Load Packages

haven

if (!require(haven)){
  install.packages("haven", dependencies = TRUE)
  library(haven)
}

tidyverse

if (!require(tidyverse)){
  install.packages("tidyverse", dependencies = TRUE)
  library(tidyverse)
}

summarytools

if (!require(summarytools)){
  install.packages("summarytools", dependencies = TRUE)
  library(summarytools)
}

Import Data

dataset<- read_sav("https://osf.io/kd4ej/download")

Codebook

dataset %>%
  select(CoinFlip, FFM_4, Potter2) -> newVariable

print(dfSummary(newVariable, graph.magnif = .75), method = 'render')
Warning: unable to open connection to X11 display ''

Data Frame Summary

newVariable

Dimensions: 122 x 3
Duplicates: 97
No Variable Label Stats / Values Freqs (% of Valid) Graph Valid Missing
1 CoinFlip [haven_labelled, vctrs_vctr, double] Flip a coin. Is it heads or tails?
Min : 1
Mean : 1.3
Max : 2
1:83(70.3%)
2:35(29.7%)
118 (96.7%) 4 (3.3%)
2 FFM_4 [haven_labelled, vctrs_vctr, double] I see Myself as Someone Who..... - Is depressed, blue
Mean (sd) : 2.5 (1.3)
min ≤ med ≤ max:
1 ≤ 2 ≤ 5
IQR (CV) : 3 (0.5)
1:28(28.6%)
2:25(25.5%)
3:18(18.4%)
4:21(21.4%)
5:6(6.1%)
98 (80.3%) 24 (19.7%)
3 Potter2 [haven_labelled, vctrs_vctr, double] Forest or River?
Min : 1
Mean : 1.4
Max : 2
1:56(55.4%)
2:45(44.6%)
101 (82.8%) 21 (17.2%)

Generated by summarytools 1.0.1 (R version 4.3.2)
2024-02-14

LS0tCnRpdGxlOiAiTGVhcm5pbmcgaG93IHRvIGNyZWF0ZSBhIGRhdGEgY29kZWJvb2siCm91dHB1dDogCiAgaHRtbF9ub3RlYm9vazogCiAgICB0aGVtZTogZGFya2x5CiAgICB0b2M6IHllcwogICAgdG9jX2Zsb2F0OiB5ZXMKLS0tCgojIExvYWQgUGFja2FnZXMgey50YWJzZXR9CgojIyBoYXZlbgoKYGBge3J9CmlmICghcmVxdWlyZShoYXZlbikpewogIGluc3RhbGwucGFja2FnZXMoImhhdmVuIiwgZGVwZW5kZW5jaWVzID0gVFJVRSkKICBsaWJyYXJ5KGhhdmVuKQp9CmBgYAoKIyMgdGlkeXZlcnNlCgpgYGB7cn0KaWYgKCFyZXF1aXJlKHRpZHl2ZXJzZSkpewogIGluc3RhbGwucGFja2FnZXMoInRpZHl2ZXJzZSIsIGRlcGVuZGVuY2llcyA9IFRSVUUpCiAgbGlicmFyeSh0aWR5dmVyc2UpCn0KYGBgCgojIyBzdW1tYXJ5dG9vbHMKCmBgYHtyfQppZiAoIXJlcXVpcmUoc3VtbWFyeXRvb2xzKSl7CiAgaW5zdGFsbC5wYWNrYWdlcygic3VtbWFyeXRvb2xzIiwgZGVwZW5kZW5jaWVzID0gVFJVRSkKICBsaWJyYXJ5KHN1bW1hcnl0b29scykKfQpgYGAKCgojIEltcG9ydCBEYXRhCgpgYGB7cn0KZGF0YXNldDwtIHJlYWRfc2F2KCJodHRwczovL29zZi5pby9rZDRlai9kb3dubG9hZCIpCmBgYAoKIyBDb2RlYm9vawoKYGBge3J9CmRhdGFzZXQgJT4lCiAgc2VsZWN0KENvaW5GbGlwLCBGRk1fNCwgUG90dGVyMikgLT4gbmV3VmFyaWFibGUKCnByaW50KGRmU3VtbWFyeShuZXdWYXJpYWJsZSwgZ3JhcGgubWFnbmlmID0gLjc1KSwgbWV0aG9kID0gJ3JlbmRlcicpCmBgYAoKIyBCb251cyBQb2ludHMKCuKAoiBpZigpIDxodHRwczovL3Jkb2N1bWVudGF0aW9uLm9yZy9wYWNrYWdlcy9UaWRlcy92ZXJzaW9ucy8yLjEvdG9waWNzL0lGPgoK4oCiIHJlcXVpcmUoKSA8aHR0cHM6Ly9yZG9jdW1lbnRhdGlvbi5vcmcvcGFja2FnZXMvUmVxdWlyZS92ZXJzaW9ucy8wLjMuMT4KCuKAoiBsaWJyYXJ5KCkgPGh0dHBzOi8vcmRvY3VtZW50YXRpb24ub3JnL3BhY2thZ2VzL2FkYXByL3ZlcnNpb25zLzIuMC4wL3RvcGljcy9MaWJyYXJ5PgoK4oCiIHJlYWRfc2F2KCkgPGh0dHBzOi8vcmRvY3VtZW50YXRpb24ub3JnL3BhY2thZ2VzL2hhdmVuL3ZlcnNpb25zLzIuNS4zL3RvcGljcy9sYWJlbGxlZF9zcHNzPgoK4oCiIHNlbGVjdCgpIDxodHRwczovL3Jkb2N1bWVudGF0aW9uLm9yZy9wYWNrYWdlcy9TZWxlY3QvdmVyc2lvbnMvMS40PgoK4oCiIHByaW50KCkgPGh0dHBzOi8vcmRvY3VtZW50YXRpb24ub3JnL3BhY2thZ2VzL3BzeWNobWV0YS92ZXJzaW9ucy8yLjYuNS90b3BpY3MvcHJpbnQ+CgrigKIgZGZTdW1tYXJ5KCkgPGh0dHBzOi8vcmRvY3VtZW50YXRpb24ub3JnL3BhY2thZ2VzL2Jpb2Fzc2F5cy92ZXJzaW9ucy8xLjAuMS90b3BpY3MvZGZzdW1tYXJ5PgoK