class: left middle ## Recurrent Neural Network Model<br>for Weather Forecasting<br>Using ISRT Weather Data .right[ ### <br>Md Mutasim Billah .large[Class Roll: SH-033-030<br>Session: 2022-23<br>Institute of Statistical Research and Training<br>University of Dhaka]] .right[ .large[13 February 2024]] --- ## .center[Overview] .centermiddle[.laarge[
**What we wanted to do**
How we did it
Evaluation and conclusion ]] --- .center[ ## Weather Forecast ] .pull-left[ .center[.xlarge[
<br>Temperature ] ] ] .pull-right[ .center[.xlarge[
<br>Rain ]]] --- .center[ ## Weather Forecast ] .pull-left[ .center[.xlarge[
<br>Temperature<br><br>
<br>Humidity<br><br>
<br>Pressure ] ] ] .pull-right[ .center[.xlarge[
<br>Rain<br><br>
<br>Wind<br><br>
<br>Cloud(!) ]]] .footnote[<a name=cite-ncas_weather_components></a>[for Atmospheric Science (2023)](#bib-ncas_weather_components)] --- ## .center[Literature Review] ### .box[.blue[.center[ Neural Network Model<br>over Classical Statistical Methods ]]] .box[ .large[.center[<a name=cite-hanoon_developing_2021></a>[Hanoon, Ahmed, Zaini, Razzaq, Kumar, Sherif, Sefelnasr, and El-Shafie (2021)](https://doi.org/10.1038/s41598-021-96872-w); <a name=cite-intan_performance_2021></a>[Intan, Rismayani, Ghani, Nurdin, and Koswara (2021)](https://www.neliti.com/publications/519180/); <a name=cite-kakar_artificial_2018></a>[Kakar, Sheikh, Naseem, Iqbal, Rehman, Kakar, Kakar, Kakar, and Khan (2018)](https://thesai.org/Publications/ViewPaper?Volume=9&Issue=8&Code=IJACSA&SerialNo=59); <a name=cite-hayati_application_2007></a>[Hayati and Mohebi (2007)](#bib-hayati_application_2007); <a name=cite-roy_forecasting_2020></a>[Roy (2020)](https://doi.org/10.1016/j.procs.2020.11.005); <a name=cite-nketiah_recurrent_2023></a>[Nketiah, Chenlong, Yingchuan, and Aram (2023)](https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285713);<a name=cite-zaytar_sequence_2016></a>[Zaytar and El Amrani (2016)](https://doi.org/10.5120/ijca2016910497) ]]] --- ## .center[ Our Goal] .centermiddle[.laarge[
Build RNN model<br>for several weather components <!--
Evaluate model performance --> ]] --- ## .center[Overview] .centermiddle[.laarge[ .fade[
What we wanted to do]
**How we did it**
Evaluation and conclusion ]] --- class: center ## Data .panelset[ .panel[.panel-name[Data Source] .laarge[.box[.blue[ISRT Weather Data]]] <img src="data:image/png;base64,#img/isrt.png" width="50%" /> .laarge[<br>Collected from: NASA POWER project<br>**Time Period: 2015-2023 (Hourly)**] ] .panel[.panel-name[Feature Engineering] .pull-left[.center[.laarge[ T2M<br><br> PRECTOTCORR<br><br> Wx<br><br> Day sin<br><br> Year sin ]]] .pull-right[.center[.laarge[ QV2M<br><br> PS<br><br> Wy<br><br> Day cos<br><br> Year cos ]]] ] .panel[.panel-name[Normalization] .xlarge[Normalized between [-1, 1]] <img src="data:image/png;base64,#img/f-4.png" width="70%" /> .center[.xlarge[Features after normalization]] ] .panel[.panel-name[Data Split] .laarge[.box[.blue[.center[ Training Set
70% ]]]] .laarge[.box[.blue[.center[ Validation Set
20% ]]]] .laarge[.box[.blue[.center[ Test Set
10% ]]]] ] ] --- class: center ## Model .panelset[ .panel[.panel-name[LSTM] <img src="data:image/png;base64,#img/multistep_last.png" width="50%" /> .center[.xlarge[LSTM Model]] ] .panel[.panel-name[AR LSTM] <img src="data:image/png;base64,#img/multistep_autoregressive.png" width="70%" /> .center[.xlarge[Autoregressive LSTM Model]] ] <!-- .panel[.panel-name[Specification] --> <!-- .xlarge[Layers
LSTM, Dense, Reshape<br>Regularization Method
Early Stopping<br>Loss Function
Mean Squared Error<br>Optimizer
Adam Optimizer<br>Metrics
Mean Squared Error, Mean Absolute Error<br>Epoch
20<br> --> <!-- ]] --> ] --- ## .center[Overview] .centermiddle[.laarge[ .fade[
What we wanted to do
How we did it]
**Evaluation and conclusion** ]] --- class: center ## Model Evaluation ---- .centermiddle[ ### **Mean Squared Error** .xlarge[LSTM
0.0099<br>AR LSTM
