libraries & paths
library(dplyr)
library(Seurat)
library(patchwork)
library(knitr)
library(dittoSeq)
library(reshape2)
Sys.setenv(RSTUDIO_PANDOC="/usr/local/biotools/pandoc/3.1.2/bin")
sampleID <- c("v4_PA_mod0.6x_SoupX")
sample_color.panel <- c("#009E73")
color.panel <- dittoColors()
# read object
dataObject <- readRDS(file = paste0("../../../rObjects/", sampleID, ".filtered.rds"))
markers.strict <- readRDS(file = paste0("../../../rObjects/",
sampleID, "_FindAllMarkers_strict_logFC1_FDR0.05.rds"))
ditto_umap <- dittoDimPlot(object = dataObject,
var = "seurat_clusters",
reduction.use = "umap",
do.label = TRUE,
labels.highlight = TRUE)
ditto_umap
count_per_cluster <- FetchData(dataObject,
vars = c("ident", "orig.ident")) %>%
dplyr::count(ident, orig.ident) %>%
tidyr::spread(ident, n)
count_per_cluster
## orig.ident 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
## 1 v4PA_mod0.6x 1843 1370 1203 1112 980 913 599 535 517 509 496 485 436 374 300
## 15 16 17 18 19 20 21 22 23 24 25
## 1 257 227 172 159 153 146 108 82 55 37 29
count_melt <- reshape2::melt(count_per_cluster)
colnames(count_melt) <- c("ident", "cluster", "number of nuclei")
count_max <- count_melt[which.max(count_melt$`number of nuclei`), ]
count_max_value <- count_max$`number of nuclei`
cellmax <- count_max_value + 200 # so that the figure doesn't cut off the text
count_bar <- ggplot(count_melt, aes(x = factor(cluster), y = `number of nuclei`, fill = `ident`)) +
geom_bar(
stat = "identity",
colour = "black",
width = 1,
position = position_dodge(width = 0.8)
) +
geom_text(
aes(label = `number of nuclei`),
position = position_dodge(width = 0.9),
vjust = -0.25,
angle = 45,
hjust = -.01
) +
theme_classic() + scale_fill_manual(values = sample_color.panel) +
ggtitle("Number of nuclei per cluster") + xlab("cluster") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_y_continuous(limits = c(0, cellmax))
count_bar
dataObject <- BuildClusterTree(
object = dataObject,
dims = 1:30,
reorder = FALSE,
reorder.numeric = FALSE
)
tree <- dataObject@tools$BuildClusterTree
tree$tip.label <- paste0("Cluster ", tree$tip.label)
nClusters <- length(tree$tip.label)
tree_graph <- ggtree::ggtree(tree, aes(x, y)) +
scale_y_reverse() +
ggtree::geom_tree() +
ggtree::theme_tree() +
ggtree::geom_tiplab(offset = 1) +
ggtree::geom_tippoint(color = color.panel[1:nClusters],
shape = 16,
size = 5) +
coord_cartesian(clip = 'off') +
theme(plot.margin = unit(c(0, 2.5, 0, 0), 'cm'))
tree_graph
Markers obtained from dropviz
# Astrocytes
VlnPlot(dataObject,
features = c("AQP4", "GJA1", "CLU", "GFAP"))
# Endothelial
VlnPlot(dataObject,
features = c("CLDN5", "ADGRF5", "FLT1"))
# Fibroblast-Like_Dcn
VlnPlot(dataObject,
features = c("COL1A1", "COL1A2", "DCN"))
# Microglia / Marchophage
VlnPlot(dataObject,
features = c("C1QA", "C1QC", "C1QB"))
# Microglia / Marchophage
VlnPlot(dataObject,
features = c( "HEXB", "TMEM119", "ITGAM", "TYROBP","P2RY12", "AIF1"))
# Neurons
VlnPlot(dataObject,
features = c("RBFOX3", "SNAP25","SYT1", "GAD1", "GAD2"))
# Oligodendrocyte
VlnPlot(dataObject,
features = c("PLP1","MBP", "MOG"))
# OPC
VlnPlot(dataObject,
features = c("OLIG1","PDGFRA", "VCAN", "TNR"))
# Smooth muscle
VlnPlot(dataObject,
features = c("ACTA2","RGS5", "VTN", "MYL5"))
