Import data
# excel file
data <- read_excel("data/MyData.xlsx")
data
## # A tibble: 8,351 × 23
## acc_id acc_date acc_state acc_city fix_port source bus_type
## <dbl> <dttm> <chr> <chr> <chr> <chr> <chr>
## 1 1005813 2010-06-12 00:00:00 OH Cleveland F Ohio … Sports …
## 2 1004032 2010-06-12 00:00:00 OH Cleveland P Unite… Sports …
## 3 1007658 2010-07-10 00:00:00 CA Anaheim F Calif… Amuseme…
## 4 1007098 2010-07-10 00:00:00 CA Carlsbad F Calif… Water p…
## 5 1000094 2010-07-29 00:00:00 CO Littleton F Color… Family …
## 6 1005756 2010-07-30 00:00:00 WI Wisconsin Del… F Wisco… Amuseme…
## 7 1005757 2010-08-05 00:00:00 WI Milwaukee P Media… Unknown
## 8 1000103 2010-08-11 00:00:00 CO Morrison F Color… Zoo or …
## 9 1003973 2010-08-15 00:00:00 WI West Allis P Unite… Carniva…
## 10 1004460 2010-09-05 00:00:00 ME Old Orchard B… F Maine… Carniva…
## # ℹ 8,341 more rows
## # ℹ 16 more variables: industry_sector <chr>, device_category <chr>,
## # device_type <chr>, tradename_or_generic <chr>, manufacturer <chr>,
## # num_injured <dbl>, age_youngest <dbl>, gender <chr>, acc_desc <chr>,
## # injury_desc <chr>, report <chr>, category <chr>, mechanical <dbl>,
## # op_error <dbl>, employee <dbl>, notes <chr>
Plot data
data %>%
ggplot(aes(gender)) +
geom_bar()

data %>%
ggplot(aes(age_youngest)) +
geom_bar()
## Warning: Removed 684 rows containing non-finite values (`stat_count()`).
