Rows: 424 Columns: 18
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (10): ticker, name, asset_class, sub_asset_class, region, market, locat...
dbl (6): gross_expense_ratio_percent, net_expense_ratio_percent, net_asset...
dttm (2): incept_date, net_assets_as_of
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
`summarise()` has grouped output by 'asset_class'. You can override using the
`.groups` argument.
Q4
#Top sub-asset classes with largest amount of fundtop_sub_asset_classes <- blackrock_etf_screener |>group_by(sub_asset_class) |>summarise(total_funds =sum(net_assets_usd, na.rm =TRUE)) |>top_n(5, total_funds)ggplot(top_sub_asset_classes, aes(x =reorder(sub_asset_class, total_funds), y = total_funds)) +geom_bar(stat ="identity") +labs(title ="Top 5 Sub-Asset Classes by Total Funds",x ="Sub-Asset Class",y ="Total Funds")
#Top asset class with largest amount of fundstop_asset_classes <- blackrock_etf_screener |>group_by(asset_class) |>summarise(total_fundss =sum(net_assets_usd, na.rm =TRUE)) |>top_n(5, total_fundss)ggplot(top_asset_classes, aes(x =reorder(asset_class, total_fundss), y = total_fundss)) +geom_bar(stat ="identity") +labs(title ="Top 5 Asset Classes by Total Funds",x ="Asset Class",y ="Total Funds")
#Distribution of fund sizeggplot(blackrock_etf_screener, aes(x = net_assets_usd)) +geom_histogram() +labs(title ="Distribution of Net Assets (USD)",x ="Net Assets (USD)",y ="Count")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
#Distribution of MSCI scoreggplot(blackrock_etf_screener, aes(x = msci_esg_quality_score_0_10)) +geom_histogram() +labs(title ="Distribution of MSCI ESG Quality Scores",x ="MSCI ESG Quality Score",y ="Count")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.