# astrocyte
dataObject[["percent.astrocyte"]] <- PercentageFeatureSet(dataObject,
features = c("CLU", "GFAP", "AQP4", "GJA1"))
# endothelial
dataObject[["percent.endothelial"]] <- PercentageFeatureSet(dataObject,
features = c("CLDN5", "ADGRF5", "FLT1"))
# fibroblast
dataObject[["percent.fibroblast"]] <- PercentageFeatureSet(dataObject,
features = c("COL1A1", "COL1A2", "DCN"))
# microglia
dataObject[["percent.microglia"]] <- PercentageFeatureSet(dataObject,
features = c("HEXB", "C1QA", "C1QC", "C1QB",
"TMEM119", "ITGAM", "TYROBP","P2RY12", "AIF1"))
# neuron
dataObject[["percent.neurons"]] <- PercentageFeatureSet(dataObject,
features = c("RBFOX3", "SNAP25","SYT1", "GAD1", "GAD2"))
# oligodendrocyte
dataObject[["percent.oligodendrocyte"]] <- PercentageFeatureSet(dataObject,
features = c("PLP1","MBP", "MOG"))
# oligodendrocyte precursor cells
dataObject[["percent.opc"]] <- PercentageFeatureSet(dataObject,
features = c("OLIG1","PDGFRA", "VCAN", "TNR"))
# smooth muscle
dataObject[["percent.smooth"]] <- PercentageFeatureSet(dataObject,
features = c("ACTA2","RGS5", "VTN", "MYL5"))
# astrocyte
FeaturePlot(dataObject, features = "percent.astrocyte", label = TRUE)
# endothelial
FeaturePlot(dataObject, features = "percent.endothelial", label = TRUE)
# fibroblast
FeaturePlot(dataObject, features = "percent.fibroblast", label = TRUE)
# microglia
FeaturePlot(dataObject, features = "percent.microglia", label = TRUE)
# neuron
FeaturePlot(dataObject, features = "percent.neurons", label = TRUE)
# oligodendrocyte
FeaturePlot(dataObject, features = "percent.oligodendrocyte", label = TRUE)
# oligodendrocyte precursor cells
FeaturePlot(dataObject, features = "percent.opc", label = TRUE)
# smooth
FeaturePlot(dataObject, features = "percent.smooth", label = TRUE)
Get markers for each cluster
# unique clusters variable
unique_clusters <- unique(markers.strict$cluster)
# empty list to store individual cluster data frames
cluster_list <- list()
# loop through each cluster and create a data frame
for (i in unique_clusters) {
cluster_name <- paste0("cluster", i)
cluster_data <- markers.strict[markers.strict$cluster == i, ]
assign(cluster_name, cluster_data)
cluster_list[[cluster_name]] <- cluster_data
}
# UMAP showing the expression of select features
umap_feature <-
FeaturePlot(dataObject,
features = c("TYROBP", "MOG", "AQP4", "RBFOX3"))
umap_feature
# Number of cells per condition
count_per_cluster[,c(1,2)]
## orig.ident 0
## 1 v4PA_mod0.6x 1843
# UMAP with only cluster 0
DimPlot(object = subset(dataObject, seurat_clusters == "0"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[1])
VlnPlot(dataObject,
features = cluster0$gene[1:10],
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster0$gene[1:10]
## [1] "PLP1" "ST18" "CTNNA3" "TMEM144" "MOBP" "MBP" "TF"
## [8] "RNF220" "CNP" "ENPP2"
count_per_cluster[,c(1,3)]
## orig.ident 1
## 1 v4PA_mod0.6x 1370
DimPlot(object = subset(dataObject, seurat_clusters == "1"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[2])
VlnPlot(dataObject,
features = cluster1$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster1$gene[1:10]
## [1] "OBI1-AS1" "ADGRV1" "LINC00499" "RP11-134O15.3"
## [5] "GLIS3" "PPP1R9A-AS1" "NHSL1" "ATP1A2"
## [9] "RANBP3L" "CABLES1"
count_per_cluster[,c(1,4)]
