellow","pink")
#plotting t distribution
mapply(function(df, color) {
lines(x, dt(x, df = df), col = color, lwd = 2)
}, df, colors)
## [[1]]
## NULL
##
## [[2]]
## NULL
##
## [[3]]
## NULL
##
## [[4]]
## NULL
##
## [[5]]
## NULL
#adding legend
legend("topright", legend = c("Normal", paste("t (df =", df, ")")),
col = c("blue", colors), lty = 1, lwd = 2)
#defining parameters and dataset
mu <- 108
sigma <- 7.2
data.values <- rnorm(n = 1000, mean = mu, sd = sigma)
par(mfrow = c(1,2))
#plotting normal distribution
hist(data.values,
main = "Normal Distribution",
xlab = "Value",
col = "blue")
#calculating z-scores
z.scores <- (data.values - mu) / sigma
#plotting z-score distribution
hist(z.scores,
main = "Z-Score Distribution",
xlab = "Z-Score",
col = "red")