library(tidyverse)
library(repurrrsive)

Exercise 1

monthly_data_files <- list.files("data/", pattern = "Month", full.names = TRUE)

monthly_data <- data.frame()

for (monthly_file in monthly_data_files) {
  df <- read_csv(monthly_file)
  monthly_data <- rbind(monthly_data, df)
}
## Rows: 54535 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (4): Factor_C, Factor_E, Transaction_Status, Month
## dbl  (5): Account_ID, Factor_A, Factor_B, Factor_D, Response
## dttm (1): Transaction_Timestamp
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 44380 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (4): Factor_C, Factor_E, Transaction_Status, Month
## dbl  (5): Account_ID, Factor_A, Factor_B, Factor_D, Response
## dttm (1): Transaction_Timestamp
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 53259 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (4): Factor_C, Factor_E, Transaction_Status, Month
## dbl  (5): Account_ID, Factor_A, Factor_B, Factor_D, Response
## dttm (1): Transaction_Timestamp
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 51033 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (4): Factor_C, Factor_E, Transaction_Status, Month
## dbl  (5): Account_ID, Factor_A, Factor_B, Factor_D, Response
## dttm (1): Transaction_Timestamp
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 55079 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (4): Factor_C, Factor_E, Transaction_Status, Month
## dbl  (5): Account_ID, Factor_A, Factor_B, Factor_D, Response
## dttm (1): Transaction_Timestamp
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 59666 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (4): Factor_C, Factor_E, Transaction_Status, Month
## dbl  (5): Account_ID, Factor_A, Factor_B, Factor_D, Response
## dttm (1): Transaction_Timestamp
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 64268 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (4): Factor_C, Factor_E, Transaction_Status, Month
## dbl  (5): Account_ID, Factor_A, Factor_B, Factor_D, Response
## dttm (1): Transaction_Timestamp
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 69492 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (4): Factor_C, Factor_E, Transaction_Status, Month
## dbl  (5): Account_ID, Factor_A, Factor_B, Factor_D, Response
## dttm (1): Transaction_Timestamp
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 71855 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (4): Factor_C, Factor_E, Transaction_Status, Month
## dbl  (5): Account_ID, Factor_A, Factor_B, Factor_D, Response
## dttm (1): Transaction_Timestamp
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 80277 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (4): Factor_C, Factor_E, Transaction_Status, Month
## dbl  (5): Account_ID, Factor_A, Factor_B, Factor_D, Response
## dttm (1): Transaction_Timestamp
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Rows: 94315 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (4): Factor_C, Factor_E, Transaction_Status, Month
## dbl  (5): Account_ID, Factor_A, Factor_B, Factor_D, Response
## dttm (1): Transaction_Timestamp
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
glimpse(monthly_data)
## Rows: 698,159
## Columns: 10
## $ Account_ID            <dbl> 5, 16, 28, 40, 62, 64, 69, 69, 70, 79, 88, 90, 9…
## $ Transaction_Timestamp <dttm> 2009-01-08 00:16:41, 2009-01-20 22:40:08, 2009-…
## $ Factor_A              <dbl> 2, 2, 2, 2, 2, 7, 2, 2, 2, 7, 8, 10, 10, 2, 2, 2…
## $ Factor_B              <dbl> 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 18, 6, 6, 6, 6, 6,…
## $ Factor_C              <chr> "VI", "VI", "VI", "VI", "VI", "MC", "VI", "VI", …
## $ Factor_D              <dbl> 20, 20, 21, 20, 20, 20, 20, 20, 20, 20, 20, 20, …
## $ Factor_E              <chr> "A", "H", "NULL", "H", "B", "NULL", "H", "H", "B…
## $ Response              <dbl> 1020, 1020, 1020, 1020, 1020, 1020, 1020, 1020, …
## $ Transaction_Status    <chr> "Approved", "Approved", "Approved", "Approved", …
## $ Month                 <chr> "Jan", "Jan", "Jan", "Jan", "Jan", "Jan", "Jan",…
options(readr.show_col_types = FALSE)

