Loading packages

library(tidyverse)
library(here)
library(repurrrsive)

Exercise 1

Import the Month.XX.csv files into one data frame

df <- list.files(here("Lab 6/data"), full.names = TRUE) %>%
  map_df(read_csv)
glimpse(df)
## Rows: 698,159
## Columns: 10
## $ Account_ID            <dbl> 5, 16, 28, 40, 62, 64, 69, 69, 70, 79, 88, 90, 9…
## $ Transaction_Timestamp <dttm> 2009-01-08 00:16:41, 2009-01-20 22:40:08, 2009-…
## $ Factor_A              <dbl> 2, 2, 2, 2, 2, 7, 2, 2, 2, 7, 8, 10, 10, 2, 2, 2…
## $ Factor_B              <dbl> 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 18, 6, 6, 6, 6, 6,…
## $ Factor_C              <chr> "VI", "VI", "VI", "VI", "VI", "MC", "VI", "VI", …
## $ Factor_D              <dbl> 20, 20, 21, 20, 20, 20, 20, 20, 20, 20, 20, 20, …
## $ Factor_E              <chr> "A", "H", "NULL", "H", "B", "NULL", "H", "H", "B…
## $ Response              <dbl> 1020, 1020, 1020, 1020, 1020, 1020, 1020, 1020, …
## $ Transaction_Status    <chr> "Approved", "Approved", "Approved", "Approved", …
## $ Month                 <chr> "Jan", "Jan", "Jan", "Jan", "Jan", "Jan", "Jan",…

Exercise 2

Check the current class of each column

df %>%
  map(class)
## $Account_ID
## [1] "numeric"
## 
## $Transaction_Timestamp
## [1] "POSIXct" "POSIXt" 
## 
## $Factor_A
## [1] "numeric"
## 
## $Factor_B
## [1] "numeric"
## 
## $Factor_C
## [1] "character"
## 
## $Factor_D
## [1] "numeric"
## 
## $Factor_E
## [1] "character"
## 
## $Response
## [1] "numeric"
## 
## $Transaction_Status
## [1] "character"
## 
## $Month
## [1] "character"

Exercise 3

How many unique values exist in each column?

df %>%
  map_int(n_distinct)
##            Account_ID Transaction_Timestamp              Factor_A 
##                475413                686538                     7 
##              Factor_B              Factor_C              Factor_D 
##                     6                     4                    15 
##              Factor_E              Response    Transaction_Status 
##                    63                    42                     2 
##                 Month 
##                    11

Exercise 4

Recode any values where Factor_D == 26 to be 25. How many unique values exist in the column? How many observations are there for each level of Factor_D?

df %>%
  mutate(Factor_D = ifelse(Factor_D == 26, 25, Factor_D)) %>%
  count(Factor_D)
## # A tibble: 14 × 2
##    Factor_D      n
##       <dbl>  <int>
##  1       10   4595
##  2       15   1089
##  3       20 527882
##  4       21  68072
##  5       25  41021
##  6       30   7030
##  7       31    512
##  8       35  25298
##  9       40   2720
## 10       50   3709
## 11       55  15200
## 12       70     54
## 13       85      4
## 14       90    973

Exercise 5

Filter out “Factor_” observations that contain “NULL”

df <- df %>%
  filter_at(c(3:7), all_vars(. != "NULL"))

Exercise 6

Convert all variables to factors and make sure the “Month” variable is an ordered factor

df <- df %>%
  mutate_at(-2, as.factor) %>%
  mutate(Month = factor((Month), levels = month.abb))

glimpse(df)
## Rows: 489,537
## Columns: 10
## $ Account_ID            <fct> 5, 16, 40, 62, 69, 69, 70, 95, 101, 101, 102, 10…
## $ Transaction_Timestamp <dttm> 2009-01-08 00:16:41, 2009-01-20 22:40:08, 2009-…
## $ Factor_A              <fct> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …
## $ Factor_B              <fct> 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, …
## $ Factor_C              <fct> VI, VI, VI, VI, VI, VI, VI, VI, VI, VI, VI, VI, …
## $ Factor_D              <fct> 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, …
## $ Factor_E              <fct> A, H, H, B, H, H, B, G, G2, G2, A, A, C, A, A, A…
## $ Response              <fct> 1020, 1020, 1020, 1020, 1020, 1020, 1020, 1020, …
## $ Transaction_Status    <fct> Approved, Approved, Approved, Approved, Approved…
## $ Month                 <fct> Jan, Jan, Jan, Jan, Jan, Jan, Jan, Jan, Jan, Jan…
levels(df$Month)
##  [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

Exercise 7

Assess how many unique values there are for all the other variables in our data set

df %>% summarize_if(is.factor, n_distinct)
## # A tibble: 1 × 9
##   Account_ID Factor_A Factor_B Factor_C Factor_D Factor_E Response
##        <int>    <int>    <int>    <int>    <int>    <int>    <int>
## 1     324174        2        3        2       13       62       30
## # ℹ 2 more variables: Transaction_Status <int>, Month <int>

For transactions that are approved versus declined, do we have near equal representation of observations across each variable?