## orig.ident 2
## 1 v4PA_mod0.6x 1203
DimPlot(object = subset(dataObject, seurat_clusters == "2"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[3])
VlnPlot(dataObject,
features = cluster2$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster2$gene[1:10]
## [1] "VCAN" "RP4-668E10.4" "LHFPL3" "SMOC1" "MEGF11"
## [6] "NXPH1" "GRIK1" "PTPRZ1" "TMEM132C" "SOX6"
count_per_cluster[,c(1,4)]
## orig.ident 2
## 1 v4PA_mod0.6x 1203
DimPlot(object = subset(dataObject, seurat_clusters == "3"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[4])
VlnPlot(dataObject,
features = cluster3$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster3$gene[1:10]
## [1] "AC114765.1" "CDH12" "AC067956.1" "CBLN2" "RP4-809F18.1"
## [6] "RP11-191L9.4" "CLSTN2" "PDZRN4" "LY86-AS1" "RALYL"
count_per_cluster[,c(1,5)]
## orig.ident 3
## 1 v4PA_mod0.6x 1112
DimPlot(object = subset(dataObject, seurat_clusters == "4"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[5])
VlnPlot(dataObject,
features = cluster4$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster4$gene[1:10]
## [1] "CTC-340A15.2" "CTC-535M15.2" "CPNE4" "CLSTN2" "RP11-320L2.1"
## [6] "RORB" "NRG1" "HTR1F" "IL1RAPL2" "RP11-197K6.1"
count_per_cluster[,c(1,6)]
## orig.ident 4
## 1 v4PA_mod0.6x 980
DimPlot(object = subset(dataObject, seurat_clusters == "5"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[6])
VlnPlot(dataObject,
features = cluster5$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster5$gene[1:10]
## [1] "CTC-552D5.1" "CBLN2" "AC011288.2" "CDH9" "GRM1"
## [6] "NDST3" "EPHA6" "CNTN5" "TRPC6" "IQCJ-SCHIP1"
count_per_cluster[,c(1,7)]
## orig.ident 5
## 1 v4PA_mod0.6x 913
DimPlot(object = subset(dataObject, seurat_clusters == "6"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = "#CC79A7")
VlnPlot(dataObject,
features = cluster6$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster6$gene[1:10]
## [1] "RP11-170M17.1" "CUX2" "RP11-213B3.1" "COL5A2"
## [5] "RP11-78F17.1" "RP11-33A14.1" "LINC02822" "LINC00326"
## [9] "AJ006998.2" "CNGB1"
count_per_cluster[,c(1,8)]
## orig.ident 6
## 1 v4PA_mod0.6x 599
DimPlot(object = subset(dataObject, seurat_clusters == "7"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[7])
VlnPlot(dataObject,
features = cluster7$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster7$gene[1:10]
## [1] "DLX6-AS1" "RGS12" "ADARB2" "PWRN1" "SYNPR" "BTBD11"
## [7] "CALB2" "VWC2L" "PROX1" "NR2F2-AS1"
count_per_cluster[,c(1,9)]
## orig.ident 7
## 1 v4PA_mod0.6x 535
DimPlot(object = subset(dataObject, seurat_clusters == "8"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[8])
VlnPlot(dataObject,
features = cluster8$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster8$gene[1:10]
## [1] "HS3ST4" "CTD-2337L2.1" "PCDH11X" "EGFEM1P"
## [5] "FRMD3" "MSC-AS1" "KIAA1217" "ZBTB7C"
## [9] "RP11-563D10.1" "LINC02232"
count_per_cluster[,c(1,10)]
## orig.ident 8
## 1 v4PA_mod0.6x 517
DimPlot(object = subset(dataObject, seurat_clusters == "9"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[9])
VlnPlot(dataObject,
features = cluster9$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster9$gene[1:10]
## [1] "HS3ST4" "CTD-2337L2.1" "EGFEM1P" "SEMA3E"
## [5] "FOXP2" "RP11-640F22.1" "ADAMTSL1" "RP11-17M24.3"
## [9] "CTC-304I17.6" "SULF1"
count_per_cluster[,c(1,11)]
