Regression
???set “SE” in data generation. ???R2 is NOT right
model_summary(list(True,SiumlatedClean))
##
## Model Summary
##
## ───────────────────────────────────────
## (1) Y (2) Y
## ───────────────────────────────────────
## (Intercept) 0.015 0.011
## (0.010) (0.007)
## X 0.462 *** 0.526 ***
## (0.010) (0.007)
## W 0.153 *** 0.151 ***
## (0.010) (0.007)
## X:W -0.069 *** -0.055 ***
## (0.010) (0.007)
## ───────────────────────────────────────
## R^2 0.265 0.475
## Adj. R^2 0.265 0.475
## Num. obs. 7103 7019
## ───────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
Descriptive results
???set “Median Min Max Skewness Kurtosis” in data generation.
published$XW=published$X*published$W
#published=setorder(published, X, W, Y, C1, C2, XW)
data$XW=data$X*data$W
#data=setorder(data, X, W, Y, C1, C2, XW)
data <- data[, c("X", "W", "Y", "C1", "C2", "XW")]
Describe(published)
## Descriptive Statistics:
## ──────────────────────────────────────────────────────────────
## N (NA) Mean SD | Median Min Max Skewness Kurtosis
## ──────────────────────────────────────────────────────────────
## X 7181 38 -0.00 1.00 | -0.54 -3.06 1.98 -0.27 0.25
## W 7155 64 -0.00 1.00 | -0.09 -2.12 1.93 -0.06 -0.67
## Y 7191 28 0.00 1.00 | 0.41 -3.02 1.40 -0.86 0.36
## C1 7176 43 0.00 1.00 | 0.53 -2.23 1.45 -0.45 -0.40
## C2 7129 90 0.00 1.00 | -0.09 -3.18 1.46 -0.48 -0.34
## XW 7122 97 0.16 1.01 | 0.17 -5.92 6.48 0.43 5.10
## ──────────────────────────────────────────────────────────────
## Descriptive Statistics:
## ─────────────────────────────────────────────────────────
## N Mean SD | Median Min Max Skewness Kurtosis
## ─────────────────────────────────────────────────────────
## X 7019 0.01 1.00 | 0.00 -3.96 4.39 0.02 -0.00
## W 7019 -0.01 1.00 | -0.02 -3.50 3.78 0.05 -0.03
## Y 7019 0.00 0.83 | 0.02 -2.92 2.99 -0.11 -0.08
## C1 7019 0.00 1.00 | 0.01 -3.96 3.83 -0.03 0.03
## C2 7019 0.01 1.00 | 0.03 -3.54 3.46 -0.04 0.04
## XW 7019 0.15 1.00 | 0.03 -4.17 8.65 1.07 5.97
## ─────────────────────────────────────────────────────────
Correlatioin
??? XW only same to the Y ??? Y is not the same in the original
data
## Pearson's r and 95% confidence intervals:
## ──────────────────────────────────────────
## r [95% CI] p N
## ──────────────────────────────────────────
## X-W 0.17 [ 0.14, 0.19] <.001 *** 7122
## X-Y 0.49 [ 0.47, 0.50] <.001 *** 7159
## X-C1 0.34 [ 0.32, 0.36] <.001 *** 7146
## X-C2 0.17 [ 0.15, 0.19] <.001 *** 7096
## X-XW 0.04 [ 0.02, 0.07] <.001 *** 7122
## W-Y 0.23 [ 0.21, 0.26] <.001 *** 7134
## W-C1 0.30 [ 0.28, 0.32] <.001 *** 7121
## W-C2 0.06 [ 0.04, 0.09] <.001 *** 7098
## W-XW -0.04 [-0.06, -0.02] <.001 *** 7122
## Y-C1 0.45 [ 0.43, 0.47] <.001 *** 7154
## Y-C2 0.23 [ 0.21, 0.26] <.001 *** 7108
## Y-XW -0.06 [-0.08, -0.03] <.001 *** 7103
## C1-C2 0.15 [ 0.13, 0.18] <.001 *** 7094
## C1-XW -0.03 [-0.06, -0.01] .006 ** 7092
## C2-XW 0.01 [-0.01, 0.03] .412 7065
## ──────────────────────────────────────────

## Correlation matrix is displayed in the RStudio `Plots` Pane.
## Pearson's r and 95% confidence intervals:
## ──────────────────────────────────────────
## r [95% CI] p N
## ──────────────────────────────────────────
## X-W 0.15 [ 0.12, 0.17] <.001 *** 7019
## X-Y 0.66 [ 0.65, 0.67] <.001 *** 7019
## X-C1 0.49 [ 0.47, 0.50] <.001 *** 7019
## X-C2 0.33 [ 0.31, 0.35] <.001 *** 7019
## X-XW -0.01 [-0.03, 0.02] .651 7019
## W-Y 0.28 [ 0.25, 0.30] <.001 *** 7019
## W-C1 0.23 [ 0.20, 0.25] <.001 *** 7019
## W-C2 0.31 [ 0.29, 0.33] <.001 *** 7019
## W-XW 0.01 [-0.02, 0.03] .646 7019
## Y-C1 0.64 [ 0.63, 0.66] <.001 *** 7019
## Y-C2 0.48 [ 0.46, 0.49] <.001 *** 7019
## Y-XW -0.07 [-0.09, -0.05] <.001 *** 7019
## C1-C2 0.45 [ 0.43, 0.46] <.001 *** 7019
## C1-XW 0.00 [-0.02, 0.02] .902 7019
## C2-XW -0.02 [-0.05, 0.00] .051 . 7019
## ──────────────────────────────────────────

## Correlation matrix is displayed in the RStudio `Plots` Pane.