df %>%
  group_by(Transaction_Status) %>%
  summarize_if(is.factor, n_distinct)
## # A tibble: 2 × 9
##   Transaction_Status Account_ID Factor_A Factor_B Factor_C Factor_D Factor_E
##   <fct>                   <int>    <int>    <int>    <int>    <int>    <int>
## 1 Approved               316172        2        3        2       12       59
## 2 Declined                14066        2        3        2       11       57
## # ℹ 2 more variables: Response <int>, Month <int>

Exercise 8

Create a convert_to_qtr function that takes in a abbreviated month and turns it into its corresponding quarter

convert_to_qtr <- function(month) {
  case_when(
    month %in% c("Jan", "Feb", "Mar") ~ "Q1",
    month %in% c("Apr", "May", "Jun") ~ "Q2",
    month %in% c("Jul", "Aug", "Sep") ~ "Q3",
    month %in% c("Oct", "Nov", "Dec") ~ "Q4"
  )
}

Test the convert_to_qtr function

example_months <- c("Jan", "Mar", "May", "May", "Aug", "Nov", "Nov", "Dec")
convert_to_qtr(example_months)
## [1] "Q1" "Q1" "Q2" "Q2" "Q3" "Q4" "Q4" "Q4"

Make a new variable Qtr with the convert_to_qtr function and find how many observations are in each quarter?

df %>%
  mutate(Qtr = convert_to_qtr(Month)) %>%
  group_by(Qtr) %>%
  count(Qtr)
## # A tibble: 4 × 2
## # Groups:   Qtr [4]
##   Qtr        n
##   <chr>  <int>
## 1 Q1     85588
## 2 Q2    100227
## 3 Q3    161071
## 4 Q4    142651

Exercise 9

Extract the name of each Star Wars character

sw_people %>% map_chr(~.x$name)
##  [1] "Luke Skywalker"        "C-3PO"                 "R2-D2"                
##  [4] "Darth Vader"           "Leia Organa"           "Owen Lars"            
##  [7] "Beru Whitesun lars"    "R5-D4"                 "Biggs Darklighter"    
## [10] "Obi-Wan Kenobi"        "Anakin Skywalker"      "Wilhuff Tarkin"       
## [13] "Chewbacca"             "Han Solo"              "Greedo"               
## [16] "Jabba Desilijic Tiure" "Wedge Antilles"        "Jek Tono Porkins"     
## [19] "Yoda"                  "Palpatine"             "Boba Fett"            
## [22] "IG-88"                 "Bossk"                 "Lando Calrissian"     
## [25] "Lobot"                 "Ackbar"                "Mon Mothma"           
## [28] "Arvel Crynyd"          "Wicket Systri Warrick" "Nien Nunb"            
## [31] "Qui-Gon Jinn"          "Nute Gunray"           "Finis Valorum"        
## [34] "Jar Jar Binks"         "Roos Tarpals"          "Rugor Nass"           
## [37] "Ric Olié"              "Watto"                 "Sebulba"              
## [40] "Quarsh Panaka"         "Shmi Skywalker"        "Darth Maul"           
## [43] "Bib Fortuna"           "Ayla Secura"           "Dud Bolt"             
## [46] "Gasgano"               "Ben Quadinaros"        "Mace Windu"           
## [49] "Ki-Adi-Mundi"          "Kit Fisto"             "Eeth Koth"            
## [52] "Adi Gallia"            "Saesee Tiin"           "Yarael Poof"          
## [55] "Plo Koon"              "Mas Amedda"            "Gregar Typho"         
## [58] "Cordé"                 "Cliegg Lars"           "Poggle the Lesser"    
## [61] "Luminara Unduli"       "Barriss Offee"         "Dormé"                
## [64] "Dooku"                 "Bail Prestor Organa"   "Jango Fett"           
## [67] "Zam Wesell"            "Dexter Jettster"       "Lama Su"              
## [70] "Taun We"               "Jocasta Nu"            "Ratts Tyerell"        
## [73] "R4-P17"                "Wat Tambor"            "San Hill"             
## [76] "Shaak Ti"              "Grievous"              "Tarfful"              
## [79] "Raymus Antilles"       "Sly Moore"             "Tion Medon"           
## [82] "Finn"                  "Rey"                   "Poe Dameron"          
## [85] "BB8"                   "Captain Phasma"        "Padmé Amidala"

Exercise 10

Find the number of films each Star Wars character has been in

sw_people %>% map_int(~ length(.$films))
##  [1] 5 6 7 4 5 3 3 1 1 6 3 2 5 4 1 3 3 1 5 5 3 1 1 2 1 2 1 1 1 1 1 3 1 2 1 1 1 2
## [39] 1 1 2 1 1 3 1 1 1 3 3 3 2 2 2 1 3 2 1 1 1 2 2 1 1 2 2 1 1 1 1 1 1 1 2 1 1 2
## [77] 1 1 2 2 1 1 1 1 1 1 3

Exercise 11

Create a plot that shows the number of films each Star Wars Character has been in.

sw_people %>%
  map_chr(~ .$name) %>%
  set_names(sw_people, nm = .) %>%
  map_df(~ length(.$films)) %>%
  pivot_longer(
    cols = everything(),
    names_to = "Character",
    values_to = "Films"
  ) %>%
  ggplot(aes(Films, reorder(Character, Films))) +
    geom_point() +
    scale_y_discrete("Characters") +
    scale_x_continuous("Number of Films")