## orig.ident 9
## 1 v4PA_mod0.6x 509
DimPlot(object = subset(dataObject, seurat_clusters == "10"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[10])
VlnPlot(dataObject,
features = cluster10$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster10$gene[1:10]
## [1] "RP11-6L16.1" "ADGRV1" "GLIS3" "RP11-134O15.3"
## [5] "GFAP" "RP11-627D16.1" "RFX4" "AQP4"
## [9] "LINC00299" "PARD3B"
count_per_cluster[,c(1,12)]
## orig.ident 10
## 1 v4PA_mod0.6x 496
DimPlot(object = subset(dataObject, seurat_clusters == "11"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[11])
VlnPlot(dataObject,
features = cluster11$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster11$gene[1:10]
## [1] "NXPH1" "ZNF385D" "RP11-123O10.3" "GRIK1"
## [5] "PTCHD4" "SAMD5" "SLIT2" "GAD2"
## [9] "BTBD11" "PAM"
count_per_cluster[,c(1,13)]
## orig.ident 11
## 1 v4PA_mod0.6x 485
DimPlot(object = subset(dataObject, seurat_clusters == "12"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[12])
VlnPlot(dataObject,
features = cluster12$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster12$gene[1:10]
## [1] "CH507-528H12.1" "CTC-552D5.1" "CH507-513H4.1" "CUX2"
## [5] "CBLN2" "AC011288.2" "EPHA6" "TRPC6"
## [9] "GRM1" "KCNIP4"
count_per_cluster[,c(1,14)]
## orig.ident 12
## 1 v4PA_mod0.6x 436
DimPlot(object = subset(dataObject, seurat_clusters == "13"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[13])
VlnPlot(dataObject,
features = cluster13$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster13$gene[1:10]
## [1] "CH507-513H4.1" "CH507-528H12.1" "CLSTN2" "CTC-535M15.2"
## [5] "CTC-340A15.2" "FRMPD4" "HS3ST4" "RYR2"
## [9] "SLIT3" "MSC-AS1"
count_per_cluster[,c(1,15)]
## orig.ident 13
## 1 v4PA_mod0.6x 374
DimPlot(object = subset(dataObject, seurat_clusters == "14"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[14])
VlnPlot(dataObject,
features = cluster14$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster14$gene[1:10]
## [1] "FGF13" "NXPH1" "GRIK1" "PTCHD4"
## [5] "ALK" "EYA4" "RP11-123O10.3" "GAD2"
## [9] "UBASH3B" "KIT"
count_per_cluster[,c(1,16)]
## orig.ident 14
## 1 v4PA_mod0.6x 300
DimPlot(object = subset(dataObject, seurat_clusters == "15"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[15])
VlnPlot(dataObject,
features = cluster15$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster15$gene[1:10]
## [1] "CH507-513H4.1" "CH507-528H12.1" "THEMIS" "RP11-191L9.4"
## [5] "AC067956.1" "AC114765.1" "CDH12" "LINC02254"
## [9] "CBLN2" "CNTN4"
count_per_cluster[,c(1,17)]
## orig.ident 15
## 1 v4PA_mod0.6x 257
DimPlot(object = subset(dataObject, seurat_clusters == "16"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[16])
VlnPlot(dataObject,
features = cluster16$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster16$gene[1:10]
## [1] "COL5A2" "AJ006998.2" "SYT2" "NEFM"
## [5] "NEFH" "SCN1A-AS1" "ATP6V1C2" "RP11-153I24.5"
## [9] "RP11-335E8.3" "GRM8"
count_per_cluster[,c(1,18)]
## orig.ident 16
## 1 v4PA_mod0.6x 227
DimPlot(object = subset(dataObject, seurat_clusters == "17"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[17])
VlnPlot(dataObject,
features = cluster17$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster17$gene[1:10]
## [1] "LINC00499" "ADGRV1" "PPP1R9A-AS1" "OBI1-AS1"
## [5] "GLIS3" "PRODH" "GPC5" "SLC1A2"
## [9] "AC084149.2" "RP11-134O15.3"
count_per_cluster[,c(1,1)]