0.0093] ] --- class: center ## Model Evaluation ---- .centermiddle[ .fade[ ### **Mean Squared Error** .xlarge[LSTM
0.0099<br>AR LSTM
0.0093]] ### **Mean Absolute Error** .xlarge[LSTM
0.0586<br>AR LSTM
0.0558] ] --- class: center ## Concluding Remark .center[.box[.blue[.xlarge[ RNN (LSTM) model<br>works quite well<br>in predicting weather ]]]] --- ## .center[Reference-I] .large[ <a name=bib-ncas_weather_components></a>[Atmospheric Science, T. N. C. for](#cite-ncas_weather_components) (2023). _What causes weather?_. <https://ncas.ac.uk/learn/what-causes-weather/>. [Online; accessed 03-February-2024]. <a name=bib-hanoon_developing_2021></a>[Hanoon, M. S., A. N. Ahmed, N. Zaini, et al.](#cite-hanoon_developing_2021) (2021). "Developing machine learning algorithms for meteorological temperature and humidity forecasting at Terengganu state in Malaysia". Eng. In: _Scientific Reports_ 11.1, p. 18935. ISSN: 2045-2322. DOI: [10.1038/s41598-021-96872-w](https://doi.org/10.1038%2Fs41598-021-96872-w). <a name=bib-hayati_application_2007></a>[Hayati, M. and Z. Mohebi](#cite-hayati_application_2007) (2007). "Application of Artificial Neural Networks for Temperature Forecasting". In: _World Academy of Science, Engineering and Technology_ 28, pp. 275-279. ] --- ## .center[Reference-II] .large[ <a name=bib-intan_performance_2021></a>[Intan, I., R. Rismayani, S. A. D. Ghani, et al.](#cite-intan_performance_2021) (2021). "Performance Analysis of Weather Forecasting Using Machine Learning Algorithms (Analisis Performansi Prakiraan Cuaca Menggunakan Algoritma Machine Learning)". En. In: _Pekommas_ 6.2. Publisher: Indonesian Ministry of Communication and Informatics, pp. 1-8. ISSN: 2502-1893, 2502-1907. DOI: [10.30818/jpkm.2021.2060221](https://doi.org/10.30818%2Fjpkm.2021.2060221). URL: [https://www.neliti.com/publications/519180/](https://www.neliti.com/publications/519180/) (visited on Jan. 21, 2024). <a name=bib-kakar_artificial_2018></a>[Kakar, S. A., N. Sheikh, A. Naseem, et al.](#cite-kakar_artificial_2018) (2018). "Artificial Neural Network based Weather Prediction using Back Propagation Technique". En. In: _International Journal of Advanced Computer Science and Applications (IJACSA)_ 9.8. Number: 8 Publisher: The Science and Information (SAI) Organization Limited. ISSN: 2156-5570. DOI: [10.14569/IJACSA.2018.090859](https://doi.org/10.14569%2FIJACSA.2018.090859). URL: [https://thesai.org/Publications/ViewPaper?Volume=9&Issue=8&Code=IJACSA&SerialNo=59](https://thesai.org/Publications/ViewPaper?Volume=9&Issue=8&Code=IJACSA&SerialNo=59) (visited on Jan. 21, 2024). ] --- ## .center[Reference-III] .large[ <a name=bib-nketiah_recurrent_2023></a>[Nketiah, E. A., L. Chenlong, J. Yingchuan, et al.](#cite-nketiah_recurrent_2023) (2023). "Recurrent neural network modeling of multivariate time series and its application in temperature forecasting". En. In: _PLOS ONE_ 18.5. Publisher: Public Library of Science, p. e0285713. ISSN: 1932-6203. DOI: [10.1371/journal.pone.0285713](https://doi.org/10.1371%2Fjournal.pone.0285713). URL: [https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285713](https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285713) (visited on Jan. 13, 2024). <a name=bib-roy_forecasting_2020></a>[Roy, D.](#cite-roy_forecasting_2020) (2020). "Forecasting The Air Temperature at a Weather Station Using Deep Neural Networks". In: _Procedia Computer Science_ 178, pp. 38-46. DOI: [10.1016/j.procs.2020.11.005](https://doi.org/10.1016%2Fj.procs.2020.11.005). <a name=bib-zaytar_sequence_2016></a>[Zaytar, M. A. and C. El Amrani](#cite-zaytar_sequence_2016) (2016). "Sequence to Sequence Weather Forecasting with Long Short-Term Memory Recurrent Neural Networks". In: _International Journal of Computer Applications_ 143, pp. 7-11. DOI: [10.5120/ijca2016910497](https://doi.org/10.5120%2Fijca2016910497). ] --- class: center middle # Thank YOU!!