Rows: 424 Columns: 18
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (10): ticker, name, asset_class, sub_asset_class, region, market, locat...
dbl (6): gross_expense_ratio_percent, net_expense_ratio_percent, net_asset...
dttm (2): incept_date, net_assets_as_of
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Create a sorted bar chart of the 10 smallest ETFs.
Hint: for sorting the bar chart, look up fct_reorder() . Make sure your chart has meaningful titles and labels, including numbers of an appropriate magnitude.
library(tidyverse)smallest_etfs <- blackrock_etf_screener %>%arrange(net_assets_usd) %>%slice_head(n =10) %>%mutate(name =fct_reorder(name, net_assets_usd)) ggplot(smallest_etfs, aes(x = name, y = net_assets_usd)) +geom_bar(stat ="identity", alpha=0.5) +coord_flip() +# Flips the axes to make the chart horizontallabs(title ="Top 10 Smallest ETFs by Net Assets",x ="ETF Name",y ="Net Assets (USD)",caption ="Data source: BlackRock ETF Screener,Made by NadiaXING" ) +theme_minimal() +scale_y_continuous(labels = scales::label_dollar(scale=1/10^6,suffix ="M")) # Format the net assets as currency
[1] "iShares Core S&P Small-Cap ETF"
[2] "iShares Core MSCI Emerging Markets ETF"
[3] "iShares Russell 2000 ETF"
[4] "iShares iBoxx $ High Yield Corporate Bond ETF"
[5] "iShares MSCI Emerging Markets ETF"
[6] "iShares J.P. Morgan USD Emerging Markets Bond ETF"
[7] "iShares Preferred and Income Securities ETF"
[8] "iShares Russell 2000 Value ETF"
[9] "iShares Broad USD High Yield Corporate Bond ETF"
[10] "iShares Russell 2000 Growth ETF"
[11] "iShares S&P Small-Cap 600 Value ETF"
[12] "iShares MSCI India ETF"
[13] "iShares MSCI Brazil ETF"
[14] "iShares MSCI China ETF"
[15] "iShares S&P Small-Cap 600 Growth ETF"
[16] "iShares 0-5 Year High Yield Corporate Bond ETF"
[17] "iShares MSCI Emerging Markets Min Vol Factor ETF"
[18] "iShares Global REIT ETF"
[19] "iShares Core U.S. REIT ETF"
[20] "iShares MSCI Mexico ETF"
[21] "iShares U.S. Financials ETF"
[22] "iShares Latin America 40 ETF"
[23] "iShares Micro-Cap ETF"
[24] "iShares MSCI USA Small-Cap Min Vol Factor ETF"
[25] "iShares MSCI Saudi Arabia ETF"
[26] "iShares Emerging Markets Dividend ETF"
[27] "iShares Agency Bond ETF"
[28] "iShares Residential and Multisector Real Estate ETF"
[29] "iShares Mortgage Real Estate ETF"
[30] "iShares Emerging Markets Equity Factor ETF"
[31] "iShares Morningstar Small-Cap Growth ETF"
[32] "iShares J.P. Morgan EM Local Currency Bond ETF"
[33] "iShares® iBonds® 2024 Term High Yield and Income ETF"
[34] "iShares U.S. Insurance ETF"
[35] "iShares Morningstar Small-Cap Value ETF"
[36] "iShares MSCI Indonesia ETF"
[37] "iShares J.P. Morgan EM Corporate Bond ETF"
[38] "iShares MSCI Emerging Markets Small-Cap ETF"
[39] "iShares High Yield Bond Factor ETF"
[40] "iShares J.P. Morgan EM High Yield Bond ETF"
[41] "iShares® iBonds® 2025 Term High Yield and Income ETF"
[42] "iShares Global Comm Services ETF"
[43] "iShares MSCI Brazil Small-Cap ETF"
[44] "iShares MSCI Poland ETF"
[45] "iShares® iBonds® 2026 Term High Yield and Income ETF"
[46] "iShares Morningstar Small-Cap ETF"
[47] "iShares MSCI China A ETF"
[48] "iShares MSCI Global Silver and Metals Miners ETF"
[49] "iShares Interest Rate Hedged High Yield Bond ETF"
[50] "iShares MSCI Turkey ETF"
[51] "iShares Genomics Immunology and Healthcare ETF"
[52] "iShares Currency Hedged MSCI Emerging Markets ETF"
[53] "iShares US & Intl High Yield Corp Bond ETF"
[54] "iShares MSCI Japan Small-Cap ETF"
[55] "iShares MSCI Peru and Global Exposure ETF"
[56] "iShares MSCI Philippines ETF"
[57] "iShares US Small Cap Value Factor ETF"
[58] "iShares MSCI Qatar ETF"
[59] "iShares® iBonds® 2027 Term High Yield and Income ETF"
[60] "iShares MSCI BIC ETF"
[61] "iShares ESG Screened S&P Small-Cap ETF"
[62] "iShares MSCI Kuwait ETF"
[63] "iShares MSCI China Small-Cap ETF"
[64] "iShares High Yield Corporate Bond BuyWrite Strategy ETF"
[65] "iShares® iBonds® 2028 Term High Yield and Income ETF"
[66] "iShares J.P. Morgan Broad USD Emerging Markets Bond ETF"
[67] "iShares MSCI UAE ETF"
[68] "iShares Emerging Markets Infrastructure ETF"
[69] "iShares Blockchain and Tech ETF"
[70] "iShares® iBonds® 2029 Term High Yield and Income ETF"
[71] "iShares® iBonds® 2030 Term High Yield and Income ETF"
[72] "iShares MSCI China Multisector Tech ETF"
[73] "BlackRock Future Financial and Technology ETF"
[74] "iShares Neuroscience and Healthcare ETF"
[75] "iShares Lithium Miners and Producers ETF"
[76] "iShares Inflation Hedged High Yield Bond ETF"
`summarise()` has grouped output by 'asset_class'. You can override using the
`.groups` argument.
print(summary_by_class)
# A tibble: 9 × 4
asset_class sub_asset_class Number_of_Funds total_assets
<chr> <chr> <int> <dbl>
1 Equity All Cap 23 95486052602.
2 Equity Large Cap 1 1852506812.
3 Equity Large/Mid Cap 10 42421984678.
4 Equity Small Cap 17 187292555389.
5 Fixed Income Corporates 1 41339182.
6 Fixed Income Credit 1 408038372.
7 Fixed Income Government 3 17560711395.
8 Fixed Income High Yield 16 38239624578.
9 Real Estate Real Estate Securities 4 7145439523.
The downloaded binary packages are in
/var/folders/pz/gf8r5yfj7r93ln6kz_gbkjtc0000gn/T//Rtmp4nhco5/downloaded_packages
library("plotly")
Attaching package: 'plotly'
The following object is masked from 'package:ggplot2':
last_plot
The following object is masked from 'package:stats':
filter
The following object is masked from 'package:graphics':
layout
region_summary_data <- blackrock_etf_screener |>count(region,sustainable_classification)p<-ggplot(region_summary_data, aes(x = region , y = n, fill = sustainable_classification)) +geom_bar(stat ="identity", position ="stack") +labs(title ="number of funds by region and sustainable classification",x ="Region",y ="number of funds") +theme(axis.text.x =element_text(size =10, angle =45, hjust =1)) p_interactive <-ggplotly(p)p_interactive