## orig.ident orig.ident.1
## 1 v4PA_mod0.6x v4PA_mod0.6x
DimPlot(object = subset(dataObject, seurat_clusters == "18"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[19])
VlnPlot(dataObject,
features = cluster18$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster18$gene[1:10]
## [1] "ATP10A" "RP11-47B24.1" "RP11-632B21.2" "SMYD1"
## [5] "NR4A2" "STPG2-AS1" "PLA2G4A" "LINC00683"
## [9] "GALNT14" "RP11-739G5.1"
count_per_cluster[,c(1,19)]
## orig.ident 17
## 1 v4PA_mod0.6x 172
DimPlot(object = subset(dataObject, seurat_clusters == "19"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[20])
VlnPlot(dataObject,
features = cluster19$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster19$gene[1:10]
## [1] "CXCL14" "RELN" "NR2F2-AS1" "NR2F2"
## [5] "DLX6-AS1" "RP11-406A20.1" "RP11-12B13.1" "GAD2"
## [9] "CHRNA7" "GRIK1"
count_per_cluster[,c(1,20)]
## orig.ident 18
## 1 v4PA_mod0.6x 159
DimPlot(object = subset(dataObject, seurat_clusters == "20"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[21])
VlnPlot(dataObject,
features = cluster20$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster20$gene[1:10]
## [1] "HTR2C" "NPSR1-AS1" "IFNG-AS1" "FER1L6-AS2"
## [5] "NXPH2" "ENPP7P1" "LINC02218" "CD200R1L"
## [9] "RP11-354I13.2" "CHRM2"
count_per_cluster[,c(1,21)]
## orig.ident 19
## 1 v4PA_mod0.6x 153
DimPlot(object = subset(dataObject, seurat_clusters == "21"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[22])
VlnPlot(dataObject,
features = cluster21$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster21$gene[1:10]
## [1] "DOCK8" "FYB1" "LNCAROD" "TBXAS1" "ADAM28" "INPP5D"
## [7] "ARHGAP15" "APBB1IP" "SLCO2B1" "CD74"
count_per_cluster[,c(1,22)]
## orig.ident 20
## 1 v4PA_mod0.6x 146
DimPlot(object = subset(dataObject, seurat_clusters == "22"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[23])
VlnPlot(dataObject,
features = cluster22$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster22$gene[1:10]
## [1] "SCUBE3" "NOG" "RP11-238K6.2" "LHX6"
## [5] "LINC00943" "NPNT" "SCN1A-AS1" "RP11-519H15.1"
## [9] "RP11-407A16.3" "ANK1"
count_per_cluster[,c(1,23)]
## orig.ident 21
## 1 v4PA_mod0.6x 108
DimPlot(object = subset(dataObject, seurat_clusters == "23"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[24])
VlnPlot(dataObject,
features = cluster23$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster23$gene[1:10]
## [1] "EBF1" "IFITM3" "RP11-326C3.17" "A2M"
## [5] "FLT1" "CFH" "SLC6A12" "IFITM1"
## [9] "NOTCH3" "LEF1"
count_per_cluster[,c(1,24)]
## orig.ident 22
## 1 v4PA_mod0.6x 82
DimPlot(object = subset(dataObject, seurat_clusters == "24"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[25])
VlnPlot(dataObject,
features = cluster24$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster24$gene[1:10]
## [1] "RP4-668E10.4" "LHFPL3" "VCAN" "RP1-45C12.1"
## [5] "SMOC1" "RP11-111G13.1" "COL9A1" "MOBP"
## [9] "PLP1" "CTNNA3"
count_per_cluster[,c(1,25)]
## orig.ident 23
## 1 v4PA_mod0.6x 55
DimPlot(object = subset(dataObject, seurat_clusters == "25"),
reduction = "umap",
label = TRUE,
label.box = TRUE,
label.size = 3,
repel = TRUE,
cols = color.panel[26])
VlnPlot(dataObject,
features = cluster25$gene[1:10],
cols = color.panel,