Exercise 2

column_classes <- map(monthly_data, class)

print(column_classes)
## $Account_ID
## [1] "numeric"
## 
## $Transaction_Timestamp
## [1] "POSIXct" "POSIXt" 
## 
## $Factor_A
## [1] "numeric"
## 
## $Factor_B
## [1] "numeric"
## 
## $Factor_C
## [1] "character"
## 
## $Factor_D
## [1] "numeric"
## 
## $Factor_E
## [1] "character"
## 
## $Response
## [1] "numeric"
## 
## $Transaction_Status
## [1] "character"
## 
## $Month
## [1] "character"

Exercise 3

unique_counts <- map_int(monthly_data, ~length(unique(.)))
print(unique_counts)
##            Account_ID Transaction_Timestamp              Factor_A 
##                475413                686538                     7 
##              Factor_B              Factor_C              Factor_D 
##                     6                     4                    15 
##              Factor_E              Response    Transaction_Status 
##                    63                    42                     2 
##                 Month 
##                    11

Exercise 4

monthly_data <- monthly_data %>%
  mutate(Factor_D = ifelse(Factor_D == 26, 25, Factor_D))

unique_values_after_recode <- monthly_data %>%
  pull(Factor_D) %>%
  unique()

print("Unique values in Factor_D after recoding:")
## [1] "Unique values in Factor_D after recoding:"
print(unique_values_after_recode)
##  [1] 20 21 30 25 35 55 50 90 10 15 85 70 40 31
factor_d_counts <- monthly_data %>%
  group_by(Factor_D) %>%
  summarise(count = n())

print("Observations for each level of Factor_D:")
## [1] "Observations for each level of Factor_D:"
print(factor_d_counts)
## # A tibble: 14 × 2
##    Factor_D  count
##       <dbl>  <int>
##  1       10   4595
##  2       15   1089
##  3       20 527882
##  4       21  68072
##  5       25  41021
##  6       30   7030
##  7       31    512
##  8       35  25298
##  9       40   2720
## 10       50   3709
## 11       55  15200
## 12       70     54
## 13       85      4
## 14       90    973

Exercise 5

df_filtered <- df %>%
  filter_at(vars(starts_with("Factor_")), all_vars(. != "NULL"))

num_rows_filtered <- nrow(df_filtered)
print("Number of rows after filtering:")
## [1] "Number of rows after filtering:"
print(num_rows_filtered)
## [1] 77197

Exercise 6

df2 <- df %>%
  mutate_at(-2, as.factor) %>%
  mutate(Month = factor((Month), levels = month.name))

glimpse(df2) 
## Rows: 94,315
## Columns: 10
## $ Account_ID            <fct> 2, 2, 2, 2, 19, 23, 27, 29, 44, 52, 52, 81, 81, …
## $ Transaction_Timestamp <dttm> 2009-11-18 22:58:29, 2009-11-25 11:24:29, 2009-…
## $ Factor_A              <fct> 7, 7, 7, 7, 2, 15, 7, 15, 15, 2, 2, 2, 2, 2, 2, …
## $ Factor_B              <fct> 15, 15, 15, 15, 6, 23, 15, 23, 23, 6, 6, 6, 6, 6…
## $ Factor_C              <fct> MC, MC, MC, MC, VI, AX, MC, AX, AX, VI, VI, VI, …
## $ Factor_D              <fct> 20, 50, 50, 20, 20, 21, 20, 21, 21, 25, 25, 20, …
## $ Factor_E              <fct> MCG, MCG, MCG, MCG, B, NULL, MCS, NULL, NULL, G2…
## $ Response              <fct> 1020, 1100, 1100, 1020, 1020, 1020, 1020, 1020, …
## $ Transaction_Status    <fct> Approved, Declined, Declined, Approved, Approved…
## $ Month                 <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
levels <- levels(df2$Month)
levels
##  [1] "January"   "February"  "March"     "April"     "May"       "June"     
##  [7] "July"      "August"    "September" "October"   "November"  "December"