stack = TRUE,
flip = TRUE,
split.by = "seurat_clusters")
cluster25$gene[1:10]
## [1] "ADAM28" "LNCAROD" "SYK" "FYB1" "CD74" "CSF1R" "TBXAS1"
## [8] "DOCK8" "PTPRC" "APBB1IP"
dataObject.annotated <- RenameIdents(object = dataObject,
"0" = "oligodendrocyte 1",
"1" = "astrocyte 1",
"2" = "polydendrocyte 1",
"3" = "neuron 1",
"4" = "neuron 2",
"5" = "neuron 3",
"6" = "neuron 4",
"7" = "neuron/noise 1",
"8" = "neuron 6",
"9" = "neuron 7",
"10" = "astrocyte 2",
"11" = "interneuron/noise",
"12" = "interneuron 2",
"13" = "neuron 8",
"14" = "interneuron 3",
"15" = "neuron 9",
"16" = "neuron 10",
"17" = "astrocyte/noise",
"18" = "neuron 11",
"19" = "neuron 12",
"20" = "neuron 13",
"21" = "microglia 1",
"22" = "neuron/noise 2",
"23" = "endothelial",
"24" = "polydendrocyte 2",
"25" = "microglia 2")
dataObject.annotated$individual_clusters <- factor(Idents(dataObject.annotated))
UMAP_ind <- dittoDimPlot(object = dataObject.annotated,
var = "individual_clusters",
reduction.use = "umap",
do.label = TRUE,
labels.highlight = TRUE)
UMAP_ind
## png
## 2
count_per_cluster <- FetchData(dataObject.annotated,
vars = c("ident", "orig.ident")) %>%
dplyr::count(ident, orig.ident) %>%
tidyr::spread(ident, n)
count_per_cluster
## orig.ident oligodendrocyte 1 astrocyte 1 polydendrocyte 1 neuron 1 neuron 2
## 1 v4PA_mod0.6x 1843 1370 1203 1112 980
## neuron 3 neuron 4 neuron/noise 1 neuron 6 neuron 7 astrocyte 2
## 1 913 599 535 517 509 496
## interneuron/noise interneuron 2 neuron 8 interneuron 3 neuron 9 neuron 10
## 1 485 436 374 300 257 227
## astrocyte/noise neuron 11 neuron 12 neuron 13 microglia 1 neuron/noise 2
## 1 172 159 153 146 108 82
## endothelial polydendrocyte 2 microglia 2
## 1 55 37 29
count_melt <- reshape2::melt(count_per_cluster)
colnames(count_melt) <- c("ident", "cluster", "number of nuclei")
count_max <- count_melt[which.max(count_melt$`number of nuclei`), ]
count_max_value <- count_max$`number of nuclei`
cellmax <- count_max_value + 500 # so that the figure doesn't cut off the text
count_bar <- ggplot(count_melt, aes(x = factor(cluster), y = `number of nuclei`, fill = `cluster`)) +
geom_bar(
stat = "identity",
colour = "black",
width = 1,
position = position_dodge(width = 0.8)
) +
geom_text(
aes(label = `number of nuclei`),
position = position_dodge(width = 0.9),
vjust = -0.25,
angle = 45,
hjust = -.01
) +
theme_classic() + scale_fill_manual(values = color.panel) +
ggtitle("Number of nuclei per cluster") + xlab("cluster") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_y_continuous(limits = c(0, cellmax))
count_bar
## png
## 2
markers.to.plot <-
c(
"CLU",
"GFAP",
"AQP4",
"GJA1",
"CLDN5",
"ADGRF5",
"FLT1",
"COL1A1",
"COL1A2",
"DCN",
"HEXB",
"C1QA",
"C1QC",
"C1QB",
"TMEM119",
"ITGAM",
"TYROBP",
"P2RY12",
"AIF1",
"RBFOX3",
"SNAP25",
"SYT1",
"GAD1",
"GAD2",
"PLP1",
"MBP",
"MOG",
"OLIG1",
"PDGFRA",
"VCAN",
"TNR",
"ACTA2",
"RGS5",
"VTN",
"MYL5"
)
dot_ind <- DotPlot(dataObject,
features = markers.to.plot,
cluster.idents = TRUE,
dot.scale = 8) + RotatedAxis()
dot_ind
## png
## 2
dataObject.annotated <- RenameIdents(object = dataObject.annotated,
"oligodendrocyte 1" = "oligodendrocyte",
"astrocyte 1" = "astrocyte",
"polydendrocyte 1" = "polydendrocyte",
"neuron 1" = "neuron",
"neuron 2" = "neuron",
"neuron 3" = "neuron",
"neuron 4" = "neuron",
"neuron/noise 1" = "neuron/noise",
"neuron 6" = "neuron",
"neuron 7" = "neuron",
"astrocyte 2" = "astrocyte",
"interneuron/noise" = "interneuron/noise",
"interneuron 2" = "interneuron",
"neuron 8" = "neuron",
"interneuron 3" = "interneuron",
"neuron 9" = "neuron",
"neuron 10" = "neuron",
"astrocyte/noise" = "astrocyte/noise",
"neuron 11" = "neuron",
"neuron 12" = "neuron",
"neuron 13" = "neuron",
"microglia 1" = "microglia",
"neuron/noise 2" = "neuron/noise",
"endothelial" = "endothelial",
"polydendrocyte 2" = "polydendrocyte",
"microglia 2" = "microglia")
dataObject.annotated$annotated_clusters <- factor(Idents(dataObject.annotated))
Idents(dataObject.annotated) <- "annotated_clusters"
UMAP_merge <- dittoDimPlot(object = dataObject.annotated,
var = "annotated_clusters",
reduction.use = "umap",
do.label = TRUE,
labels.highlight = TRUE)
UMAP_merge
## png
## 2
count_per_cluster <- FetchData(dataObject.annotated,
vars = c("ident", "orig.ident")) %>%
dplyr::count(ident, orig.ident) %>%
tidyr::spread(ident, n)
count_per_cluster
## orig.ident oligodendrocyte astrocyte polydendrocyte neuron neuron/noise
## 1 v4PA_mod0.6x 1843 1866 1240 5946 617
## interneuron/noise interneuron astrocyte/noise microglia endothelial
## 1 485 736 172 137 55
count_melt <- reshape2::melt(count_per_cluster)
colnames(count_melt) <- c("ident", "cluster", "number of nuclei")
count_max <- count_melt[which.max(count_melt$`number of nuclei`), ]
count_max_value <- count_max$`number of nuclei`
cellmax <- count_max_value + 500 # so that the figure doesn't cut off the text
count_bar <- ggplot(count_melt, aes(x = factor(cluster), y = `number of nuclei`, fill = `cluster`)) +
geom_bar(
stat = "identity",
colour = "black",
width = 1,
position = position_dodge(width = 0.8)
) +
geom_text(
aes(label = `number of nuclei`),
position = position_dodge(width = 0.9),
vjust = -0.25,
angle = 45,
hjust = -.01
) +
theme_classic() + scale_fill_manual(values = color.panel) +
ggtitle("Number of nuclei per cluster") + xlab("cluster") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_y_continuous(limits = c(0, cellmax))
count_bar
## png
## 2
relative_abundance <- dataObject.annotated@meta.data %>%
group_by(annotated_clusters, orig.ident) %>%
dplyr::count() %>%
group_by(orig.ident) %>%
dplyr::mutate(percent = 100 * n / sum(n)) %>%
ungroup()
rel_abun <- ggplot(relative_abundance, aes(x = orig.ident, y = percent, fill = annotated_clusters)) +
geom_col() +
geom_text(aes(label = paste0(round(percent), "%")),
position = position_stack(vjust = 0.5), size = 3, color = "white") +
scale_fill_manual(values = color.panel) +
ggtitle("Percentage of cell type") +
theme_bw() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))
rel_abun
markers.to.plot <-
c(
"CLU",
"GFAP",
"AQP4",
"GJA1",
"CLDN5",
"ADGRF5",
"FLT1",
"COL1A1",
"COL1A2",
"DCN",
"HEXB",
"C1QA",
"C1QC",
"C1QB",
"TMEM119",
"ITGAM",
"TYROBP",
"P2RY12",
"AIF1",
"RBFOX3",
"SNAP25",
"SYT1",
"GAD1",
"GAD2",
"PLP1",
"MBP",
"MOG",
"OLIG1",
"PDGFRA",
"VCAN",
"TNR",
"ACTA2",
"RGS5",
"VTN",
"MYL5"
)
dot_merge <- DotPlot(dataObject.annotated,
features = markers.to.plot,
cluster.idents = TRUE,
dot.scale = 8) + RotatedAxis()
dot_merge
## png
## 2
saveRDS(dataObject.annotated, paste0("../../../rObjects/", sampleID, ".annotated.rds"))