Exercise 7

df2 %>%
  group_by(Transaction_Status) %>%
  summarise_if(is.factor, n_distinct)
## # A tibble: 2 × 9
##   Transaction_Status Account_ID Factor_A Factor_B Factor_C Factor_D Factor_E
##   <fct>                   <int>    <int>    <int>    <int>    <int>    <int>
## 1 Approved                71916        4        4        4       13       50
## 2 Declined                 3019        5        5        4       13       48
## # ℹ 2 more variables: Response <int>, Month <int>

Exercise 8

## # A tibble: 1 × 2
##   Qtr   total
##   <chr> <int>
## 1 Q4    94315

Excersie 9

sw_people %>%
  map_chr(~.x$name)
##  [1] "Luke Skywalker"        "C-3PO"                 "R2-D2"                
##  [4] "Darth Vader"           "Leia Organa"           "Owen Lars"            
##  [7] "Beru Whitesun lars"    "R5-D4"                 "Biggs Darklighter"    
## [10] "Obi-Wan Kenobi"        "Anakin Skywalker"      "Wilhuff Tarkin"       
## [13] "Chewbacca"             "Han Solo"              "Greedo"               
## [16] "Jabba Desilijic Tiure" "Wedge Antilles"        "Jek Tono Porkins"     
## [19] "Yoda"                  "Palpatine"             "Boba Fett"            
## [22] "IG-88"                 "Bossk"                 "Lando Calrissian"     
## [25] "Lobot"                 "Ackbar"                "Mon Mothma"           
## [28] "Arvel Crynyd"          "Wicket Systri Warrick" "Nien Nunb"            
## [31] "Qui-Gon Jinn"          "Nute Gunray"           "Finis Valorum"        
## [34] "Jar Jar Binks"         "Roos Tarpals"          "Rugor Nass"           
## [37] "Ric Olié"              "Watto"                 "Sebulba"              
## [40] "Quarsh Panaka"         "Shmi Skywalker"        "Darth Maul"           
## [43] "Bib Fortuna"           "Ayla Secura"           "Dud Bolt"             
## [46] "Gasgano"               "Ben Quadinaros"        "Mace Windu"           
## [49] "Ki-Adi-Mundi"          "Kit Fisto"             "Eeth Koth"            
## [52] "Adi Gallia"            "Saesee Tiin"           "Yarael Poof"          
## [55] "Plo Koon"              "Mas Amedda"            "Gregar Typho"         
## [58] "Cordé"                 "Cliegg Lars"           "Poggle the Lesser"    
## [61] "Luminara Unduli"       "Barriss Offee"         "Dormé"                
## [64] "Dooku"                 "Bail Prestor Organa"   "Jango Fett"           
## [67] "Zam Wesell"            "Dexter Jettster"       "Lama Su"              
## [70] "Taun We"               "Jocasta Nu"            "Ratts Tyerell"        
## [73] "R4-P17"                "Wat Tambor"            "San Hill"             
## [76] "Shaak Ti"              "Grievous"              "Tarfful"              
## [79] "Raymus Antilles"       "Sly Moore"             "Tion Medon"           
## [82] "Finn"                  "Rey"                   "Poe Dameron"          
## [85] "BB8"                   "Captain Phasma"        "Padmé Amidala"

Excersie 10

sw_people%>%
  map_int(~ length(.x$films))
##  [1] 5 6 7 4 5 3 3 1 1 6 3 2 5 4 1 3 3 1 5 5 3 1 1 2 1 2 1 1 1 1 1 3 1 2 1 1 1 2
## [39] 1 1 2 1 1 3 1 1 1 3 3 3 2 2 2 1 3 2 1 1 1 2 2 1 1 2 2 1 1 1 1 1 1 1 2 1 1 2
## [77] 1 1 2 2 1 1 1 1 1 1 3

Exercise 11

sw_people %>%
  map_chr(~.x$name) %>%
  set_names(sw_people, nm = .) %>%
  map_df(~ length(.x$films)) %>%
  pivot_longer(
    cols=everything(),
    names_to = "Character", 
    values_to = "Films",
  ) %>%
  ggplot(aes(Films, reorder(Character, Films))) +
  geom_point()